
Computing Surface Offsets and Bisectors

Using a Sampled Constraint Solver

David E. Johnson∗ Elaine Cohen†

School of Computing
University of Utah

ABSTRACT

This paper describes SCSolver, a geometric constraint solver based
on adaptive sampling of an underlying constraint space. The
solver is demonstrated on the computation of the offset to a sur-
face as well as the computation of the bisector between two sur-
faces. The adaptive constraint sampling generates a solution man-
ifold through a generalized dual-contouring approach appropriate
for higher-dimensional problems. Experimental results show that
the SCSolver approach can compute solutions for complex input
geometry at interactive rates for each example application.

Index Terms: I.3.5 [COMPUTER GRAPHICS]: Computational
Geometry and Object Modeling—Geometric Algorithms

1 INTRODUCTION

Surface offsets and bisectors are examples of an important class of
geometric problems that can be solved by finding the solutions to
a set of equations representing constraints on the space of possi-
bilities. This solution paradigm is followed by constraint solvers,
which given some input data and a set of equations, generate the
solution set.

Recent work by Elber and Kim [4, 11] and others [21, 19, 2]
has extended earlier work [22, 16] in developing a general purpose
constraint solver based on representing non-linear constraint equa-
tions as multi-dimensional parametric hyper-volumes. Symbolic
operators on smooth models can build up exact, explicit represen-
tations of these constraints, and adaptive refinement combined with
numerical methods can extract the zero sets. However, while this
explicit representation provides the basis for robust operation, the
size of the constraint representations also limits the complexity of
problems that can be solved and problem solution speed.

In response to these issues, this paper demonstrates a new ap-
proach for constraint solvers based on adaptive sampling of the un-
derlying constraint equations. This paper will refer to this approach
as a sampled constraint solver, or SCSolver. Sampling the set of
constraints, rather than explicitly building them, provides several
advantages over current approaches. By avoiding an explicit rep-
resentation of the constraint equations, problem setup time and the
memory footprint of the solver is reduced. Additionally, as long as
the problem input representation supports the necessary queries, it
can be used in the SCSolver framework, expanding the applicabil-
ity of the approach to different model representations. Finally, the
SCSolver generates a set of solution points that meet the constraints
within numerical tolerance and reconstructs a piecewise linear sur-
face from those points. Other discrete approaches, such as GPU-
based gridded sampling [24], require very high resolutions to meet
those tolerances.

∗e-mail: dejohnso@cs.utah.edu
†e-mail: cohen@cs.utah.edu

Figure 1: An example offset surface generated by the SCSolver
approach. The offset distance can be adjusted interactively and
smoothly animated.

This SCSolver approach is demonstrated on two classical geo-
metric computing problems: finding the offset surface of a model
(see Figure 1) and computing the bisector surface between two
models. Each of these problems is an important application and
research topic on its own. Offset surfaces are used in surface recon-
struction [23], model simplification [3], CNC machining [15], and
geometric modeling [25]. Bisector surfaces have widespread appli-
cation in modeling and engineering, in robot motion planning [6],
and in computing the Voronoi diagram [18]. Other symbolic prob-
lems are solvable within the system as long as an appropriate dis-
tance metric can be posed within the parameter space. The SC-
Solver approach generates high-resolution piecewise linear approx-
imations of solutions to these problems at interactive rates.

The contributions of this paper are:

• A constraint solver system for geometric problems based on
efficient, adaptive sampling of the constraint space.

• A generalization of the dual-contouring isosurfacing approach
suitable for extracting different dimensional manifolds from
arbitrary dimensional implicit volumes.

• New, interactive solutions to computing offset surfaces and
bisector surfaces for polygonal data.

2 RELATED WORK

The SCSolver approach draws upon several current research direc-
tions. Its adaptive sampling of the constraint space is based on a
generalized octree data structure. The overall constraint approach
shares common goals with other constraint solvers. The solution

manifold reconstruction is inspired by dual-contouring methods
that been successfully applied to implicit surface polygonalization,
but is generalized here to higher-dimensional problems. These dif-
ferent areas will be summarized below, as well as other approaches
to offset and bisector computations.

2.1 Octree Data Structures

Octrees were introduced to computer graphics and image process-
ing in response to the large memory requirements used by regu-
lar, gridded sampling of data needed to produce high-fidelity re-
sults [8]. More recent work by Frisken [7] adaptively sampled the
distance fields around models using an octree data structure to use
as a generalized model representation. That work also showed how
to perform various modeling operations on the octree and how to
produce surface reconstructions from the volumetric implicit func-
tion defined by the distance field.

The SCSolver uses a generalized octree structure that only splits
a parent along the longest dimension of the cell, an approach shared
by [4]. This binary splitting scales naturally with problem dimen-
sion, as it just makes the tree of cells taller, not exponentially wider.

2.1.1 Constraint Solvers

The solution to some important geometric problems can be refor-
mulated to be the solution to an equivalent set of nonlinear equa-
tions. For example, suppose F(u,v) = (x f (u,v),y f (u,v),z f (u,v))
and G(r,s) = (xg(r,s),yg(r,s),zg(r,s)) are two parametric sur-
faces. Then, their intersection occurs at the set of points
{(x,y,z) | F(u,v) = (x,y,z) = G(r,s)}, which can be explicitly writ-
ten as three nonlinear equations in four unknowns:

x f (u,v) − xg(r,s) = 0,

y f (u,v) − yg(r,s) = 0,

z f (u,v) − zg(r,s) = 0.

These three constraints reduce the dimensionality of the solution
to be a one-manifold in the four-dimensional uvrs-parameter space.
This zero-set manifold can be evaluated to form corresponding in-
tersection curves in the xyz space. B-splines support a variety of
mathematical operations, such as addition, dot product, cross prod-
uct and derivatives, that allow these constraints to be reformulated
as a system of multivariate B-splines, given B-spline input mod-
els. Adaptive parameter space techniques [16, 4] can then adap-
tively prune the large constraint hyper-surfaces until a leaf refine-
ment level is reached. Numerical methods improve the precision of
the solution by finding a zero in each leaf cell. When the solutions
are higher-dimensional entities, such as surfaces, a modified dual-
contouring method is used to extract a linear approximation to the
continuous zero set manifold.

While these approaches are quite robust and general, they scale
poorly with problem complexity and dimensionality. Furthermore,
symbolic computation of the constraint equations can be costly, and
these computations must be redone for each new query. The cost
of building the constraint equations, only to prune much of it away
without detailed examination, motivates this paper’s approach.

2.2 Manifold Solution Reconstruction

The extraction of a linear approximation to the continuous zero set
solution can be thought of as surface reconstruction from an im-
plicitly defined volume, where the value of the constraint equations
define the implicit. This is a heavily studied problem with applica-
tion to surface reconstruction from volumetric medical data or from
point cloud models, implicit modeling, and volume visualization.
A classic surface reconstruction algorithm is Marching Cubes [13],
which examines the value of the implicit volume at the vertices of
cells.

More recently, dual contouring [10] has been used to preserve
sharp features in the data and to more easily work with adaptive
structures such as octrees. Dual contouring places a solution point
in each cell that should have a solution. Quadrilaterals are formed
around edges that contain a zero crossing, since the solution surface
must be pierced by these edges.

2.3 Offsets and Bisectors

Offset surfaces are formed by projecting points on the defining
model out along their surface normals for a specified distance. The
resulting offset is everywhere a fixed distance from the original
model. These two views of an offset also provide the basis for
two main approaches for computing the offset. Projection-based
approaches move defining elements of the model along their nor-
mals. Mathematically, this can be described for a parametric curve
C(t) and offset d as

Od(t) = C(t)+dN(t) (1)

where N(t) is the unit normal along the curve. For non-parametric
models, this explicit offset definition can be approximated by geo-
metric projection operations. A good example of this approach is
by Breen et al. [1], which swept triangles out from the surface. A
difficulty of this approach is the need to trim these swept volumes
against each other to prevent “swallowtails”, which are locally cor-
rect, yet globally incorrect solutions to the offset.

A B-spline constraint solver approach was successfully used to
trim swallowtails from curve offsets in [20]. Higher-dimensional
critical point analysis was used to more accurately place the solu-
tions at offset cusps.

Another approach searches for the set of points that satisfy an
implicit definition of the offset to a model M, as in

Od = {Px,y,z|Px,y,z ∈ D∧dist(Px,y,z,M)−d = 0}. (2)

In this case, D is the search domain of interest. This approach is
typically implemented and approximated through computation of
the distance field around the model and extracting the appropriate
iso-surface corresponding to the distance d. A fast graphics card
approach is demonstrated in [24] and a point-sampled volume ap-
proach is used for CAD models in [14]. Interval arithmetic was
used to adaptively search for planar curve offsets and bisectors in
[9].

A more recent approach [17] has some similarities to the ap-
proach proposed in this paper. It uses distance bounds on an adap-
tively sampled octree with solution reconstruction to create high-
quality offsets. However, it uses a feature-based implicit distance
field and uses bounds on cell distance to these volumetric primi-
tives, rather then the underlying mesh. The result is an adaptively-
sampled, high-quality solution, however, the system runs in 10’s of
seconds, rather than interactively like the system presented here.

3 RESEARCH APPROACH

The SCSolver development has been motivated by the lack of in-
teractive constraint solvers. Interactivity can play a critical role in
the usefulness of a tool. Another factor guiding this development
is the need to include geometric data that cannot directly generate
B-spline constraints, such as commonly used polygonal data. The
sampling operation allows any model type that supports the sam-
pling queries to be used in the solver.

First, this paper will describe the general SCSolver algorithm
and then additional sections will describe some initial applications.

Figure 2: (a) A 2D illustration of a cell being tested for a possible so-
lution using the cell radius as a bound on changes to the constraint
value. (b) A solution point is found by finding zero crossing (in yellow)
along edges. The average of these points provides an initial guess
which then moves onto the solution set. (c) Some mass points pro-
vide poor initial guesses, and the solution point is clipped to remain
in the cell bounds.

3.1 The Sampled Constraint Solver

The first task in running the solver is to define a domain of inter-
est for the problem. This initial domain becomes the top node of
the generalized octree data structure used to efficiently search the
constraint space. Given this node, the SCSolver does a recursive,
adaptive search for nodes below some size or error tolerance that
contain a point on the solution manifold. The cells of the general-
ized octree are nodes of the tree. Cells containing solutions points
are leaves of the tree.

The adaptive search is more precisely described with some pseu-
docode. The following example is actually very close to the actual
code at the heart of the solver.

function SCSolver(cell)

{

if cell.MayHaveSolution()

{

if (cell.Leaf(cell))

{

cell.FindPointSolution

cell.AddPointToSolution

}

else

SCSolver(cell.Subdivide)

}

}

Once the SCSolver is run, the solution manifold is extracted from
the set of octree leaf nodes. Each component of the algorithm is
described in the following subsections.

3.1.1 Testing for Possible Cell Solutions

Each cell may or may not have a portion of the zero set solution
within the cell domain. Often in gridded sampling of volume data,
the corners of each cell are evaluated. Changes in sign between
the corners of the cell indicate a solution lies within. However, this
approach misses solutions completely contained within the cell, as
well as solutions that penetrate the faces of the cell rather then the
edges.

Instead, the SCSolver evaluates the set of constraint equations
at the center of a cell. If the constraint equations cannot change
enough to generate a zero solution while moving within the cell
domain, then a solution cannot exist there. The possible change of
value within a cell is conservatively bounded by a cell radius, which
is the distance from the cell center to a corner (Figure 2(a)). For a
constraint C(Px,y,z, the test for a possible zero within a cell volume
V and cell radius Vr is

possibleZero = C(Px,y,z)+∆C(Vr) ≥ 0 and

C(Px,y,z)−∆C(Vr) ≤ 0

In general, it is difficult to create the metric ∆C relating change
in position within a cell to change in constraint value, although it
is trivial for offsets and bisectors. For more complex cases, the
robotics community has some approaches for computing these met-
rics by providing conservative bounds, for example in the case of
moving linkages with revolute joints [5]. That general bounding ap-
proach seems applicable to a variety of symbolic operations, how-
ever, efficient computation of general metrics remains an area of
future research.

3.1.2 A Cell Leaf Test

In general, a cell is declared a leaf when the dimensions of the cell
are considered “small enough”. This can be a simple, user-provided
scalar value, or based on some criteria from the problem. A user-
provided scalar gives control over the polygon count of the resulting
solution.

3.1.3 Finding the Cell Solution Point

Given a cell containing a possible solution, it is necessary for the
solver to compute a representative point to use later with the dual-
contouring solution reconstruction. Dual-contouring approaches
have illuminated several potential problems that can occur while
solving for this representative point. A typical approach may be to
start with the cell center as an initial guess and to project onto the
zero set through numerical or iterative methods, but the nearest por-
tion of the solution manifold may lie out of the cell. Solution points
that exit the cell can cause flips and concavities in the resulting so-
lution surface reconstruction.

Instead, the concept of the mass point is adapted from dual-
contouring. Each edge with a vertex sign change computes an
approximate edge point through linear interpolation of the vertex
scores. The normalized sum of these edge points is the mass point.
The mass point must lie within the cell and should be near the un-
known constraint solution (Figure 2(b)). The mass point is then
used to initialize an iterative error minimization method that moves
the point onto the zero level-set. The method used is particular to
the constraint system, although general purpose numerical methods
are appropriate as well. A problem is that at coarse resolutions, the
cell may poorly approximate the underlying zero set, and the mass
point does not provide an appropriate initial point. In this case,
the solution point is clipped against the cell boundaries, introduc-
ing some small, bounded error, but preserving the topology of the
solution surface (Figure 2(c)).

3.1.4 Adding the Point to the Solution Set

Points that are accepted as part of the solution set get inserted into
a vertex-edge-quad data structure. The solution point becomes a
vertex in the solution manifold. These vertices point back into the
octree data structure to preserve information about where the solu-
tion manifold crosses into neighboring cells.

3.1.5 Cell Subdivision

The SCSolver uses a binary split approach for generating children
nodes of a cell. The lengths of the cell are found in all dimensions.
The longest axis is split in half, producing two children nodes.
This differs from the octree data structure used in standard dual-
contouring. The next section discusses approaches for extracting a
zero-set surface from this generalized octree.

3.1.6 Solution Manifold Extraction

Given a set of solution points and their containing cells, the SC-
Solver uses a modified dual-contouring approach to extract out sur-
face quadrilaterals. In standard dual-contouring, a recursive ap-
proach finds neighboring cells until four cells surrounding an edge
are found. The solution points within these four cells generate a
quadrilateral.

A design goal for the SCSolver’s manifold extraction is to gener-
alize to higher-dimensional constraint spaces and to be able to ex-
tract out solutions of differing dimensions, such as volume solutions
in a four-dimensional constraint space. Providing dual-contouring
approaches specific to each possible case would require an enor-
mous amount of specialized code. Instead, this system first searches
for edges between neighboring cells. This is actually far simpler to
code than the dual-contouring quadrilateral search. Given a set of
connected vertices and edges, different dimensional solutions can
be extracted. For example, in the surface quadrilateral solution
case, first the edges are extracted, then a graph search combines
the edges into the desired quadrilaterals. If a volume solution is
needed, the edges could be combined into cubes, and so on.

3.1.7 Implementation Details

The SCSolver system takes advantage of many hash tables to main-
tain coherency between different parts of the system. For example,
the corners of the cells are shared between many different nodes of
the tree. Yet, due to the binary split of the cells and the goal of al-
lowing adaptive refinement, these corners are difficult to store in an
explicit grid of points. Instead, a hash table on the point coordinates
is used to store expensive constraint evaluations for later use. In the
experimental results shown later in the paper, 50 to 75 percent of
the constraint evaluations were reused.

Another use of hash tables is during the manifold reconstruction.
The graph search for quadrilaterals from connected edges can pro-
duce redundant solutions. A hash of the vertex indices is used to
detect redundant solutions and prevent them from being added to
the solution manifold.

The overall solver is implemented as a C++ base class with vir-
tual functions. Specific constraint problems then implement a de-
rived class with its functions, such as constraint evaluation, overrid-
ing the virtual function in the base class.

3.2 Computing Offset Surfaces

Figure 3: Points on the offset manifold are found by computing the
closest point on the surface and using the surface normal at that point
to move the cell’s mass point onto the constraint zero set.

To compute an offset surface, the SCSolver searches for a set
of points that lie at a distance d from the original model. Evaluat-
ing the constraint at cell centers and vertices is then equivalent to
finding the minimum distance from the sample point in question to
the model. A modified PQP package [12] with added point-model

minimum distance functionality was used to evaluate the distance
constraint.

Given a initial mass point within a cell, a point on the solution
zero-set was found with an explicit geometric computation. The
distance from the mass point to the model is evaluated, and the
supporting closest point on the surface found. This closest point is
an orthogonal projection of the mass point onto the surface, thus
the vector between the two is in the direction of the surface normal
at that closest point. The mass point can then be moved along the
normal to lie at the appropriate distance d from the model, and is
exactly on the zero set of the constraint (Figure 3).

3.2.1 Examples

Figure 4: A representative offset surface (translucent) for a bunny
model.

Figure 5: A representative offset surface (translucent) for a teapot
model.

In this section, several example offsets are shown. The input
models are a bunny model with 2204 triangles (Figure 4) and a
teapot model with 8488 triangles (Figure 5). The distance calls
used to evaluate the distance constraint scales as O(log2(n)) with
the number of triangles n in the model, so model complexity is not
a bottleneck in the computation.

3.2.2 Timings

Figure 6: The time to generate the offset surface vs. the number of
quadrilaterals in the offset surface.

Figure 6 shows some sample timings for the bunny model. At
low solution resolutions, the offset value can be changed interac-
tively. At higher solution resolutions, the algorithm shows good
scaling performance. To help judge the performance, note that the
bunny model had 2204 triangles, and was a reasonably detailed
model. The equivalent solution resolution for number of triangles
is between the first and second data points, so the offset also cap-
tures model detail. Furthermore, offset surfaces are a smoothing
operation, so fewer triangles are acceptable.

All timings were done on a quad-core Q6600 Core 2 Duo com-
puter with 8 gigabytes of memory, although the application is
single-threaded. In our experience, only a minor dropoff in speed
was shown while running on a modern laptop system.

3.3 Computing Bisector Surfaces

The bisector of two models is the set of points equidistant to both
models. Mathematically, the can be expressed implicitly as

BM1,M2
= {Px,y,z|Px,y,z ∈ D∧d(Px,y,z,M1) = d(Px,y,z,M2)}. (3)

In this case the constraint space represents the difference between
distances from a point in the constraint space to each model. The
zero set of this constraint space is where points are equidistant. The
space is sampled as before, with cells evaluated at their centers to
detect possible solutions and at cell corners to determine the solu-
tion point and solution topology.

There is no direct algorithmic approach for moving a mass point
onto the solution manifold, as there was for offset surfaces. One
possibility would be to numerically approximate the constraint
space gradient at the mass point, and use numerical methods to
move onto the solution manifold. In the spirit of the geometric
approach used in the offset solver, instead, a novel geometric ap-
proach is used to move the mass point onto the bisector.

3.3.1 Improving the Solution Point

The bisector of two points is a straight line. The bisector of two gen-
eral shapes can be approximated by the central shape of the Voronoi
diagram of a set of points from each model. This central shape is
composed of short segments made up of bisectors between points
on one model and points on the other.

The closest points on the models to the mass point can be thought
of as a sampling of those approximating points for the Voronoi dia-
gram. Thus, the bisector between those points is an approximation
of the full bisector surface. Iteratively projecting on that linear bi-
sector, then using the projected point to find new closest points on

Figure 7: Projecting the mass point onto the linear bisector of the two
closest points on the models geometrically converges the mass point
onto the true bisector manifold. The true bisector manifold is shown
as a dashed line.

the model, moves the test point onto the true bisector manifold. In
practice, only a few iterations of this process are needed to converge
to a small epsilon of error.

3.3.2 Examples

In this section, several bisector surfaces are shown (see Figures 8
and 9). The models are able to be moved while the bisector surface
updates interactively.

3.3.3 Timings

Figure 10 shows performance data for computing the bisector sur-
faces. The data shows remarkably linear behavior with respect to
bisector surface resolution. At this time, the reason for different
scaling behaviors between the offset and bisector solvers is unex-
plained, but the different approaches for finding the solution point
may have some impact. The bisector surface is generally slower
than the offset surface. Evaluating the constraint system takes two
distance calls for bisectors versus one for offsets. In addition, the
offset mass point is moved onto the solution manifold in a single
step, whereas the bisector takes an iterative procedure with multi-
ple distance calls.

4 DISCUSSION AND CONCLUSION

This paper has described and demonstrated a constraint solver
based on sampling the system of constraints and adaptively search-
ing that constraint space. The given example constraint problems,
surface offsets and bisector surfaces, are fairly straightforward to
implement in the SCSolver system. Other symbolic problems that

Figure 8: A representative bisector surface (translucent) between
bunny and sphere models.

Figure 9: A representative bisector surface (translucent) between
cow and teapot models. The z width of the solution domain has been
reduced to improve visibility.

are defined using distance measures, such as the medial axis, also
should be aaptable to this approach. Other constraints that are not
so directly linked to distance measures will require additional work
to formulate appropriate bounding metrics on cells of the adaptive
octree search. Some initial experiments on higher-dimensional con-
straint spaces show promise, so the design goals of being a general
purpose constraint solver have some validation.

While the search is hierarchical in the constraint space, leaf node
size selection is based on a user parameter. Further computational
gains may be realized by making the solution surface resolution
also adaptive, so that higher resolutions are used in areas of higher
solution surface curvature.

The efficiency of the SCSolver approach compares well with cur-
rent approaches, including graphics card accelerated systems such
as [24]. The algorithm should be adaptable to multi-core systems,
since the evaluation of the constraint space is the main bottleneck
and the evaluations at a cell are largely independent of those in other
cells.

In conclusion, the SCSolver approach shows the utility of avoid-

Figure 10: The time to generate the bisector surface vs. the number
of quadrilaterals in the bisector surface.

ing a costly explicit constraint space construction phase by sam-
pling the constraint values and providing bounds on changes to the
constraints values within a region of the constraint space. The re-
sulting system allows interactive computation of two important ge-
ometric problems, offset surfaces and bisectors of models.

ACKNOWLEDGEMENTS

This work was supported in part by NSF (CCF0541402). All opin-
ions, findings, conclusions, or recommendations expressed in this
document are those of the authors and do not necessarily reflect the
views of the sponsoring agencies.

REFERENCES

[1] D. Breen, S. Mauch, and R. Whitaker. 3d scan conversion of csg

models into distance volumes. In Proceedings of the 1998 Symposium

on Volume Visualization, pages 7–14. ACM SIGGRAPH, 1998.

[2] X. Chen, R. F. Riesenfeld, E. Cohen, and J. N. Damon. Theoretically

based algorithms for robust tracking of intersection curves of deform-

ing parametric surfaces. Computer Aided Design, 2007.

[3] J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber, P. Agarwal,

F. Brooks, and W. Wright. Simplification envelopes. pages 119–128,

1996.

[4] G. Elber and M. S. Kim. Geometric constraint solver using multivari-

ate rational spline functions. In Proc. of International Conference on

Shape Modeling and Applications, pages 216–225. MIT, USA, 2005.

[5] J.-c. L. Fabian Schwarzer, Mitul Saha. Exact collision checking of

robot paths, 2002.

[6] M. Foskey, M. Garber, M. Lin, and D. Manocha. A voronoi-based

hybrid motion planner for rigid bodies, 2001.

[7] S. Frisken, R. Perry, A. Rockwood, and T. Jones. Adaptively sam-

pled distance fields: A general representation of shape for computer

graphics. In Proc. of SIGGRAPH 2000, pages 249–254, 2000.

[8] G. M. Hunter. Efficient computation and data structures for graphics.

PhD thesis, Princeton, NJ, USA, 1978.

[9] a. B. S. d. O. Jo and L. H. de Figueiredo. Robust approximation of

offsets and bisectors of plane curves. In SIBGRAPI ’00: Proceed-

ings of the 13th Brazilian Symposium on Computer Graphics and Im-

age Processing, pages 139–145, Washington, DC, USA, 2000. IEEE

Computer Society.

[10] T. Ju, F. Losasso, S. Schaefer, and J. Warren. Dual contouring of

hermite data. In SIGGRAPH ’02: Proceedings of the 29th annual

conference on Computer graphics and interactive techniques, pages

339–346, New York, NY, USA, 2002. ACM.

[11] M. S. Kim and G. Elber. Problem reduction to parameter space. In

The Mathematics of Surface IX (Proc. of the Ninth IMA Conference),

pages 82–98. London, 2000.

[12] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast distance

queries with rectangular swept sphere volumes. In IEEE International

Conference on Robotics and Automation (ICRA), pages 24–48, 2000.

[13] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolu-

tion 3d surface construction algorithm. SIGGRAPH Comput. Graph.,

21(4):163–169, 1987.

[14] K. Museth, D. Breen, R. Whitaker, S. Mauch, and D. Johnson. Algo-

rithms for interactive editing of level set models. Computer Graphics

Forum, 24(4):1–22, 2005.

[15] S. L. Omirou and A. C. Nearchou. A cnc machine tool interpolator

for surfaces of cross-sectional design. Robot. Comput.-Integr. Manuf.,

23(2):257–264, 2007.

[16] N. Patrikalakis and T. Maekawa. Shape Interrogation for Computer

Aided Design and Manufacturing. Springer Verlag, 2002.

[17] D. Pavic and L. Kobbelt. High-resolution volumetric computation of

offset surfaces with feature preservation. Computer Graphics Forum,

27(2):165–174, April 2008.

[18] J.-K. Seong, E. Cohen, and G. Elber. Voronoi diagram computations

for planar nurbs curves. In SPM ’08: Proceedings of the 2008 ACM

symposium on Solid and physical modeling, pages 67–77, New York,

NY, USA, 2008. ACM.

[19] J.-K. Seong, G. Elber, and E. Cohen. Simultaneous precise solutions

to the visibility problem of sculptured models. In GMP, pages 451–

464, 2006.

[20] J.-K. Seong, G. Elber, and M.-S. Kim. Trimming local and global self-

intersections in offset curves/surfaces using distance maps. Computer

Aided Design, 38(3):183–193, 2006.

[21] J.-K. Seong, D. E. Johnson, and E. Cohen. A higher dimensional

formulation for robust and interactive distance queries. In SPM ’06:

Proceedings of the 2006 ACM symposium on Solid and physical mod-

eling, pages 197–205, New York, NY, USA, 2006. ACM Press.

[22] E. Sherbrooke and N. Patrikalakis. Computation of the solutions of

nonlinear polynomial systems. ComputerAided Geometric Design,

10(5):379–405, 1993.

[23] H. Siegfried. Surface reconstruction and variable offset. In CAD

Systems Development: Tools and Methods [Dagstuhl Seminar, 1995],

pages 199–206, London, UK, 1997. Springer-Verlag.

[24] A. Sud, M. Otaduy, and D. Manocha. Difi: Fast 3d distance field

computation using graphics hardware. Computer Graphics Forum,

23(3):557–566, 2004.

[25] K. Wentland and D. Dutta. Method for offset-curve generation for

sheet-metal design. Computer-Aided Design, 25(10):662–670, 1993.

