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Abstract— Motion planning of deformable objects is chal-
lenging due to the high degrees-of-freedom inherent in de-
formation as well as the computational cost of producing
physically accurate deformations. This paper develops a method
for fast, physically plausible deformations using a sampling-
based planner in a reduced dimensionality configuration space
containing position, orientation, and a reduced deformation
space produced using principal component analysis. A key
element of the approach is use of energy constraints in the
configuration space to remove implausible deformations that
can be artifacts of the principal component analysis dimension
reduction process. This approach is tested on several deforming
robot planning tasks, such as a sphere fitting through slots, a
bendable bar in a maze, and a deforming plate in tunnels, with
collision free paths using plausible deformations found in a few
minutes.

I. INTRODUCTION

Motion planning algorithms have application and utility
in a diverse range of fields, such as autonomous vehicles,
computer animation and graphics, virtual prototyping, au-
tomotive assembly, and biomedicine [12], [16], [19], [20].
The bulk of the research activity has been directed towards
the motion planning of rigid bodies. However, recent interest
in expanding application of motion planning algorithms to
problems in animation, medicine and biochemistry [3], [13],
[18] has driven motion planning research for objects that are
capable of deforming their shape.

Adding object deformation to the classic motion planning
problem increases the problem’s complexity. Fundamentally,
the full search space increases exponentially with the degrees
of freedom (DOFs) of the modeled robot [7], and deforma-
tions can add significantly to these DOFs. Another source of
computational complexity is the representation and simula-
tion of the object deformation. If physically realistic defor-
mations are required, which is often the case for biomedical
problems [3], mass/spring systems or Finite Element Meth-
ods are typically used [14]. Computing iterative solutions
for these methods slows down the motion planning process
and can result in runtimes on the order of many hours [17].
Problems where semi-realistic deformations suffice can be
solved much faster [5], [18], however, the dimensionality
of the search can quickly become large to the point of
intractability [5].

The goal of this paper is to rapidly produce collision
free paths using semi-realistic deformations where the de-
formations are nearly volume preserving and look physically
plausible. The approach presented in this paper takes as
input a set of plausible sample deformations of a wire-mesh
robot (produced either via simulation or with user knowledge

Fig. 1. A puzzle used in this study where a bendable rectangular robot must
navigate its way through simple maze of walls. Motion planning problems
exist in animation, medicine and biochemistry where the object in motion
must deform it’s shape in order to reach a goal state.

of the robot’s deformation characteristics). From these, a
reduced dimensionality representation of the set of sample
deformations is created using principal component analysis
where a point in the reduced deformation space can be lifted
up to the full representation using a linear transformation.
Motion planning is then performed by sampling in the config-
uration space containing both the global motion parameters
(translation, rotation, etc.) and the reduced dimension defor-
mation space. Collision detection is performed during motion
planning by applying the linear transformation to lift samples
in the reduced deformation space to the full deformation
space and applying classic collision detection algorithms
on the robot under the corresponding deformation. In order
to prevent our motion planning method from producing
solutions containing unrealistic looking deformations, we
apply an energy constraint during the planning process.

The remainder of this paper is organized in the following
manner: the next section describes related work in standard
and deformable motion planning, Section 3 presents a formal
description of deformable motion planning, discusses our
application of principal component analysis to reduce the
dimension of the deformation space and the motion planner
itself. Section 4 presents several examples of deformable mo-
tion planning using our method, and finally, the conclusion
and follows in Section 5.

II. BACKGROUND

Before providing more detail on this paper’s approach,
it is worthwhile to review related research and provide a



formulation of the deformable motion planning problem. A
robot, R, has d degrees of freedom. Some common examples
of robots are robots that can translate and rotate in the plane,
as in R = {x, y, θ}, and robots with d revolute linkages,
where R = {θ1, ..., θd}. The set of parameters controlling
the degrees of freedom has a d-dimensional domain called
the configuration space C. In contrast, the workspace, or
reachable physical domain of the robot, may be 2- or 3-
dimensional. The set of obstacles, O, in the workspace where
O = {o1, ..., on}, maps to a set of obstacles, Cobs in C. A
point q in C represents a particular pose, or configuration,
of the robot in the workspace, mapped to the workspace by
R(q). Thus, points in C interior to Cobs correspond to poses
of the robot that would penetrate one or more of the obstacles
in the workspace. Points in C not in Cobs are in Cfree.

A deformation, d, of a wire-mesh robot with n vertices,
v = (x1, y1, z1, . . . , xn, yn, zn), can be represented as vector
of offsets, d = (δx1, δy1, δz1, . . . , δxn, δyn, δzn) to the
n vertices of the robot mesh applied at each timestep.
The “deformation space” is the set of all deformations
of the form d = (δx1, δy1, δz1, . . . , δxn, δyn, δzn). If a
deformation d results in the object changing shape in a
manner that conflicts with it’s phsyical constraints, then
d ∈ Dobs. In the notation used above, an example rotating,
translating, and deforming robot would be defined in the
configuration space C = S ×D where S is the set encoding
rotation and translation, and D is the deformation space.
The robot’s configuration in C, would be represented by
R = {x, y, θ, δx1, δy1, δz1, . . . , δxn, δyn, δzn}. This simple
definition of mesh deformation was successfully applied to
computing grasps of deformable objects in [8]. (Such an
approach, however, can quickly yield highly dimensional
configuration spaces.)

The deformable motion planning problem can now be
posed as finding a curve P (t) in C = S × D between start
and goal configurations qstart and qgoal such that no point
in P (t) is in Cobs = Sobs ∪Dobs. When qstart and qgoal are
not known in advance, then path planners should create a
network of curves, or roadmap, which encodes as much as
possible of the topology of Cfree.

Multiple methods have been proposed to perform motion
planning of deformable objects using both physically accu-
rate deformations and physically plausible deformations. Us-
ing only deformations that look physically plausible during
the search path can dramatically increase the performance
of the overall search. Several types of physically plausible
deformations have been explored. In [5], the authors explore
the use of a “bounding box deformation” where the bounding
box of an object is deformed to pass through an obstacle
space and the object is then applied the same deforming
transformation. In the same study, the authors also examine
a “geometric deformation” where, if a collision occurs, the
colliding polygons of a deformable object are continuously
moved until they lie outside of the obstacle. The mass/spring
method, which models the deformable object as a collection
of vertices connected together by a network of springs, has
also proven useful for plausible deformations [18]. In gen-

eral, physical realism comes at the cost of speed, therefore,
research is warranted in both areas.

Many existing planners that perform deformable motion
planning are based on sampling-based strategies such as
the RRT and PRM methods [5], [17], [18]. Sampling-based
planners are well suited for deformable motion planning
problems because they are typically well behaved in highly
dimensional spaces. One interesting approach to motion
planning with plausible deformations is utilized by [5], [18].
This method solves the deformable motion planning problem
with a PRM in effectively a two-step process. First, a path is
found from the initial configuration to the goal configuration
allowing collisions within a defined penetration distance.
Once the path has been found, each configuration in the
bath that produces collision is examined and the deformation
necessary to eliminate the collision is determined. In [5],
only configurations that produce penetration into the ob-
stacle space within a specified tolerance are added to the
roadmap and configurations in the roadmap are connected
to each other if the transition between them results in an
estimated change of energy below a specified threshhold.
In [18], on the other hand, the authors produce a possibly
colliding trajectory and then simulate deformations using
constraint-based dynamics and adjust the path accordingly.
(Other interesting research is being performed on motion
planning in completely deformable environments [17] and
on deformable motion planning for linear objects [13].) In
general, these techniques respond to collision by applying
deformation to the object until it is no longer colliding. Our
approach presented in this paper takes an active approach to
deformable motion planning by searching the deformation
space for collision free solutions.

III. METHOD

The space over which our problem is defined includes
both the space of position and orientation, S, and the space
of deformations, DF . The set DF is referred to as the
“full deformation space” with dimension 3n where n is the
number of vertices on the robot’s mesh. The configuration
space through which a collision free path must be found
is CF = S × DF , which we call the “full configuration
space”. Because the dimensionality of DF can become high
for even moderately complex models, we utilize a principal
component dimension reduction method that reduces the full
deformation space to a space of significantly fewer dimen-
sions, DR, which we refer to as the “reduced deformation
space”. The resulting configuration space, CR = S × DR,
containing the reduced deformation space is referred to as
the “reduced configuration space”.

In brief, our method for deformable motion planning in
a reduced configuration space is to first acquire a sample
data set of allowable deformations on the object, perform
principal component analysis on this set to compute a basis
that span the reduced deformation space, then to create a
roadmap in the reduced configuration space, CR = S ×DR,
using a probabilistic roadmap planner, and finally, to solve
for a path in CR. This solution path in CR is then lifted



into the full configuration space, CF , to completely specify
the motion of every vertex of the deformable object as it
moves through the environment. During the PRM roadmap
computation, each sample point is also lifted into CF ,
where standard collision detection can be performed, but also
where energy constraints are computed to maintain plausible
deformations of the object. This process can be thought of
as a reduced dimension deformable robot planning pipeline
as follows (an abstract overview of the pipeline is shown in
figure 2):

1) Sample the space of allowable deformations through
simulation or deformation operators.

2) Create a matrix where the deformation samples are
the rows and the explicit offsets from the origin of the
robot for each vertex in the deforming mesh of the
sample are the columns.

3) Apply PCA to the matrix to produce a basis for DR.
4) Create a linear transformation, T : DF → DR, defined

by the matrix with the basis produced by the previous
step as rows. The inverse of T is T ′ : DR → DF
which is the transpose of the matrix defining T .

5) Use T to project the initial and goal configurations of
the deforming robot into DR.

6) Perform motion planning using a PRM in CR, utilizing
T ′ to lift sample configurations back up to CF in order
to perform collision detection and apply constraints.

7) When a solution has been found utilizing T ′, project
the configurations of the solution path in CR back up
to CF to obtain the solution to the problem.

Our use of principal component analysis and details on the
motion planning process, including collision detection and
sampling issues, are described in the following subsections.
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Fig. 2. A graphical depiction of the “pipeline” used by our deformable mo-
tion planning method beginning with sample deformation capture, principal
component analysis reduction, and motion planning using the sampling-
based PRM technique. The dimensional space in which each operation is
performed is shown as well.

A. Reducing the deformation space using PCA

Principle Component Analysis (PCA) has long been used
in a wide variety of fields to reduce the complexity of an n-
dimensional data set, containing m samples, while preserving
the intrinsic relationship/connections contained within the
data. PCA produces an eigenvector for each column of
an n × n covariance matrix describing the data set. These
orthogonal eigenvectors lie along the direction of the most

variance in the data. The associated eigenvalue, λi, of each
eigenvector, vi, is the variance of the data with respect to vi

after each point in the data has been orthogonally projected
onto vi. The dimension of the data set can be reduced from
n dimensions to n′ dimensions by representing each point
of data as a linear combination of n′ of the most influential
eigenvectors. Principal component analysis has been used in
the past to obtain information and reduce the dimensionality
of object deformations in the field of computer graphics [1],
[2], [9].

In this study, we use PCA to create a linear transformation,
T , that projects deformations from a high dimensional defor-
mation space, DF , down to a drastically smaller deformation
space, DR, that is amenable to sampling-based motion
planners. To obtain this dimension reducing linear transfor-
mation, we first create a data set of m sample deformations of
the form d = (δx1, δy1, δz1, . . . , δxn, δyn, δzn) in DF . The
data set can be populated in many ways. For the experiments
described in this paper, we created the data set by collecting
m time captures of the robot as it underwent deformations
we defined the robot capable of performing. The data set
of deformations is stored in an m × 3n matrix, M , of the
following form:

M =

264 δx1,1 δy1,1 δz1,1 . . . δxn,1 δyn,1 δzn,1

...
...

...
...

...
...

δx1,m δy1,m δz1,m . . . δxn,m δyn,m δzn,m

375
A 3n×3n covariance matrix is produced from M , and the

resulting set of eigenvectors, {v1, . . . , v3n} and eigenvalues,
{λ1, . . . , λ3n} are computed. We select a limited subset of
these eigenvectors to become the basis of the n′-dimensional
DR by choosing the n′ eigenvectors with the highest cor-
responding variance. For data sets of sample deformations
that included bending, stretching, compressing, and twisting,
the dimensionality of DF could typically be reduced by
orders of magnitude. For example, the bending plate puzzle
described in the results of this paper used a plate object
with 128 vertices yielding a 3 ∗ 128 = 384-dimensional full
deformation space DF that was reduced to a 5-dimensional
basis using PCA. Figure 3 shows the variance of the first
ten eigenvectors produced by PCA for the plate puzzle. The
first five eigenvectors were selected to be the basis for the
DF space. If the sample deformations are highly non-linear,
the intrinsically linear PCA reduction method will fail to
reduce the dimensions with minimal loss of information. In
this case, non-linear reduction schemes must be used.

The linear transformation, T , that performs the dimen-
sional reduction on deformation vectors in DF is produced
using the n′ eigenvectors computed with PCA. The matrix
representing the transformation T is of size n′ × n and
is simply the chosen n′ eigenvectors in the rows. Once
the reduction transformation is obtained, it is trivial to
compute the “inverse” transformation, T ′, that lifts the lower
dimensional configurations in the DR space back into the
full deformation space. The matrix representing the T ′ is the
n×n′ transpose of the matrix representing T . A point in DR

represents a deformation of the object after it has been lifted
up into DF using T ′. Motion planning is then performed in
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Fig. 3. This figure shows the variance of the sample deformation data along
the first 10 eigenvectors produced by PCA for the plate puzzle (see results).
The first five with the highest variance were selected to span the reduced
deformation space, reducing the deformation space from 384 dimensions to
five deformations.

CR containing position, orientation, and components in DR

with samples in DR being lifted up into DF to test collision
and deformation constraints.

B. PRM using reduced deformation space

The Probabilistic Roadmap Method is a random sampling-
based technique that is well suited for deformable motion
planning because it is often used to efficiently search in
highly-dimensional spaces [11]. The PRM technique ex-
plores a given configuration space in two phases. In the first
phase, the construction phase, a roadmap (graph) is built that
approximates the motions that can be made in the space.
This is performed by randomly sampling configurations out
of the obstacle free space and connecting it to the nearest
of its neighboring configurations already sampled. An edge
is connected between two sampled configurations if the
robot can freely travel between the two without entering the
obstacle space. In the second phase, the query phase, A∗

graph search algorithm is used to find the path of travel from
the initial configuration to the final configuration through the
constructed roadmap. The construction and query phases are
repeated until the query is able to return a solution.

The PRM for deformable motion planning takes as input,
CR, the start and goal configurations of the problem projected
into CR, and the inverse of the reduction transformation, T ′,
that lifts a configuration in DR back into DF . During the
roadmap construction, configurations are randomly sampled
out of CR and connected to their neighbors with edges.
During this phase, the configurations along the edges are
tested for collision. Collision detection is performed on
the reduced configuration x = (s, dr) ∈ CR by lifting x
into CF using y = (s, T ′(dr)), updating the coordinates
of the vertices in the object mesh from the offsets of the
deformation space components in y, applying the necessary
translations and rotations described by s, and then perform-
ing collision detection and constraint satisfaction tests. If
collision is detected or a constraint is violated, then the edge
in CR is tossed out. During the query phase, if the goal has
been reached, then the path in CR is returned. Lifting the
configurations on the path in CR into CF using the same

method for collision detection results in the solution path
for the unreduced problem. (Note: the collision detection
methods used in this study do not test for self-collision.)

By representing the space of deformations as a 3n-
dimensional configuration space, we are drastically increas-
ing the dimensionality of the motion planning problem.
Although the dimensionality can generally be significantly
reduced using PCA, other challenges can be inadvertently
added to the problem. These include the introduction of
narrow passages and artifacts caused by naively sampling
deformations from DR and lifting them up to DF .

1) Narrow passageways in the deformation space: Often
times it is the case that an object must deform its shape in
a very specific way in order to pass through the obstacle
space (see the stretching sphere and deforming plate puzzles
in the next section, for example). If the specific deformation
can only be attained by sampling within DR and the PRM
must produce a roadmap connection through the area, then a
narrow passage in the deformation space is effectively added
to the problem. Randomized sampling-based motion planners
notoriously have difficulty searching for paths through nar-
row passages where the probability of sampling out of the
passage is very small in comparison to the probability of
sampling in other regions of the configuration space. Fortu-
nately, several novel methods have been produced to improve
their effectiveness in this situation [4], [10], [21]. We have
chosen to use the simple Gaussian Sampling Strategy [6].

2) Artifacts introduced by sampling in a lower dimension
space: When a configuration is sampled from CR, the pro-
jection of the components corresponding to DR back up to
DF won’t necessarily represent the object under a plausible
deformation. Because the dimension of DR is typically much
smaller than DF , an amount of extraneous “information”
must be added in some way to a deformation in DR in order
to transform it to a deformation of much higher dimension
in DF . Although, the effect of the extraneous “information”
is reduced using transformations produced by PCA, lifting
some randomly sampled deformations to higher dimension
can produce unwanted artifacts that result in unrealistic de-
formations. This problem can be solved by either increasing
the dimension of DR, or by applying constraints.

In this study, we have added a simple elastic energy
constraint to the motion planning process in order to reduce
the affect of projection artifacts. During the roadmap con-
struction phase, when a sample configuration, x, in CR is
lifted up to CF for collision detection, the elastic potential
energy of the robot under the deformation specified by the
deformation components of x is computed. If the energy
falls outside the bounds of an acceptable range, then it is
deemed to lie within the obstacle space of the problem. The
potential elastic energy of a configuration, y ∈ CF , is denoted
by E(y). E(y) is calculated by iterating over the edges, ej ,
of the vertex mesh of the robot under deformation specified
by y and summing the elastic potential energy of each edge



as if every edge were a spring:

E(c) =
∑
∀j

1
2
k ||ej − lj ||2

where ej is the length of the jth edge after deformation, lj
is the length of the jth edge with no deformation, and k
is the spring constant. Stretching and compressing the edges
beyond their undeformed lengths increases the overall energy
of the object. Applying the simple elastic potential energy
constraint removes configurations from the roadmap that
produce extreme, unrealistic deformations. Other constraints
such as object volume and other types of energy measures
can be easily added to the motion planner. (Additionally,
we have found that by sampling configurations in DR

within the axis-aligned bounding box of each frame of the
input deformation projected from DF down to DR, fewer
configurations are found to be in the obstacle space due to
the energy constraint.)

IV. RESULTS

To examine the effectiveness of our method for deformable
motion planning, we have implemented our technique and
benchmarked it on three puzzles. The puzzles include a
wall puzzle where a deformable sphere must fit through
several holes of varying shape in four walls (adapted from
the Wall Puzzle developed by the Parasol Motion Planning
group [15]), a very simple maze through which a deformable
rectangular block must fit, and a problem where a de-
formable, flat, rectangular plate must fit a series of pipes.
Our experiments were performed on a system with 8 Gb of
RAM and a 2.2 Ghz processor. Each puzzle was executed
100 times and the average results are shown in figures 4
and 5.

Puzzle Tot. Time % Collision % Projection
Bending Rectangle 99.0s 26.1% 3.9%
Stretching Sphere 272.7s 87.6% 9.7%

Bending Sheet 238.7s 67.4% 3.1%

Fig. 4. The average total time required to solve each puzzle along with the
percentage of time spent performing collision detection and the percentage
of time spent projecting configurations from the reduced configuration space
to the full configuration space.

Puzzle Tot. Nodes Tot. Sampled Tot. Edges
Bending Rectangle 4,664 297,510 15,675
Stretching Sphere 8,112 157,000 26,814

Bending Sheet 14,217 499,330 53,527

Fig. 5. The average number of nodes required to solve each puzzle along
with the number of configurations sampled and the total number of edges
in the PRM roadmap.

A. Bending Rectangle Maze

The bending rectangle maze takes a rectangle capable of
bending in one axis through a very simple maze consisting
of a set of offset serial walls. The rectangle robot must
bend, transform, and rotate in order to get through each

constriction of the maze. There are 122 vertices in the robot’s
vertex mesh, and with the robot capable of translating in
two DOFs and rotating in one plane, the high-dimensional
configuration space contains a total of 368 dimensions. We
were able to accurately represent the bending deformation
using 3 dimensions resulting in a reduced configuration space
of 6 dimensions in total. Figure 6 shows samples along an
example solution path for the bendable robot through the
maze.

Fig. 6. An example solution to the path for the bending rectangle maze
where a rectangle robot is required to bend through a simple maze.

B. Stretching Sphere Puzzle

The stretching sphere wall puzzle requires a sphere to
alter its shape in order to pass through a set of four walls,
with each wall containing a differently sized and shaped
hole. The sphere can undergo a compression and stretch
deformation that results in the sphere becoming flat or
elongated respectively. The triangle mesh representing the
deforming sphere contains 382 vertices, yielding a 1146-
dimension deformation space. In the workspace, the sphere
was permitted to move in the x, y, and z directions without
rotation. This results in a full configuration space containing
1149 dimensions in total. Using the PCA described in the
preceding section, we decreased the dimensionality of the
deformation space down to a reduced deformation space
containing only three dimensions with minimal error. The
reduced configuration space in which motion planning is
performed, therefore, contained only 6 dimensions. Figure 7
shows an example solution path to the problem with three
walls.

C. Deforming Plate Puzzle

The deforming sheet puzzle requires a flattened rectangu-
lar robot, capable of twisting and bending along it’s longi-
tudinal and lateral axis, to navigate itself through a series of
pipes to the goal. Each pipe of the puzzle requires the robot to
bend in a different direction without rotation and translation
was restricted exclusively to the x, y-plane bisecting the pipe
puzzle. The initial sample deformation included motions that
produced the longitudinal bend, lateral bend, and the twist.
Because the initial deformation data contained multiple,
unique, deformations, the variance of the data was much
higher than the preceding two puzzles. We chose to encode
the reduced deformation using 9 dimensions and because



Fig. 7. An example solution to the path for the stretching sphere puzzle
(with three walls) where a rectangle robot is required to stretch and compress
through a set of serial walls (modified from the serial wall puzzle made
available to the public by the Parasol Motion Planning group [15]).

no rotation was allowed and translation was limited to the
x, y-plane, the total dimensions of the configuration space is
11. This puzzle illustrates how multiple deformations can be
captured in the initial sample deformation (at the beginning
of the pipeline), and how sampling deformations out of DR

can produce deformations with shape taken from each of
the deformations given in the initial sample. Figure 8 shows
samples taken from the solution path and shows deformations
using combinations of bends along both axis and twists.

Fig. 8. An example of a solution path to the deforming plate puzzle. The
deformations along the path are combinations of twists and bends along the
longitudinal and lateral axis.

V. CONCLUSION

The reduced dimension configuration space described in
this research addresses the challenge of motion planning for a
deformable robot under physically plausible deformations in
a way consistent with global robot degrees of freedom such
as translation and rotation. Thus, planning approaches devel-
oped for efficient planning in high-dimensional configuration
spaces apply directly to deformation planning as well. The
linear PCA dimension reduction preprocess step described in
this study performs well for the example problems presented,
however, several challenges must be overcome in order
to effectively produce good solutions to given deformable
motion planning problems. Namely, including the reduced
deformation space in the configuration space of the robot

can unintentionally add narrow passages to the problem, and
straightforward sampling in the reduced configuration space
can yield implausible deformations of the reconstructed
robot. Our results show that existing sampling strategies can
mitigate problems caused by narrow passages in the deforma-
tion space and rather than using a more complex dimension
reduction scheme or additional deformation dimensions, we
found that rejecting samples based on energy constraints was
effective in retaining reasonable deformations. The method
presented in this paper will be further developed for research
in planning problems for animation and medicine.
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