Design Thinking meets Computational Thinking: Kinetic Art and Embedded Systems

Erik Brunvand School of Computing University of Utah Salt Lake City, UT USA

Agenda

I argue that arts/technology collaboration is a powerful framework for enhancing ideas in both arenas

Context

I frame this in the context of kinetic art and its connection to **embedded systems**

Embedded Systems

- Computer systems that are embedded into a complete device
 - Often small or special purpose computers or microprocessors
 - Designed to perform one or a few dedicated functions
 - Often reactive to environmental sensors
 - Often designed to directly control output devices

Kinetic Art

- Contains moving parts
 - Depends on motion, sound, or light

- Often controlled by microcontrollers
 - Motors, actuators, transducers...
- Often reactive to environment

SIGGRAPH Art Gallery

CHI Interactivity

Gravity of Light

3D Printed Wearable Project

YOUNGHUI KIM / YEJIN CHO

Background

- Short survey of kinetic art
 - The avant garde in the 1920's
 - Small steps in the 1950's
 - The computer age
- Outline for a collaborative class
- Examples

Naum Gabo (1890-1977)

 Kinetic Construction (Standing Wave) 1919-1920

Marcel Duchamp (1887 – 1968)

 Rotary Glass Plates (Precision Optics) 1920

 Built with the help of Man Ray

Marcel Duchamp (1887 – 1968)

 Rotary Glass Plates (Precision Optics) 1920

- Built with the help of Man Ray
- Rumored to have almost killed Man Ray…

Marcel Duchamp (1887 – 1968)

 Rotary Demisphere (Precision Optics) 1925

László Moholy-Nagy (1895-1946)

Light-Space
Modulator (1922-30)

László Moholy-Nagy (1895-1946)

Light-Space
Modulator (1922-30)

Alexander Calder

(1898 - 1976)

Mobiles and Stabiles Wire and Circuses

Jean Tinguely (1925 – 1991)

Jean Tinguely (1925 – 1991)

Metamatics

Jump ahead to the Computer Age

- Electronic control
 - microprocessors or discrete electronics
- Mechanical actuators
 - motors, servos, relays, solenoids, etc.
 - speakers, buzzers, other noise makers
- Lights
 - LEDs, light bulbs, EL wire, etc.
- Sensors to interact with the viewer
 - distance, movement, sound, temperature, vibration, etc.

Jim Campbell's Algorithm

Jim Campbell (1956 -)

Jim Campbell

Serpente Rosso

Alan Rath (1959 -)

Alan Rath (1959 -)

Art Basel, 2013

Alain Le Boucher

Art Basel, 2013

Alain Le Boucher

Art Basel, 2013

Alain Le Boucher

Art Basel, 2013

Alain Le Boucher Unstable Harmonies 2012

Peter Vogel (b 1954)

Soundwall Performance II

Leo Villareal (b1967)

Leo Villareal (b1967)

CMU Campus

Jenny Holzer (61950)

SIGGRAPH Art Gallery

SIGGRAPH Art Gallery

Daniel Rozin (1961 -)

David Bowen

Tele-present wind

telepresent wind 2009

Rebecca Horn

Hektor - painting device

Patrick Tresset

Paul Stout

Lots of others...

Sabrina Raaf, Ann Hamilton, Meridith Pingree, Roxy Paine, Tim Hawkinson, Krzysztof Wodiczko, etc...

Cross-Disciplinary Class

- Bring Art students and Computer Science and Engineering (CSE) students together
 - Design and build embeddedsystem-controlled kinetic art
 - Goal is benefit for both groups of students
- Fundamental nature of **Design**?
 - Design thinking vs. computational thinking?

Class Overview: CS5789

- Basic reactive programming with embedded systems
 - Electronics fundamentals
 - Sensors and actuators as I/O
- Basic 3d art concepts

- Formal elements: aesthetics, proportion, balance, tension
- Material studies and mechanical linkages
- Studio-based instruction model

Class Overview

- Individual and group projects
 - Everybody tries everything individually
 - Also work in interdisciplinary teams
- Finish with a gallery show
 - 2009/2010: Invisible Logic
 - 2010/2011: Intersectio
 - Spring 2012: Drawing Machines
 - Spring 2014: Input/Artput
 - Spring 2015: C:\Art\Run

Intersectio

Conclusions

- Embedded systems and kinetic art is a natural collaboration
 - Exploration of fundamental design concepts
 - Design-thinking is a natural complement to computational-thinking
- Studio instruction model is fascinating
 - Both groups of students benefit from working with each other
 - Cross-college collaboration just the beginning!

Contact

- Erik Brunvand, School of Computing
 - <u>elb@cs.utah.edu</u>
 - www.cs.utah.edu/~elb
 - www.eng.utah.edu/~cs5789

THE © UNIVERSITY of UTAH