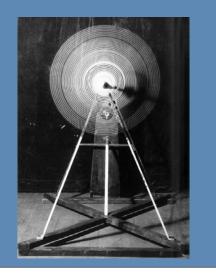


Context - Arts/Technology Collaborations

Kinetic Sculpture

Kinetic Construction (Standing Wave)


Naum Gabo

Marcel Duchamp

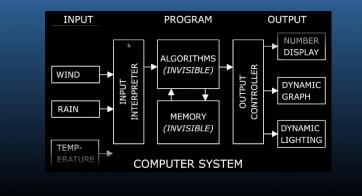
French (naturalized US) 1887- 1968

Rotary Glass Plates

Marcel Duchamp

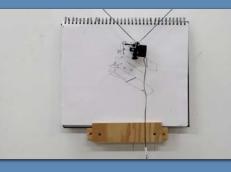
French (naturalized US) 1887- 1968

Jean Tinguely



Jean Tinguely

Jim Campbell's Algorithm

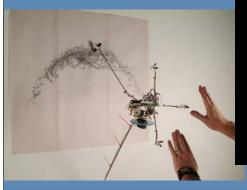


Robert Twomey

Drawing Machine - 2013 Showed at SIGGRAPH 2013

David Bowen

US - b. 1975


Telepresent Wind (2009) Showed at SIGGRAPH 2011

telepresent wind 2009

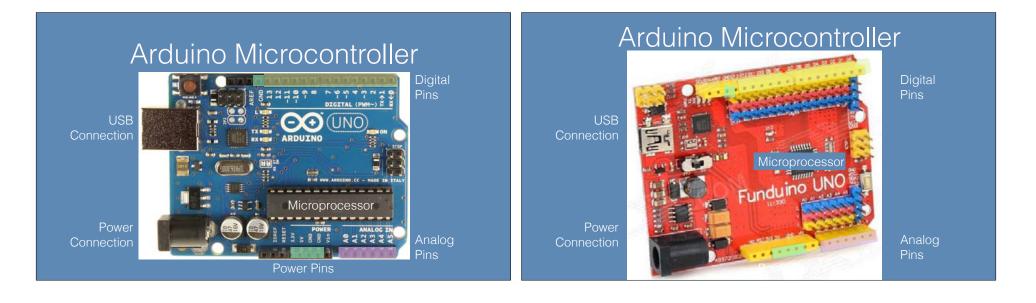
David Bowen

Infrared Drawing Machine (2003)

rAndom International

ondon-based collectiv

Audience (2008)


Physical Computing Essentials

- Get some input from the environment
- Light, motion, heat, etc.
- Cause something to happen
- Make something move!

Arduino Microcontroller

Physical Computing Essentials

Cause something to happen

Get some input from the environment

Physical Computing Essentials

Cause something to happen

Force a +5v or 0v value on a Digital output pin

Read a voltage on an Analog input pin

Get some input from the environment

Arduino Programming Environment

- www.arduino.co
 - Simple open source IDE
 - Arduino code is really C/C++
 - avr-gcc is the back end

Physical Computing Essentials

- pinMode(pinNumber, mode);
 - ode); // declare a pin INPUT or OUTPUT
- digitalRead(pinNumber);
- // read the HIGH/LOW status of pin
- digitalWrite(pinNumber, value); // force a pin HIGH/LOW
- delay(milliseconds);
- // delay processing (spin wait)

Physical Computing Essentials

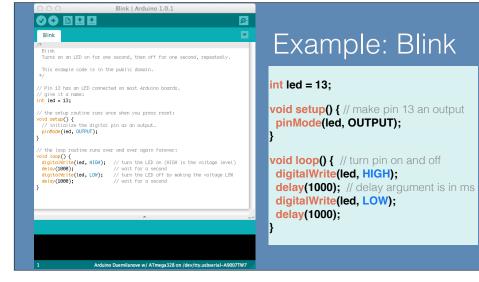
- Each of the digital pins can be set to one of two values
- High and Low (logic 1 (+5v) and logic 0 (0v))
- digitalWrite(<pin-number>, <value>);

digitalWrite(13, HIGH); digitalWrite(13, 1);

 digitalWrite(13, LOW); digitalWrite(13, 0);

Arduino Programming

Two required functions


- void setup(){...} // Runs once at startup
- void loop(){...} // Loops forever after setup()

Standard(ish) C/C++ data types

- Boolean (1 bit)
- char (signed 8 bits), byte (unsigned 8 bits)
- int (16 bits), long (32 bits
- float (32 bits), double (32 bits)

000	Blink Arduino 1.0.1			
	<u>@</u>			
Blink				
/* Blink Turns on an LED on for	one second, then off for one second, repeatedly.			
This example code is in */	the public domain.			
// Pin 13 has an LED conn // give it a name: int led = 13;	ected on most Arduino boards.			
<pre>// the setup routine runs void setup() { // initialize the digit pinMode(led, OUTPUT); }</pre>	once when you press reset: al pin as an output.			
<pre>void loop() { digitalWrite(led, HIGH) delay(1888);</pre>	over and over again forever: // Jum the LED on (HigH is the voltage level) // wait for a second // turn the LED off by making the voltage LOW // wait for a second			
	2			

Arduino Duemilanove w/ ATmega328 on /dev/t

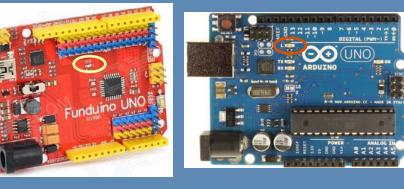
What's Blinking?

Built-in LED connected to pin 13

Upload Blink to Arduino Upload Blink to Arduino d Arduino File Edit Sketch Tools Help Turns on an LED on for one second, then off for one second, • Make sure you select the Auto Forma This example code is in the public domain • Load the Blink program from Archive Sketch Archive Sketon Fix Encoding & Reload Certal Monitor 0 XM Examples -> Basics -> Blink 7 Pin 13 has an LED connected on most Arduino boards ArduBlock Tool /give it a r nt led = 13; • Tools -> Board -> Uno • Connect your Arduino with the USB cable Boards Manager / the setup routine runs once when you press reset: • Make sure you select the oid setup() { the digital pin as an output. Programmer Burn Bootlo Arduino Yúr pinMode(led, OUTPUT); correct serial port 🐔 Arduino File Edit Sketch Tools Help Arduino Duemilan New 36N • Not the bluetooth ports.. / the loop routine runs over and over again forever: Arduino Mega or Mega 2560 Open. 300 d loop() { Sketchboo te(led, HIGH); // turn the LED on (HIGH is the ' Sector Sketch Tools Help AnalogReadSerial delay(1000); 800); // wait for a second Write(led, LOW); // turn the LED off by making the 800); // wait for a second 02.Digital Close жw BareMinimum Auto Format SCT. Save 365 03.Analog elay(1000); Archive Sketch Siş Save As... 0.85 04.Communication DigitalReadSerial Fix Encoding & Reload ine 300 05.Control Fade Serial Monitor ∲ \$€M ReadAnalogVoltage Upload Using Programmer 0 XU 06.Sensors ArduBlock Tool 07.Display y are: OSP Page Setup 08.Strings Print 09.USB W/SW environment Serial ports 10.StarterKit im has a host laptop th /dev/cu.Bluetooth-In ArduinolSP can be uploaded corre Programmer Burn Bootloade ino Duemilanove w/ ATmena328 on /de

Blink | Arduino 1.0.1

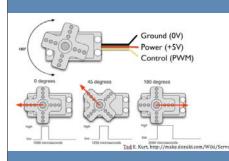
Upload Blink to Arduino


- Click on the upload button
 - Watch for blinky lights during upload

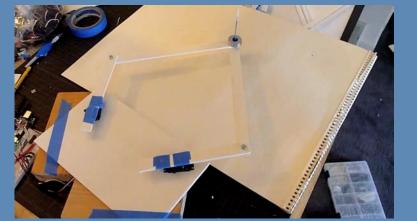
Blink Arduino 1.0.1

What's Blinking?

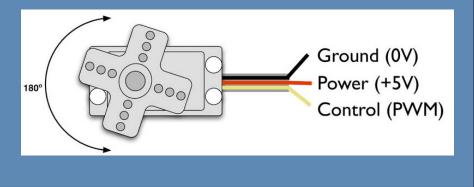
Built-in LED connected to pin 13


Big Deal?

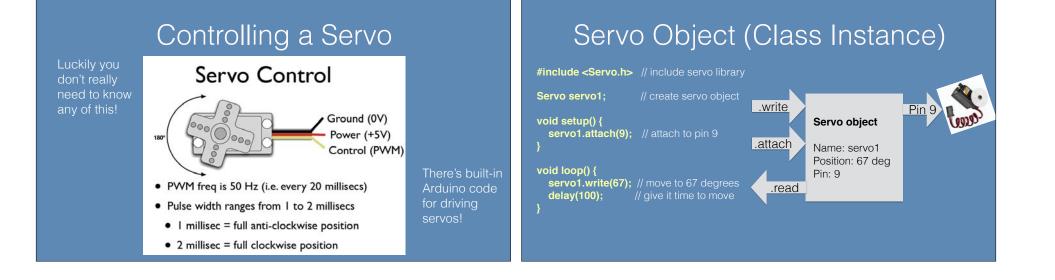
If you can blink an LED you can control the world!


Turning a pin on and off can control all sorts of external devices...

Hobby Servos



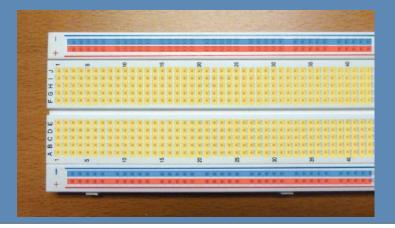
Arduino-Controlled Motion



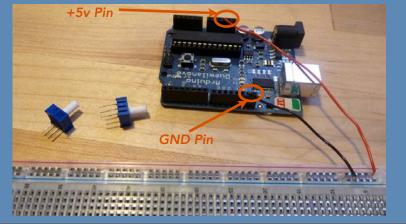
Controlling a Servo

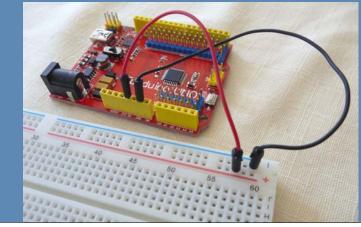
• Pulse Width Modulation (PWM)

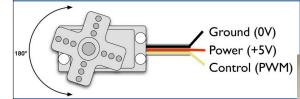
Servo Functions (C++ Class)


- Servo myServo; // creates an instance of Servo class named "myServo"
- myServo.attach(pin); // attach myServo to a digital output pin
- doesn't need to be PWM pin can be anything from 0-13
- Servo library can control up to 12 servos on our boards
- a side effect is that it disables the PWM on pins 9 and 10
- myServo.write(pos); // moves myServo pos ranges from 0-179
- myServo.read(); // returns current position of myServo (0-17

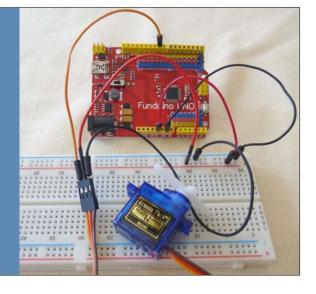
Controlling a Servo

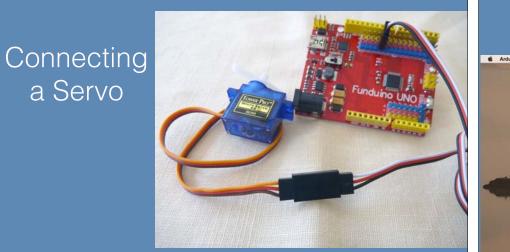

		Sweep Arduino 1.6.3	-
			P
Sweep 5			
<pre>#include <servo.h></servo.h></pre>			
Servo myservo; //	create servo obje	ect to control a servo	
	twelve servo obje	ects can be created on most boards	
int pos = 0; // .			
void setup()			
	// attaches th	ne servo on pin 9 to the servo object	
3			
,			
void loop()			
{ for(pos = 0; pos -	<= 180; pos += 1)) // goes from 0 degrees to 180 degrees	
		<pre>// tell servo to go to position in variable 'pos'</pre>	
		// waits 15ms for the servo to reach the position	
}			
for(pos = 180; pos	s>=0: pos-=1)	// goes from 180 degrees to 0 degrees	
		<pre>// tell servo to go to position in variable 'pos'</pre>	
		// waits 15ms for the servo to reach the position	
2		The server to the server to reach the posterion	
1			
1			


Solderless Breadboard

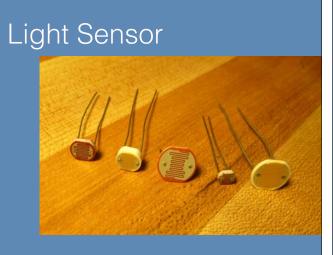

Connecting Power and Ground

Connecting Power and Ground

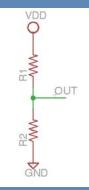




Power is always in the middle GND is the darker of the two on the edge Control is the lighter of the two on the edge



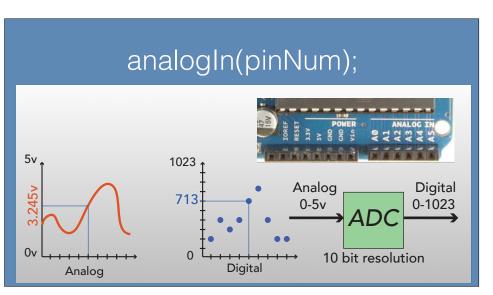
Connecting a Servo

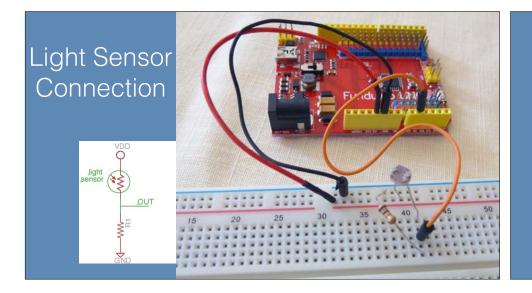

		ad an	d R	un Sweep
Sketchbook Examples Close Save Save As Upload Upload Using Programmer	> % % % % % % % % % % %	01.Basics 02.Digital 03.Analog 04.Communication 05.Control 06.Sensors 07.Display		<pre>tens 5 finclude <servo.h> Servo myservo; // create servo object to control a servo</servo.h></pre>
	0 MP MP	08 Strings		<pre>void loop() { for(pos = 0; pos <= 180; pos += 1) // goes from 0 degrees to 180 degre { myservo.write(pos); // tell servo to go to position in delay(15); // waits 15ms for the servo to read }</pre>
	•			<pre>for(pos = 180; pos>0; pos-1) // goes from 180 degrees to 0 degrt { myservo.write(pos); // tell servo to go to position in delay(15); // waits 15ms for the servo to read }</pre>
		Servo SoftwareSerial SPI Stepper	Knob Sweep	B Contraction of the second seco

Voltage Divider

• Vout is proportional to the ratio of R1 and R2

$$Vout = \frac{R_2}{(R_1 + R_2)} V dd$$

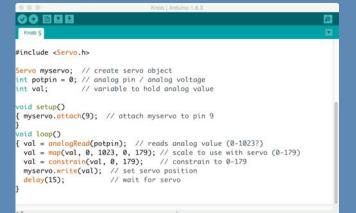

Voltage Divider


- The changing voltage at OUT can be sensed by the ADC of Arduino
- analogRead(pinNumber);

Also called photocells

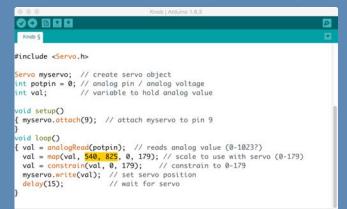
or CdS Sensors

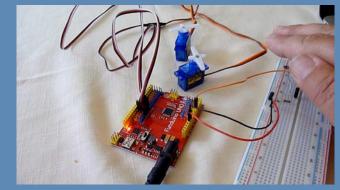
 This senses the voltage (0v to 5v) on the pin and returns a digital value from 0 to 1023 $Vout = \frac{R_2}{(R_1 + R_2)}Vdd$



Calibrate Analog Voltage

// VERY useful for getting a feel for the range of values coming in
// Remember to open the Serial Monitor to see the values

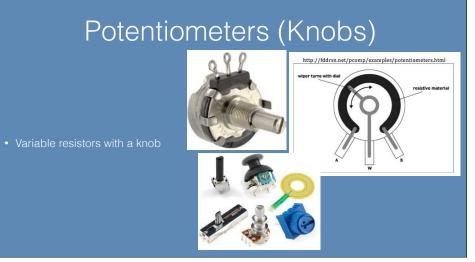

Use the Analog Voltage


Use the Analog Voltage

0.0.0	Knob Arduino 1.6.3	1
		2
Knob 5		2
#include < <mark>Servo</mark> .h>		
<pre>int potpin = 0; //</pre>	create servo object analog pin ∕ analog voltage variable to hold analog value	
<pre>void setup() { myservo.attach(9) } void loop()</pre>	; // attach myservo to pin 9	
<pre>{ val = analogRead(val = map(val, 0, val = constrain(v myservo.write(val)</pre>	<pre>potpin); // reads analog value (0-1023?) 1023, 0, 179); // scale to use with servo (0-179) val, 0, 179); // constrain to 0-179); // set servo position // wait for servo</pre>	

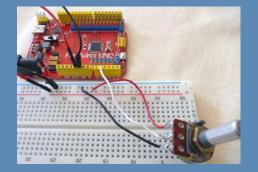
Use the Analog Voltage

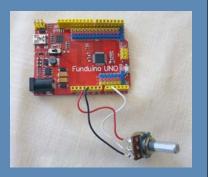
Servo/CdS Light Meter



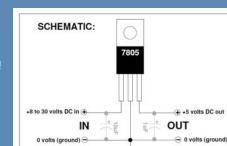
Go Make Something!

- You have the basic tools you need
 - You can make something move
 - You can respond to light
- Use your imagination and the resources of the Studio
 - Printers
 - Laser cutters
 - Cardboard, foam core, paper, etc.


Extra Material

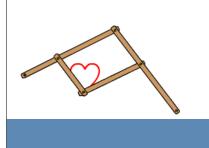


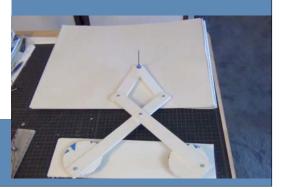
Potentiometers (Knobs)


Potentiometers (Knobs)

Voltage Regulation

- Take a higher voltage (e.g. 9v) and reduce it to a regulated lower voltage (e.g. 5v)
 - Extra voltage is converted to heat!
- Provides up to 1.5A of current with an appropriate heat sink
 - Will drive lots of servos!
 - Cap values not critical...

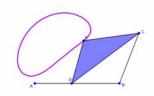

The capacitors are optional but make the voltage extra smooth.

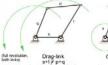

Voltage Regulation

- Take a higher voltage (e.g. 9v) and
- Provides up to 1.5A of current with
- Will drive lots of servos!
- Cap values not critical...

Include picture of regulator on breadboard

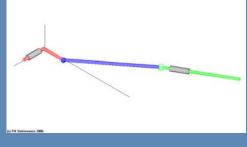
Linkages: Pantograph

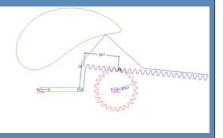


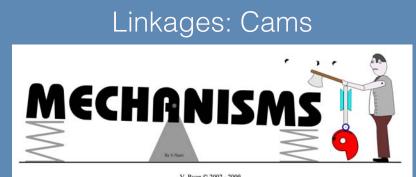

Linkages: Four-Bar

stl / ptq

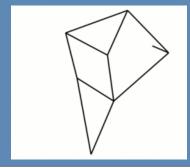
Linkages: Slider-Crank, Rack & Pinion

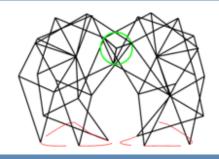






s+l > p+q (no continuous motion s+l ≠ p+q (continuous motion)

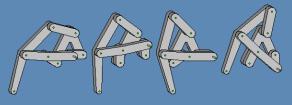




V. Ryan © 2002 - 2009

http://www.technologystudent.com/cams/camdex.htm

Linkages: Jansen's Linkage



Linkages: Jansen's Linkage

Linkages: Klann's Linkage

Patented by Joe Klann, 1994

