
3 Jaccard Similarity and k-Grams

We will study how to define the distance between sets, specifically with the Jaccard distance. To illustrate
and motivate this study, we will focus on using Jaccard distance to measure the distance between documents.
This uses the common “bag of words” model, which is simplistic, but is sufficient for many applications.

We start with some big questions. This lecture will only begin to answer them.

• Given two homework assignments (reports) how can a computer detect if one is likely to have been
plagiarized from the other without understanding the content?
• In trying to index webpages, how does Google say a webpage is similar to a keyword. How does

Google avoid listing duplicates or mirrors?
• How does a computer quickly understand emails, for either detecting spam or placing effective adver-

tisers? (If an ad worked on one email, how can we determine which others are similar?)

The key to answering these questions will be convert the data (homeworks, webpages, emails) into an
object in an abstract space that we know how to measure distance, and how to do it efficiently. The most
obvious abstract space is Euclidean space Rd. An object v ∈ Rd can be thought of as a d-dimensional point
(or vector) v = (v1, v2, . . . , vd). The notation of a list of objects, separated by commas, inside parenthesis (
and) represents an ordered set; that is (a, b) 6= (b, a). The Euclidean distance between two points v, u ∈ Rd

is measured

dE(u, v) = ‖u− v‖ =

√√√√ d∑
i=1

(vi − ui)2.

This is the common straight line distance. We will return to this later, as it will not be immediately useful
for distances between documents. Instead we will use a different abstract distance between (unordered) sets.

3.1 Similarities and Distances
A set is a (unordered) collection of objects {a, b, c}. We use the notation as elements separated by commas
inside curly brackets { and }. They are unordered so {a, b} = {b, a}.

Although we are interested in a “distance,” we will actually focus on a dual notion of a similarity. A
distance d(A,B) has the properties:

• it is small if objects A and B are close,
• it is large if they are far,
• it is (usually) 0 if they are the same, and
• it has value in [0,∞].

On the other hand, a similarity s(A,B) has the properties:

• it is large if the objects A and B are close,
• it is small if they are far,
• it is (usually) 1 if they are the same, and
• it is in the range [0, 1].

Often we can convert between the two as d(A,B) = 1 − s(A,B), however sometimes it is better to use
d(A,B) =

√
s(A,A) + s(B,B)− 2s(A,B). Both restrict the distance to be a bounded (non infinite)

domain, that can be converted with a tan map if one desires.

1

3.1.1 Jaccard Similarity
Consider two sets A = {0, 1, 2, 5, 6} and B = {0, 2, 3, 5, 7, 9}. How similar are A and B?

The Jaccard similarity is defined

JS(A,B) =
|A ∩B|
|A ∪B|

=
|{0, 2, 5}|

|{0, 1, 2, 3, 5, 6, 7, 9}|
=

3

8
= 0.375

More notation, given a set A, the cardinality of A denoted |A| counts how many elements are in A. The
intersection between two sets A and B is denoted A ∩ B and reveals all items which are in both sets. The
union between two sets A and B is denoted A ∪B and reveals all items which are in either set.

Confirm that JS satisfies the properties of a similarity.

Generalized set similarities. To fully generalize set similarities (at least those that are amenable to large-
scale techniques) we introduce a third set operation. The symmetric difference between two sets A and B is
denoted A4B = (A ∪B) \ (A ∩B). Note that \ is called set minus and A \B is all of the elements in A,
except those also in B. Thus the symmetric difference of A and B describes all elements in A or B, but not
in both.

We now consider the follow class of similarities. We use A ∪B = [n] \ (A ∪B), where [n] is a superset
that all sets A and B we consider a subsets from.

Sx,y,z,z′(A,B) =
x|A ∩B|+ y|A ∪B|+ z|A4B|
x|A ∩B|+ y|A ∪B|+ z′|A4B|

.

Now we can define several concrete instances.

• Jaccard Similarity is defined

JS(A,B) = S1,0,0,1(A,B) =
|A ∩B|

|A ∩B|+ |A4B|
=
|A ∩B|
|A ∪B|

.

• Hamming Similarity is defined

Ham(A,B) = S1,1,0,1(A,B) =
|A ∩B|+ |A ∪B|

|A ∩B|+ |A ∪B|+ |A4B|
= 1− |A4B|

|[n]|
.

• Andberg Similarity is defined

Andb(A,B) = S1,0,0,2(A,B) =
|A ∩B|

|A ∩B|+ 2|A4B|
=

|A ∩B|
|A ∪B|+ |A4B|

.

• Rogers-Tanimoto Similarity is defined

RT(A,B) = S1,1,0,2(A,B) =
|A ∩B|+ |A ∪B|

|A ∩B|+ |A ∪B|+ 2|A4B|
=
|[n]| − |A4B|
|[n]|+ |A4B|

.

• Sørensen-Dice Similarity is defined

S-Dice(A,B) = S2,0,0,1(A,B) =
2|A ∩B|

2|A ∩B|+ 1|A4B|
=

2|A ∩B|
|A|+ |B|

.

For JS, Ham, Andb, and RT, the distance D(A,B) = 1− S(A,B) is a metric, and these four are amenable
to LSH. We will discuss these topics later. See Chierichetti and Kumar (LSH-Preserving Functions and their
Applications, SODA 2012) for more details.

Data Mining: Algorithms, Geometry, and Probability c© Jeff M. Phillips, University of Utah

3.2 Documents to Sets
How do we apply this set machinery to documents?

Bag of words vs. k-Grams The first option is the bag of words model, where each document is treated as
an unordered count of words.

A more general approach is to shingle the document (or create k-grams). This takes consecutive words
and group them as a single object. A k-gram is a consecutive set of k words. So the set of all 1-grams is
almost the bag of words model, except it ignores multiplicity. An alternative name to k-gram is a k-shingle;
these mean the same thing.

D1 : I am Sam.

D2 : Sam I am.

D3 : I do not like green eggs and ham.

D4 : I do not like them, Sam I am.

The (k = 1)-grams of D1∪D2∪D3∪D4 are: {[I], [am], [Sam], [do], [not], [like],
[green], [eggs], [and], [ham], [them]}.

The (k = 2)-grams of D1∪D2∪D3∪D4
1 are: {[I am], [am Sam], [Sam Sam], [Sam I],

[am I], [I do], [do not], [not like], [like green], [green eggs], [eggs and],
[and ham], [like them], [them Sam]}.

The set of k-grams of a document with n words is at most n − k. The takes space O(kn) to store them
all. If k is small, this is not a high overhead. Furthermore, the space goes down as items are repeated.

Character level. We can also create k-grams at the character level. The (k = 3)-character grams of
D1 ∪D2 are: {[iam], [ams], [msa], [sam], [ami], [mia]}.

The (k = 4)-character grams of D1∪D2 are: {[iams], [amsa], [msam], [sams], [sami],
[amia], [miam]}.

Modeling choices.

• White space? Should we include spaces, and returns? Sometimes. plane has touch down
versus threw a touchdown.
• Capitalization? Sam versus sam. Can help distinguish proper nouns.
• Punctuation? May be indication of education level, or dialects. For instance English is punctuated

differently in US and India. Punctuation is used differently in new articles (very proper style), blogs
(more informal), and twitter (what is punctuation?).
• Concatenation? Should we concatenate consecutive documents as above, or not let k-grams span

separate documents?
• Characters vs. Words? Long enough grams with characters can simulate words, but will have more

false positives. Can pick up other dialect patterns. But is less interpretable.

• How large should k be? General rule: probability of (almost all) k-grams is low, so a collision is
meaningful.
For word-k-grams: emails k = 2 or 3 (small documents), research articles k = 3 or 4 (large docu-
ments), news articles, blog posts (in between).

1Note here we treat the union of documents as concatenation. e.g. D1∪D2 = I am Sam. Sam I am. This is not always
typical for much larger documents.

Data Mining: Algorithms, Geometry, and Probability c© Jeff M. Phillips, University of Utah

In English there are 27 characters (26 letters + 1 whitespace). With k = 5 there are 275 ≈ 14 millions
possible k-grams. (Maybe in practice closer to 205 since some letters (e.g. z,q,x are rarely used.)

• Count replicas? Typically bag of words counts replicas, but k-gramming does not.
• Stop words? Words like {a, you, for, the, to, and, that, it, is, ...} are very

common, and called stop words. Sometimes omit these (typically in bag of words). In shingling can
be effective to say use k = 3 where the first word must be a stop word: the pizza oven.

There are many variations of these methods. Natural Language Processing (NLP) studies these variations,
but also focuses on finding much richer representations of bodies of text. Identifying all nouns and verbs,
and disambiguating words with multiple meanings went to the retreat versus the troops had
to retreat.

3.3 Jaccard with k-Grams
So how do we put this together. Consider the (k = 2)-grams for each D1, D2, D3, and D4:

D1 : [I am], [am Sam]

D2 : [Sam I], [I am]

D3 : [I do], [do not], [not like], [like green], [green eggs],

[eggs and], [and ham]

D4 : [I do], [do not], [not like], [like them], [them Sam], [Sam I], [I am]

Now the Jaccard similarity is as follows:

JS(D1, D2) = 1/3 ≈ 0.333

JS(D1, D3) = 0 = 0.0

JS(D1, D4) = 1/8 = 0.125

JS(D2, D3) = 0 = 0.0

JS(D3, D4) = 2/7 ≈ 0.286

JS(D3, D4) = 3/11 ≈ 0.273

Next time we will see how to use this special abstract structure of sets to compute this distance (approxi-
mately) very efficiently and at extremely large scale.

3.4 Continuous Bag of Words
Sometimes it is useful to obtain statistics for individual words from text corpuses. This will allow us to
compare words in ways we will discuss later in the course. The simplest way is called continuous bag
of words (CBOW). For any instance of a word in a corpus (for instance “like”), it collects in a set (with
multipilicity) all other words used within a distance r of that word. For large corpuses r = 5 has been
suggested. Then a word’s representation is the combination of all of these sets.

Distance between words are then calculated commonly in two ways. The first is Jaccard distance between
the sets.

The second it to represent the set of all possible words as elements of a vector: each coordinate corre-
sponds with a distinct word. Then for the representation of an instance of a word in the CBOW model, we
build a vector vword, initially all 0s. Each other word in a neighborhood set has its coordinate in vword set to

Data Mining: Algorithms, Geometry, and Probability c© Jeff M. Phillips, University of Utah

1 (or c if it occurs c times in the neighborhood set). Then the vector representation of that word from the
corpus, is the average of all vectors for each instance of that word. Finally, we can use the cosine distance
(discussed in a later lecture, or just Euclidean distance) to determine the distance between words.

Example Consider the text corpus:
I am Sam Sam I am I do not like green eggs and ham I do not like them Sam
I am
Then using the example word “like” and the parameter r = 2, the representation of the first and second
instances are:

v1like = (0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0)

v2like = (0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1)

where the each coordinate is associated with the following words

(I,am,Sam,do,not,like,green,eggs,and,ham,them).

In reality, the above vectors are much longer, with the many other words used in English.
The average of the two vectors is then:

(v1like + v2like)/2 = vlike = (0, 0, 0.5, 1, 1, 0, 0.5, 0.5, 0, 0, 0.5)

Note that the other words do and not occur commonly with like.

Data Mining: Algorithms, Geometry, and Probability c© Jeff M. Phillips, University of Utah

