
9 Assignment-based Clustering

Probably the most famous clustering formulation is k-means. This is the focus today. Note: k-means is
not an algorithm, it is a problem formulation. We will also discuss other variants, noteably the k-center
clustering algorithm.
k-Means is in the family of assignment-based clustering. Each cluster is represented by a single point,

to which all other points in the cluster are “assigned.” Consider a set X , and distance d : X × X → R+,
and the output is a set C = {c1, c2, . . . , ck}. This implicitly defines a set of clusters where φC(x) =
arg minc∈C d(x, c). Then the k-means clustering problem is to find the set C of k clusters (often, but not
always as a subset of X) to

minimize
∑
x∈X

d(φC(x), x)2.

So we want every point assigned to the closest center, and want to minimize the sum of the squared distance
of all such assignments.

Recall, there are other variants:

• the k-center clustering problem: minimize maxx∈X d(φC(x), x)

• the k-median clustering problem: minimize
∑

x∈X d(φC(x), x)
The k-mediod variant is similar, but restricts that the centers C must be a subset of P .

9.1 Gonzalez Algorithm for k-Center Clustering
Here we want every point assigned to the closest center, and want to minimize the longest distance of any
such assignment.

Unfortunately, the k-center clustering problem is NP-hard to solve exactly. In fact, it is NP-hard to find a
clustering within a factor 2 of the optimal cost!

Luckily, there is an algorithm that achieves this factor 2 approximation, it is quite fast, and it works very
well in practice. It is usually attributed to Gonzalez (1985), but it may likely be much older. The lesson is:

Be greedy, and avoid your neighbors!

Algorithm 9.1.1 Gonzalez Greedy Algorithm for k-Center Clustering
Choose c1 ∈ X arbitrarily. Let C1 = {c1}.
(In general let Ci = {c1, . . . , ci}.)
for i = 2 to k do

Set ci = arg maxx∈X d(x, φCi−1(x)).

As Algorithm 9.1.1 describes, the algorithm is to always pick the point in x that is furthest from the
current set of centers, and let it also be a center.

In the worst case, this is a 2-approximation to the optimal clustering for the k-center clustering problem.
But is often much better in practice.

It only takes time about kn = O(kn). There are k rounds, and each round can be done in about n time.
We maintain the map φCi(x) for each x. When a new ci is found, and added to the set of centers, all n
assignments φCi(x) can be updated in linear O(n) time, by checking each distance d(x, φCi−1(x)) against
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Algorithm 9.1.2 Detailed Gonzalez Greedy Algorithm for k-Center Clustering
Choose c1 ∈ X arbitrarily, and set φ[j] = 1 for all j ∈ [n]
for i = 2 to k do
M = 0, ci = x1

for j = 1 to n do
if d(xj , cφ[j]) > M then
M = d(xj , cφ[j]), ci = xj

for j = 1 to n do
if d(xj , cφ[j]) > d(xj , ci) then
φ[j] = i

d(x, ci) and switching the assignment if the later is smaller. Then the minimum can be found in the next
round on a linear scan (or on the same linear scan).

This works for any metric. However, it biases the choice of centers to be on the “edges” of the dataset.
There are heuristic to try to recenter afterwards, but usually not worth it—just use another algorithm instead.

9.2 Lloyd’s Algorithm
When people think of the k-means problem, they usually think of the following algorithm. It is usually
attributed to Lloyd from a document in 1957, although it was not published until 1982 [9].

Algorithm 9.2.1 Lloyd’s Algorithm for k-Means Clustering
Choose k points C ⊂ X [...arbitrarily?]
repeat

For all x ∈ X , find φC(x) (closest center c ∈ C to x)
For all i ∈ [k] let ci = average{x ∈ X | φC(x) = ci}

until The set C is unchanged

If the main loop has R rounds, then this take roughly Rnk steps (and can be made closer to Rn log k with
faster nearest neighbor search in some cases).

But what is R?

• It is finite. The cost (
∑

x∈X(d(x, φC(x))2)) is always decreasing, and there are a finite (precisely,(
n
k

)
= O(nk)) number of possible distinct cluster centers. But it could be exponential in k and d (the

dimension when Euclidean distance used).

• However, usually R = 10 is fine.

• Smoothed analysis: if data perturbed randomly slightly, then R = O(n35k34d8) [2]. This is “polyno-
mial,” but still ridiculous.

• If all points are on a grid of length M , then R = O(dn4M2). But thats still way too big.

Lesson: there are crazy special cases that can take a long time, but usually it works. Recall:

When data is easily cluster-able, most clustering algorithms work quickly and well.
When data is not easily cluster-able, then no algorithm will find good clusters.

Sometimes there is a good k-means clustering, but it is not found by Lloyd’s algorithm. Then we can
choose new centers again (with randomness), and try again.
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How accurate is Lloyd’s algorithm for k-means? It can be arbitrarily bad.
Theory algorithm: Gets (1 + ε)-approximation for k-means in 2(k/ε)O(1)

nd time [8].
But k-means++ is O(log n)-approximate (or 8-approximate if data is well-spaced) [3]. Can then be

refined with k-means, if desired.

9.2.1 Initializing C

The goal is to get one point from each final cluster. Then it will converge quickly.

• Random set of k points. By coupon collectors, we know that we need about k log k to get one in each
cluster.

• Randomly partition X = {X1, X2, . . . , Xk} and take ci = average(Xi). This biases towards “cen-
ter” of the full set X (by Chernoff-Hoeffding).

• Gonzalez algorithm [6] (for k-center). This may bias too much to outlier points.

k-means++ Since the above approaches all have issues, the accepted best way to seed Lloyd’s algorithm
has become k-means++, an algorithm by Arthur and Vassilvitskii [3].

Algorithm 9.2.2 k-Means++ Algorithm
Choose c1 ∈ X arbitrarily. Let C1 = {c1}.
(In general let Ci = {c1, . . . , ci}.)
for i = 2 to k do

Choose ci from X with probability proportional to d(x, φCi−1(x))2.

As Algorithm 9.2.2 describes, the algorithm is like Gonzalez algorithm, but is not completely greedy. It
iteratively chooses each next center randomly – the further the squared distances is from an existing center,
the more likely it is chosen. For a large set of points (perhaps grouped together) which are far from an
existing center, then it is very likely that one (does not matter so much which one) of them will be chosen as
the next center. This makes it likely that any “true” cluster will find some point as a suitable representative.

9.3 Problems with k-Means
• The key step that makes Lloyd’s algorithm so cool is average{x ∈ X} = arg minc∈Rd

∑
x∈X ‖c −

x‖2. But this only works with d(x, c) = ‖x− c‖2.

As an alternative, can enforce that C ⊂ X . Then choose each ci from {x ∈ X | φC(x) = ci} that
minimizes distance. But slower.

• It is effected by outliers more than k-median clustering. Can adapt Lloyd’s algorithm, but then step
two (recentering) is harder: Called “Fermet-Weber problem,”[10, 5] and can be approximated with
gradient descent.

• It tends to enforces equal-sized clusters. Based on distance to cluster centers, not density.

One adaptation that perhaps has better modeling is the EM formulation: Expectation-Maximization.
It models each cluster as a Gaussian distribution Gi centered at ci, see more details below.
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9.4 Speeding-Up k-Means
• First run Lloyds (or k-means++) on random sample of points (of size n′ � n). Then given good

estimate of centers, run on full set (will hopefully be close to converged).

• Run a one-pass algorithm (streaming, covered later) getting O(k log k) clusters. Reduce to k clusters
at end, but merging extra clusters [1].

Can use another streaming trick where there are a hierarchy of clusters of recent subsets representing
geometrically increasing size [7].

• A recent algorithm combines these ideas to make k-means++ somewhat scalable with some added
approximation error [4].

9.5 Mixture of Gaussians
The k-means formulation tends to define clusters of roughly equal size. The squared cost discourages points
far from any center. It also, does not adapt much to the density of individual centers.

An extension is to fit each cluster Xi with a Gaussian distribution G(µi,Σi), defined by a mean µi and a
covariance matrix Σi. Recall that the pdf of a d-dimensional Gaussian distribution is defined

fµ,Σ(x) =
1

(2π)d/2
1√
|Σ|

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)

where |Σ| is the determinant of Σ. For instance, for d = 2, and the standard deviation in the x-direction of
X is σx, and in the y-direction is σy, and their correlation is ρ, then

Σ =

[
σ2
x ρσxσy

ρσxσy σ2
y

]
.

Now the goal is, given a parameter k, find a set of k pdfs F = {f1, f2, . . . , fk} where fi = fµi,Σi to
maximize ∏

x∈X
max
fi∈F

fi(x).

For the special case where when we restrict that Σi = I (the identity matrix) for each mixture, then this is
equivalent to the k-means problem.

This hints that we can adapt Lloyds algorithm towards this problem as well. To replace the first step of
the inner loop, we assign each x ∈ X to the Gaussian which maximizes fi(x):

for all x ∈ X: assign x to Xi so i = arg max
i∈1...k

fi(x).

But for the second step, we need to replace a simple average with an estimation of the best fitting Gaussian
to a data set Xi. This is also simple. First, calculate the mean as µi = 1

|Xi|
∑

x∈Xi
x. Then calculate the

covariance matrix Σi of Xi as the sum of outer products

Σi =
∑
x∈Xi

(x− µi)(x− µi)T .
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Algorithm 9.5.1 EM Algorithm for Mixture of Gaussians
Choose k points S ⊂ X arbitrarily?
for all x ∈ X: set wi(x) for si = φS(x), and wi(x) = 0 otherwise
repeat

for i ∈ [1 . . . k] do
Calculate Wi =

∑
x∈X wi(x) the total weight for cluster i

Set µi = 1
Wi

∑
x∈X wi(x)x the weighted average

Set Σi = 1
Wi

∑
x∈X wi(x− µi)(x− µi)T the weighted covariance

for x ∈ X do
for all i ∈ [1 . . . k]: set wi(x) = fi(x)/

∑
i fi(x) partial assignments using fi = fµi,Σi

until (
∑

x∈X
∑k

i=1− log(wi(x) · fi(x)) has small change)

9.5.1 Expectation-Maximization
The standard way to fit a mixture of Gaussians actually uses a soft-clustering.

Each point x ∈ X is given a weight wi = fi(x)/
∑

i fi(x) for its assignment to each cluster. Then the
mean and covariance matrix is estimated using weight averages.

This procedure is the classic example of a framework called expectation-maximization. This is an alternate
optimization procedure, which alternates between maximizing the probability of some model (the partial
assignment step) and calculating the most likely model using expectation (the average, covariance estimating
step).

But this is a much more general framework. It is particularly useful in situations (like this one) where the
true optimization criteria is messy and complex, often non-convex; but it can be broken into two or more
steps where each step can be solved with a (near) closed form. Or if there is no closed form, but each part is
individually convex, the gradient descent can be invoked.

Data Mining: Algorithms, Geometry, and Probability c© Jeff M. Phillips, University of Utah



Data Mining: Algorithms, Geometry, and Probability c© Jeff M. Phillips, University of Utah



Bibliography

[1] Nir Ailon, Ragesh Jaiswal, and Claire Monteleoni. Streaming k-means approximation. In Advances
in Neural Information Processing Systems, 2009.
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