
An Efficient Algorithm for 2D Euclidean
2-Center with Outliers?

Pankaj K. Agarwal and Jeff M. Phillips

Department of Computer Science, Duke University, Durham, NC 27708

Abstract. For a set P of n points in R2, the Euclidean 2-center problem
computes a pair of congruent disks of the minimal radius that cover P .
We extend this to the (2, k)-center problem where we compute the mini-
mal radius pair of congruent disks to cover n−k points of P . We present
a randomized algorithm with O(nk7 log3 n) expected running time for
the (2, k)-center problem. We also study the (p, k)-center problem in R2

under the `∞-metric. We give solutions for p = 4 in O(kO(1)n logn) time
and for p = 5 in O(kO(1)n log5 n) time.

1 Introduction

Let P be a set of n points in R2. For a pair of integers 0 ≤ k ≤ n and p ≥ 1,
a family of p congruent disks is called a (p, k)-center if the disks cover at least
n − k points of P ; (p, 0)-center is the standard p-center. The Euclidean (p, k)-
center problems asks for computing a (p, k)-center of P of the smallest radius.
In this paper we study the (2, k)-center problem. We also study the (p, k)-center
problem under the `∞-metric for small values of p and k. Here we wish to cover
all but k points of P by p congruent axis-aligned squares of the smallest side
length. Our goal is to develop algorithms whose running time is n(k log n)O(1).

Related work. There has been extensive work on the p-center problem in algo-
rithms and operations research communities [4, 14, 18, 9]. If p is part of the input,
the problem is NP-hard [22] even for the Euclidean case in R2. The Euclidean 1-
center problem is known to be LP-type [20], and therefore can be solved in linear
time for any fixed dimension. The Euclidean 2-center problem is not LP-type.
Agarwal and Sharir [3] proposed an O(n2 log3 n) time algorithm for the 2-center
problem. The running time was improved to O(n logO(1) n) by Sharir [24]. The
exponent of the log n factor was subsequently improved in [15, 6]. The best known
deterministic algorithm takes O(n log2 n log2 log n) time in the worst case, and
the best known randomized algorithm takes O(n log2 n) expected time.

There is little work on the (p, k)-center problem. Using a framework described
by Matoušek [19], the (1, k)-center problem can be solved in O(n log k + k3nε)
? This work is supported by NSF under grants CNS-05-40347, CFF-06-35000, and

DEB-04-25465, by ARO grants W911NF-04-1-0278 and W911NF-07-1-0376, by an
NIH grant 1P50-GM-08183-01, by a DOE grant OEGP200A070505, and by a grant
from the U.S. Israel Binational Science Foundation.

time for any ε > 0. In general, Matoušek shows how to solve this problem
with k outliers in O(nkd) time where d is the inherent number of constraints in
the solution. The bound for the (1, k)-center problem is improved by Chan [7]
to O(nβ(n) log n + k2nε) expected time, where β(·) is a slow-growing inverse-
Ackermann-like function and ε > 0.

The p-center problem under `∞-metric is dramatically simpler. Sharir and
Welzl [25] show how to compute the `∞ p-center in near-linear time for p ≤ 5.
In fact, they show that the rectilinear 2- and 3-center problems are LP-type
problems and can be solved in O(n) time. Also, they show the 1-dimensional
version of the problem is an LP-type problem for any p, with combinatorial
dimension O(p). Thus applying Matoušek’s framework [19], the `∞ (p, k)-center
in R2 for p ≤ 3, can be found in O(kO(1)n) time and in O(kO(p)n), for any p, if
the points lie in R1.

Our results. Our main result is a randomized algorithm for the Euclidean
(2, k)-center problem in R2 whose expected running time is O(nk7 log3 n). We
follow the general framework of Sharir and subsequent improvements by Epp-
stein. To handle outliers we first prove, in Section 2, a few structural properties
of levels in an arrangement of unit disks, which are of independent interest.

As in [24, 15], our solution breaks the (2, k)-center problem into two cases
depending on the distance between the centers of the optimal disks; (i) the cen-
ters are further apart than the optimal radius, and (ii) they are closer than their
radius. The first subproblem, which we refer to as the well-separated case and de-
scribe in Section 3, takes O(k6n log3 n) time in the worst case and uses paramet-
ric search [21]. The second subproblem, which we refer to as the nearly concentric
case and describe in Section 4, takes O(k7n log3 n) expected time. Thus we solve
the (2, k)-center problem in O(k7n log3 n) expected time. We can solve the nearly
concentric case and hence the (2, k)-center problem in O(k7n1+δ) deterministic
time, for any δ > 0. We present near-linear algorithms for the `∞ (p, k)-center
in R2 for p = 4, 5. The `∞ (4, k)-center problem takes O(kO(1)n log n) time, and
the `∞ (5, k)-center problem takes O(kO(1)n log5 n) time. See the full version [2]
for the description of these results. We have not made an attempt to minimize
the exponent of k. We believe that it can be improved by a more careful analysis.

2 Arrangement of Unit Disks

Let D = {D1, . . . , Dn} be a set of n unit disks in R2. Let A(D) be the ar-
rangement of D.1 A(D) consists of O(n2) vertices, edges, and faces. For a subset
R ⊆ D, let I(R) =

⋂
D∈RD denote the intersection of disks in R. Each disk in

R contributes at most one edge in I(R). We refer to I(R) as a unit-disk polygon
and a connected portion of ∂I(R) as a unit-disk curve. We introduce the notion
1 The arrangement of D is the planar decomposition induced by D; its vertices are the

intersection points of boundaries of two disks, its edges are the maximal portions of
disk boundaries that do not contain a vertex, and its faces are the maximal connected
regions of the plane that do not intersect the boundary of any disk.

of level in A(D), prove a few structural properties of levels, and describe an
algorithm that will be useful for our overall algorithm.

Levels and their structural properties. For a point x ∈ R2, the level of x
with respect to D, denoted by λ(x,D), is the number of disks in D that do not
contain x. (Our definition of level is different from the more common definition
in which it is defined as the number of disks whose interiors contain x.) All points
lying on an edge or face φ of A(D) have the same level, which we denote by λ(φ).
For k ≤ n, let Ak(D) (resp. A≤k(D)) denote the set of points in R2 whose level
is k (resp. at most k); see Fig. 1. By definition, A0(D) = A≤0(D) = I(D).

The boundary of A≤k(D) is composed of the edges of A(D). Let v ∈ ∂D1 ∩
∂D2, for D1, D2 ∈ D, be a vertex of ∂A≤k(D). We call v convex (resp. concave) if
A≤k(D) lies in D1∩D2 (resp. D1∪D2) in a sufficiently small neighborhood of v.
∂A≤0(D) is composed of convex vertices; see Fig. 1(a). We define the complexity
of A≤k(D) to be the number of edges of A(D) whose levels are at most k. Since
the complexity of A≤0(D) is n, the following lemma follows from the result by
Clarkson and Shor [11] (see also Sharir [23] and Chan [8]).

1 12 2

12 2 1

(a) (b) (c)

Fig. 1. (a) A(D), shaded region is A≤1(D), filled (resp. hollow) vertices are convex
(resp. concave) vertices of A≤1(D), covering of A≤1(D) edges by six unit-disk curves.
(b) A(Γ+), shaded region is A≤1(Γ+), and the covering of A≤1(Γ+) edges by two
concave chains. (c) A(Γ−), shaded region is A≤1(Γ−), and the covering of A≤1(Γ−)
edges by two convex chains.

Lemma 1. [11] For k ≥ 0, the complexity of A≤k(D) is O(nk).

Remark 1. The argument by Clarkson and Shor can also be used to prove that
A≤k(D) has O(k2) connected components and that it has O(k2) local minima
in (+y)-direction. See also [19, 10]. These bounds are tight in the worst case; see
Fig. 2.

It is well known that the edges in the ≤k-level of a line arrangement can be
covered by k+ 1 concave chains [17], as used in [13, 7]. We prove a similar result
for A≤k(D); it can be covered by O(k) unit-disk curves.

For a disk Di, let γ+
i (resp. γ−i) denote the set of points that lie in or below

(resp. above) Di; ∂γ+
i consists of the upper semicircle of ∂Di plus two vertical

downward rays emanating from the left and right endpoints of the semicircle
— we refer to these rays as left and right rays. The curve ∂γ−i has a similar
structure. See Fig. 1(b). Set Γ+ = {γ+

i | 1 ≤ i ≤ n} and Γ− = {γ−i | 1 ≤ i ≤ n}.
Each pair of curves ∂γ+

i , ∂γ
+
j intersect in at most one point. (If we assume that

the left and right rays are not vertical but have very large positive and negative
slopes, respectively, then each pair of boundary curves intersects in exactly one
point.) We define the level of a point with respect to Γ+, Γ−, or Γ+ ∪ Γ− in
the same way as with respect to D. A point lies in a disk Di if and only if it lies
in both γ+

i and γ−i , so we obtain the following inequalities:

max{λ(x, Γ+), λ(x, Γ−)} ≤ λ(x,D). (1)

λ(x,D) ≤ λ(x, Γ+ ∪ Γ−) ≤ 2λ(x,D). (2)

We cover the edges of A≤k(Γ+) by k+ 1 concave chains as follows. The level
of the (k + 1)st rightmost left ray is at most k at y = −∞. Let ρi be such a
ray, belonging to γ+

i . We trace ∂γ+
i , beginning from the point at y = −∞ on ρi,

as long as ∂γ+
i remains in A≤k(Γ+). We stop when we have reached a vertex

v ∈ A≤k(Γ+) at which it leaves A≤k(Γ+); v is a convex vertex on A≤k(Γ+).
Suppose v = ∂γ+

i ∩ ∂γ
+
j . Then ∂A≤k(Γ+) follows ∂γ+

j immediately to the right
of v, so we switch to ∂γ+

j and repeat the same process. It can be checked that we
finally reach y = −∞ on a right ray. Since we switch the curve on a convex vertex,
the chain Λ+

i we trace is a concave chain composed of a left ray, followed by a
unit-disk curve ξ+i , and then followed by a right ray. Let Λ+

0 , Λ
+
1 , . . . , Λ

+
k be the

k+1 chains traversed by this procedure. These chains cover all edges of A≤k(Γ+),
and each edge lies exactly on one chain. Similarly we cover the edges of A≤k(Γ−)
by k+1 convex curves Λ−0 , Λ

−
1 , . . . , Λ

−
k . Let Ξ = {ξ+0 , . . . , ξ

+
k , ξ

−
0 , . . . , ξ

−
k } be the

family of unit-disk curves induced by these convex and concave chains. By (1),
Ξ covers all edges of A≤k(D). Since a unit circle intersects a unit-disk curve in
at most two points, we conclude the following.

Lemma 2. The edges of A≤k(D) can be covered by at most 2k + 2 unit-disk
curves, and a unit circle intersects O(k) edges of A≤k(D).

The curves in Ξ may contain edges of A(D) whose levels are greater that k.
If we wish to find a family of unit-disk curves whose union is the set of edges
in A≤k(D), we proceed as follows. We add the x-extremal points of each disk as
vertices of A(D), so each edge is now x-monotone and lies in a lower or an upper
semicircle. By (1), only O(k) such vertices lie in A≤k(D). We call a vertex of
A≤k(D) extremal if it is an x-extremal point on a disk or an intersection point of
a lower and an upper semicircle. Lemma 2 implies that there are O(k2) extremal
vertices. For each extremal vertex v we do the following. If there is an edge e of
A≤k(D) lying to the right of v, we follow the arc containing e until we reach an
extremal vertex or we leave A≤k(D). In the former case we stop. In the latter

Fig. 2. Lower
bound. A≤2(D)
(shaded region)
has 4 connected
components.

case we are at a convex vertex v′ of ∂A≤k(D), and we
switch to the other arc incident on v′ and continue. These
curves have been drawn in Fig. 1(a). This procedure re-
turns an x-monotone unit-disk curve that lies in A≤k(D).
It can be shown that this procedure covers all edges of
A≤k(D). We thus obtain the following:

Lemma 3. Let D be a set of n unit disks in R2. Given
A≤k(D), we can compute, in time O(nk), a family of
O(k2) x-monotone unit-disk curves whose union is the
set of edges of A≤k(D).

Remark 2. Since A≤k(D) can consist of Ω(k2) connected components, the O(k2)
bound is tight in the worst case; see Fig. 2.

Emptiness detection of A≤k(D). We need a dynamic data structure for stor-
ing a set D of unit disks that supports the following two operations:

– (O1) Insert a disk into D or delete a disk from D;
– (O2) For a given k, determine whether A≤k(D) 6= ∅.

As described by Sharir [24], I(D) can be maintained under insertion/deletion
in O(log2 n) time per update. Matoušek [19] has described a data structure
for solving LP-type problems with violations. Finding the lowest point in I(D)
can be formulated as an LP-type problem. Therefore using the dynamic data
structure with Matoušek’s algorithm, we can obtain the following result.

Lemma 4. There exists a dynamic data structure for storing a set of n unit
disks so that (O1) can be performed in O(log2 n) time, and (O2) takes O(k3 log2 n)
time.

3 Well-Separated Disks

In this section we describe an algorithm for the case in which the two disks
D1, D2 of the optimal solution are well separated. That is, let c1 and c2 be the
centers of D1 and D2, and let r∗ be their radius. Then ||c1c2|| ≥ r∗; see Fig. 3(a).
Without loss of generality, let us assume that c1 lies to the left of c2. Let D−i be
the semidisk lying to the left of the line passing through c1 in direction normal
to c1c2. A line ` is called a separator line if D1∩D2 = ∅ and ` separates D−1 from
D2, or D1∩D2 6= ∅ and ` separates D−1 from the intersection points ∂D1∩∂D2.
We first show that we can quickly compute a set of O(k2) lines that contains a
separator line. Next, we describe a decision algorithm, and then we describe the
algorithm for computing D1 and D2 provided they are well separated.

p[i]
a

p
[i]
n−b

ui

c1 c2

!

(a) (b)

!

D1

D2

C
ρ+

ρ−

z

Fig. 3. (a) Let ` is a separator line for disks D1 and D2. (b) Two unit disks D1 and
D2 or radius r∗ with centers closer than a distance r∗.

Computing separator lines. We fix a sufficiently large constant h and choose
a set U = {u1, . . . , uh} ⊆ S1 of directions, where ui = (cos(2πi/h), sin(2πi/h)).

For a point p ∈ R2 and a direction ui, let p[i] be the projection of p in
the direction normal to ui. Let P [i] = 〈p[i]

1 , . . . , p
[i]
n 〉 be the sorted sequence of

projections of points in the direction normal to ui. For each pair a, b such that
a+b ≤ k, we choose the interval δ[i]a,b = [p[i]

a , p
[i]
n−b] and we place O(1) equidistant

points in this interval. See Fig. 3(a). Let L[i]
a,b be the set of (oriented) lines in the

direction normal to ui and passing though these points. Set

L =
⋃

1≤i≤h
a+b≤k

L
[i]
a,b.

We claim that L contains at least one separator line. Intuitively, let ui ∈ U
be the direction closest to −−→c1c2. Suppose pa and pn−b are the first and the last
points of P in the direction ui that lie inside D1∪D2. Since |P \ (D1∪D2)| ≤ k,
a + b ≤ k. If D1 ∩D2 = ∅, then let q be the extreme points of D1 in direction
−−→c1c2. Otherwise, let q be the first intersection point of ∂D1 ∩ ∂D2 in direction
ui. Following the same argument as Sharir [24], one can argue that

〈c1 − q, ui〉 ≥ α〈pn−b − pa, ui〉,

where α ≤ 1 is a constant. Hence if at least 2α points are chosen in the interval
δ
[i]
a,b, then one of the lines in L

[i]
a,b is a separator line. Omitting all the details,

which are similar to the one in [24], we conclude the following.

Lemma 5. We can compute in O(k2n log n) time a set L of O(k2) lines that
contains a separator line.

Let D1, D2 be a (2, k)-center of P , let ` ∈ L be a line, and let P− ⊆ P be
the set of points that lie in the left halfspace bounded by `. We call D1, D2 a

(2, k)-center consistent with ` if P− ∩ (D1 ∪D2) ⊆ D1, the center of D1 lies to
the left of `, and ∂D1 contains at least one point of P−. We describe a decision
algorithm that determines whether there is a (2, k)-center of unit radius that is
consistent with `. Next, we describe an algorithm for computing a (2, k)-center
consistent with `, which will lead to computing an optimal (2, k)-center of P ,
provided there is a well-separated optimal (2, k)-center of P .

Decision algorithm. Let ` ∈ L be a line. We describe an algorithm for de-
termining whether there is a unit radius (2, k)-center of P that is consistent
with `. Let P− (resp. P+) be the subset of points in P that lie in the left
(resp. right) halfspace bounded by `; set n− = |P−|, n+ = |P+|. Suppose
D1, D2 is a unit-radius (2, k)-center of P consistent with `, and let c1, c2 be
their centers. Then P− ∩ (D1 ∪ D2) ⊆ D1 and |P− ∩ D1| ≥ n− − k. For a
subset Q ⊂ P , let D(Q) = {D(q) | q ∈ Q} where D(q) is the unit disk cen-
tered at q. Let D− = D(P−) and D+ = D(P+). For a point x ∈ R2, let
D+
x = {D ∈ D+ | x ∈ D}. Since ∂D1 contains a point of P− and at most k

points of P− do not lie in D1, c1 lies on an edge of A≤k(D−).
We first compute A≤k(D−) in O(nk log n) time. For each disk D ∈ D+, we

compute the intersection points of ∂D with the edges of A≤k(D−). By Lemma 2,
there are O(nk) such intersection points, and these intersection points split each
edge into edgelets. The total number of edgelets is also O(nk). Using Lemma 2,
we can compute all edgelets in time O(nk log n). All points on an edgelet γ lie in
the same subset of disks of D+, which we denote by D+

γ . Let P+
γ ⊆ P+ be the

set of centers of disks in D+
γ , and let κγ = λ(γ,D−). A unit disk centered at a

point on γ contains P+
γ and all but κγ points of P−. If at least k′ = k−κγ points

of P+ \P+
γ can be covered by a unit disk, which is equivalent to A≤k′(D+ \Dγ)

being nonempty, then all but k points of P can be covered by two unit disks.
When we move from one edgelet γ of A≤k(D−) to an adjacent one γ′ with

σ as their common endpoint, then D+
γ = D+

γ′ (if σ is a vertex of A≤k(D−)),
D+
γ′ = D+

γ ∪ {D} (if σ ∈ ∂D and γ′ ⊂ {D}), or D+
γ′ = D+

γ \ {D} (if σ ∈ ∂D and
γ ⊂ D). We therefore traverse the graph induced by the edgelets of A≤k(D) and
maintain D+

γ in the dynamic data structure described in Section 2 as we visit
the edgelets γ of A≤k(D−). At each step we process an edgelet γ, insert or delete
a disk into D+

γ , and test whether A≤j(D+
γ) = ∅ where j = k − λ(γ,D−). If the

answer is yes at any step, we stop. We spend O(k3 log2 n) time at each step, by
Lemma 4. Since the number of edgelets is O(nk), we obtain the following.

Lemma 6. Let P be a set of n points in R2, ` a line in L, and 0 ≤ k ≤ n an
integer. We can determine in O(nk4 log2 n) time whether there is a unit-radius
(2, k)-center of P that is consistent with `.

Optimization algorithm. Let ` be a line in L. Let r∗ be the smallest radius of a
(2, k)-center of P that is consistent with `. Our goal is to compute a (2, k)-center
of P of radius r∗ that is consistent with `. We use the parametric search technique
[21] — we simulate the decision algorithm generically at r∗ and use the decision
algorithm to resolve each comparison, which will be of the form: given r0 ∈ R+,

is r0 ≤ r∗? We simulate a parallel version of the decision procedure to reduce
the number of times the decision algorithm is invoked to resolve a comparison.
Note that we need to parallelize only those steps of the simulation that depend
on r∗, i.e., that require comparing a value with r∗. Instead of simulating the
entire decision algorithm, as in [15], we stop the simulation after computing the
edgelets and return the smallest (2, k)-center found so far, i.e., the smallest radius
for which the decision algorithm returned “yes.” Since we stop the simulation
earlier, we do not guarantee that we find the a (2, k)-center of P of radius r∗

that is consistent with `. However, as argued by Eppstein [15], this is sufficient
for our purpose.

Let P−, P+ be the same as in the decision algorithm. Let D−, D+ etc. be
the same as above except that each disk is of radius r∗ (recall that we do not
know the value of r∗). We simulate the algorithm to compute the edgelets of
A≤k(D−) as follows. First, we compute the ≤kth order farthest point Voronoi
diagram of P− in time O(n log n + nk2) [5]. Let e be an edge of the diagram
with points p and q of P− as its neighbors, i.e., e is a portion of the bisector of p
and q. Then for each point x ∈ e, the disk of radius ||xp|| centered at x contains
at least n− − k points of P−. We associate an interval δe = {||xp|| | x ∈ e}. By
definition, e corresponds to a vertex of A≤k(D−) if and only if r∗ ∈ δe; namely,
if ||xp|| = r∗, for some x ∈ e, then x is a vertex of A≤k(D−), incident upon the
edges that are portions of ∂D(p) and ∂D(q). Let X be the sorted sequence of the
endpoints of the intervals. By doing a binary search on X and using the decision
procedure at each step, we can find two consecutive endpoints between which r∗

lies. We can now compute all edges e of the Voronoi diagram such that r∗ ∈ δe.
We thus compute all vertices of A≤k(D−). Since we do not know r∗, we do not
have actual coordinates of the vertices. We represent each vertex as a pair of
points. Similarly, each edge is represented as a point p ∈ P−, indiciating that
e lies in ∂D(p). Once we have all the edges of A≤k(P−), we can construct the
graph induced by them and compute O(k2) x-monotone unit-disk curves whose
union is the set of edges in A≤k(P−), using Lemma 3. Since this step does not
depend on the value of r∗, we need not parallelize it. Let Ξ = {ξi, . . . , ξu},
u = O(k2), be the set of these curves.

Next, for each disk D ∈ D+ and for each ξi ∈ Ξ, we compute the edges of
ξi that ∂D intersects, using a binary search. We perform these O(nk2) binary
searches in parallel and use the decision algorithm at each step. Incorporating
Cole’s technique [12] in the binary search we need to invoke the decision proce-
dure only O(log n) times. For an edge e ∈ A≤k(D), let D+

e ∈ D be the set of
disks whose boundaries intersect e. We sort the disks in D+

e by the order in which
their boundaries intersect e. By doing this in parallel for all edges and using a
parallel sorting algorithm for each edge, we can perform this step by invoking
the decision algorithm O(log n) times. The total time spent is O(nk4 log3 n).

Putting pieces together. We repeat the optimization algorithm for all lines
in L and return the smallest (2, k)-center that is consistent with a line in L.
The argument of Eppstein [15] implies that if an optimal (2, k)-center of P is

well-separated, then the above algorithm returns an optimal (2, k)-center of P .
Hence, we conclude the following:

Lemma 7. Let P be a set of n points in R2 and 0 ≤ k ≤ n an integer. If an
optimal (2, k)-center of P is well separated, then the (2, k)-center problem for P
can be solved in O(nk6 log3 n) time.

4 Nearly Concentric Disks

In this section we describe an algorithm for when the two disks D1 and D2 of
the optimal solution are not well separated. More specifically, let c1 and c2 be
the centers of D1 and D2 and let r∗ be their radius. Then this section handles
the case where ||c1c2|| ≤ r∗.

First, we find an intersector point z of D1 and D2 — a point that lies in
D1 ∩ D2. We show how z defines a set P of O(n2) possible partitions of P
into two subsets, such that for one partition Pi,j , P \ Pi,j the following holds:
(D1 ∪D2) ∩ P = (D1 ∩ Pi,j) ∪ (D2 ∩ (P \ Pi,j)). Finally, we show how to search
through the set P in O(k7n1+δ) time, deterministically, for any δ > 0, or in
O(k7n log3 n) expected time.

Finding an intersector point. Let C be the circumcircle of P ∩ (D1 ∪D2).
Eppstein [15] shows that we can select O(1) points inside C such that at least
one, z, lies in D1 ∩D2. We can hence prove the following.

Lemma 8. Let P be a set of n points in R2. We can generate in O(nk3) time
a set Z of O(k3) points such that for any nearly concentric (2, k)-center D1, D2,
one of the points in Z is their intersector point.

Proof. If the circumcircle of P is not C, then at least one point of P ∩ ∂C must
not be in D1 ∪D2. We remove each point and recurse until we have removed k
points. Matoušek [19] shows that we can keep track of which subsets have already
been evaluated and bounds the size of the recursion tree to O(k3). Building the
entire recursion tree takes O(nk3) time. Since |P \ C| ≤ k, at least one node in
the recursion tree describes P ∪ C. Generating O(1) possible intersector points
for each node completes the proof.

Let z be an intersector point of D1 and D2, and let ρ+, ρ− be the two rays
from z to the points of ∂D1 ∩ ∂D2. Since D1 and D2 are nearly concentric, the
angle between them is at least some constant θ. We choose a set U ⊆ S1 of
h = d2π/θe uniformly distributed directions. For at least one u ∈ U , the line `
in direction u and passing through z separates ρ+ and ρ−, see Fig. 3(b). We fix
a pair z, u in Z × U and compute a (2, k)-center of P , as described below. We
repeat this algorithm for every pair. If D1 and D2 are nearly concentric, then
our algorithm returns an optimal (2, k)-center.

Fixing z and u. For a subset X ⊂ P and for an integer t ≥ 0, let rt(X) denote
the minimum radius of a (1, t)-center of X. Let P+ (resp. P−) be the subset of P
lying above (resp. below) the x-axis; set n+ = |P+| and n− = |P−|. Sort P+ =
〈p+

1 , . . . , p
+
n+〉 in clockwise order and P− = 〈p−1 , . . . , p

−
n−〉 in counterclockwise

order. For 0 ≤ i ≤ n+, 0 ≤ j ≤ n−, let Pi,j = {p+
1 , . . . , p

+
i , p

−
1 , . . . , p

−
j } and

Qi,j = P \ Pi,j . For 0 ≤ t ≤ k, let

mt
i,j = max{rt(Pi,j), rk−t(Qi,j)}.

For 0 ≤ t ≤ k, we define an n+ × n− matrix M t such that M t(i, j) = mt
i,j .

Suppose z is an intersector point of D1 and D2, ` separates ρ+ and ρ−, and
ρ+ (resp. ρ−) lies between p+

a , p
+
a+1 (resp. p−b , p

−
b+1). Then P ∩ (D1 ∪ D2) =

(Pa,b ∩D1) ∪ (Qa,b ∪D2); see Fig 3(b). If |Pa,b \D1| = t, then r∗ = mt
a,b. The

problem thus reduces to computing

µ(z, u) = min
i,j,t

mt
i,j

where the minimum is taken over 0 ≤ i ≤ n+, 0 ≤ j ≤ n−, and 0 ≤ t ≤ k. For
each t, we compute µt(z, u) = mini,jmt

i,j and choose the smallest among them.

Computing µt(z, u). We note two properties of the matrix M t that will help
search for µt(z, u):

– (P1) If rt(Pi,j) > rk−t(Qi,j) then mt
i,j ≤ mt

i′,j′ for i′ ≥ i and j′ ≥ j. These
partitions only add points to Pi,j and thus cannot decrease rt(Pi,j). Similarly,
if rk−t(Qi,j) > rt(Pi,j), then mt

i,j < mt
i′,j′ for i′ ≤ i and j′ ≤ j.

– (P2) Given a value r, if rt(Pi,j) > r, then mt
i′,j′ > r for i′ ≥ i and j′ ≥ j,

and if rt(Qi,j) > r, then mt
i′,j′ > r for i′ ≤ i and j′ ≤ j.

Deterministic solution. We now have the machinery to use a technique of
Frederickson and Johnson [16]. For simplicity, let us assume that n+ = n− =
2τ+1 where τ = dlog2 ne+O(1). The algorithm works in τ phases. In the begin-
ning of the hth phase we have a collection Mh of O(2h) submatrices of M t, each
of size (2τ−h+1 +1)×(2τ−h+1 +1). Initially M1 = {M t}. In the hth phase we di-
vide each matrix N ∈Mh into four submatrices each of size (2τ−h+1)×(2τ−h+1)
that overlap along one row and one column. We call the cell common to all four
submatrices the center cell of N . Let M′h be the resulting set of matrices. Let
C = {(i1, j1), . . . , (is, js)} be the set of center cells of matrices in Mh. We com-
pute mt

il,jl
for each 1 ≤ l ≤ s. We use (P1) to remove the matrices of Mh that are

guaranteed not to contain the value µt(z, u). In particular, if mt
il,jl

= rt(Pil,jl)
and there is a matrix N ∈ M′h with the upper-left corner cell (i′, j′) such that
i′ ≥ il and j′ ≥ jl, then we can remove N . Similarly if mt

il,jl
= rk−t(Qi,j) and

there is a matrix N ∈M′h with the lower-right corner cell (i′, j′) such that i′ ≤ il
and j′ ≤ jl, we can delete N . It can be proved that after the pruning step if we
have a matrix N in M′h such that it spans [a1, a2] rows and [b1, b2] columns of
M t, then mt

a1,b1
= rt(Pa1,b1) and mt

a2,b2
= rk−t(Qa2,b2). This implies that O(n)

cells remain in M′h after the pruning step. We set M′h to Mh+1.

Finally, it is shown in [15] that the center cells in C can be connected by
a monotone path in Mt, which consists of O(n) cells. Since Pi,j differs from
Pi−1,j and Pi,j−1 by one point, we can compute mt

il,jl
for all (il, jl) ∈ C using an

algorithm of Agarwal and Matoušek [1] in total time O(k3n1+δ) for any δ > 0.
Agarwal and Matoušek’s data structure can maintain the value of the radius
of the smallest enclosing disk under insertions and deletions in O(nδ) time per
update. Each step in the path is one update, and then searching through the
O(k3) nodes of the recursion tree of all possible outliers — each requires O(1)
updates — takes O(k3nδ) time per cell. Hence, each phase of the algorithm takes
O(k3n1+δ) time.

Lemma 9. Given z ∈ Z, u ∈ U , and 0 ≤ t ≤ k, µt(z, u) can be computed in
time O(k3n1+δ), for any δ > 0.

Randomized solution. We can slightly improve the dependence on n by using
the dynamic data structure in Section 2 and (P2). As before, in the hth phase,
for some constant c > 1, we maintain a set Mh of at most c2h submatrices of M t,
each of side length 2τ−h+1+1, and their center cells C. Each submatrix is divided
into four submatrices of side length 2τ−h + 1, forming a set M′h. To reduce the
size of M′h, we choose a random center cell (i, j) from C and evaluate r = mt

i,j in
O(k3n) time. For each other center cell (i′, j′) ∈ C, mt

1′,j′ > r with probability
1/2, and using (P2), we can remove a submatrix from M′h. Eppstein [15] shows
that by repeating this process a constant number of times, we expect to reduce
the size of M′h to c2h+1.

On each iteration we use the dynamic data structure described in Section 2.
For O(n) insertions and deletions, it can compare each center cell from C to r
in O(k3n log2 n) time. Thus, finding µt(z, u) takes expected O(nk3 log3 n) time.

Lemma 10. Given z ∈ Z, u ∈ U , and 0 ≤ t ≤ k, µt(z, u) can be computed in
expected time O(k3 log3 n).

Putting pieces together. By repeating either above algorithm for all 0 ≤ t ≤ k
and for all pair (z, u) ∈ Z×U , we can compute a (2, k)-center of P that is optimal
if D1 and D2 are nearly concentric. Combining this with Lemma 7, we obtain
the main result of the paper.

Theorem 1. Given a set P of n points in R2 and an integer k ≥ 0, an optimal
(2, k)-center of P can be computed in O(k7n1+δ) (deterministic) time, for any
δ > 0 or in O(k7n log3 n) expected time.

Acknowledgements. We thank Sariel Har-Peled for posing the problem and
for several helpful discussions.

References

1. P. K. Agarwal and J. Matoušek, Dynamic half-space range reporting and its ap-
plications, Algorithmica, 13 (1995), 325–345.

2. P. K. Agarwal and J. M. Phillips, An efficient algorithm for 2D Euclidean 2-center
with outliers, arXiV:0806.4326, 2008.

3. P. K. Agarwal and M. Sharir, Planar geometric locations problems, Algorithmica,
11 (1994), 185–195.

4. P. K. Agarwal and M. Sharir, Efficient algorithms for geometric optimization, ACM
Computing Surveys, 30 (1998), 412–458.

5. A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor, A linear-time algorithm for
computing the voronoi diagram of a convex polygon, Discrete Comput. Geom.,
4 (1989), 591–604.

6. T. Chan, More planar two-center algorithms, Comput. Geom.: Theory Apps.,
13 (1999), 189–198.

7. T. Chan, Low-dimensional linear programming with violations, SIAM J. Comput.,
34 (2005), 879–893.

8. T. Chan, On the bichromatic k-set problem, Proc. 19th Annu. ACM-SIAM Sympos.
Discrete Algs., 2007, pp. 561–570.

9. M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan, Algorithms for faciity
location problems with outliers, 12th Annu. ACM-SIAM Sympos. on Discrete Algs.,
2001, pp. 642–651.

10. K. L. Clarkson, A bound on local minima of arrangements that implies the upper
bound theorem, Discrete Comput. Geom., 10 (1993), 427–433.

11. K. L. Clarkson and P. W. Shor, Applications of random sampling in geometry, II,
Discrete Comput. Geom., 4 (1989), 387–421.

12. R. Cole, Slowing down sorting networks to obtain faster sorting algorithms, Journal
of ACM, 34 (1987), 200–208.

13. T. K. Dey, Improved bounds for planar k-sets and related problems, Discrete Com-
put. Geom., 19 (1998), 373–382.

14. Z. Drezner and H. Hamacher, Facility Location: Applications and Theory, Springer,
2002.

15. D. Eppstein, Faster construction of planar two-centers, Proc. 8th Annu. ACM-
SIAM Sympos. on Discrete Algs., 1997, pp. 131–138.

16. G. N. Frederickson and D. B. Johnson, The complexity of selection and ranking in
x+y and matrices with sorted columns, J. Comput. Syst. Sci., 24 (1982), 197–208.

17. D. Gusfield, Bounds for the parametric minimum spanning tree problem, Hum-
boldt Conf. on Graph Theory, Combinatorics Comput., Utilitas Mathematica, 1979,
pp. 173–183.

18. D. S. Hochbaum, ed., Approximation Algorithms for NP-hard Problems, PWS Pub-
lishing Company, 1995.

19. J. Matoušek, On geometric optimization with few violated constraints, Discrete
Comput. Geom., 14 (1995), 365–384.

20. J. Matoušek, E. Welzl, and M. Sharir, A subexponential bound for linear program-
ming and related problems, Algorithmica, 16 (1996), 498–516.

21. N. Megiddo, Linear-time algorithms for linear programming in R3 and related
problems, SIAM J. Comput., 12 (1983), 759–776.

22. N. Megiddo and K. J. Supowit, On the complexity of some common geometric
location problems, SIAM J. Comput., 12 (1983), 759–776.

23. M. Sharir, On k-sets in arrangement of curves and surfaces, Discrete Comput.
Geom., 6 (1991), 593–613.

24. M. Sharir, A near-linear time algorithm for the planar 2-center problem, Discrete
Comput. Geom., 18 (1997), 125–134.

25. M. Sharir and E. Welzl, Rectilinear and polygonal p-piercing and p-center prob-
lems, Proc. 12th Annu. Sympos. Comput. Geom., 1996, pp. 122–132.

