MEASURING RETICULATED PYTHON

Ben Greenman and Zeina Migeed
Northeastern University

Reticulated Python

- Gradual typing for Python [DLS 2014]
- Static type checking
- Dynamic type enforcement

- Formal model is type is sound [POPL 2017]

Example Program

def f(n):
return n* (n+l) // 2

def get numbers (count):
nums = []
for i in range(l, l+count):
nums . append (£ (1))
return nums

get numbers (4)
¥ [1, 3, 6, 10]

Example Program, Fully-Typed

def £f(n:Int)->Int:
return n* (n+l) // 2

def get numbers (count:Int)->List (Int):
nums = []
for i in range(l, l+4count):
nums . append (£ (1))
return nums

get numbers (4)
¥ [1, 3, 6, 10]

Example Program, Partially Typed

def f(n:Int):
return n* (n+l) // 2

def get numbers (count)->List (Int):
nums = []
for i in range(l, l+count):
nums . append (£ (1))
return nums

get numbers (4)
¥ [1, 3, 6, 10]

f("not a number")
Static type error

get numbers ('"'not a number")
Dynamic type error

7-9

Reticulated Python

- Gradual typing for Python [DLS 2014]
- Static type checking
« Dynamic type enforcement

- Formal model is type is sound [POPL 2017]

10

STAGE I: GRIEF

Something Weird

def f(n:Int):
return n* (n+l) // 2

def get numbers (count)->List (Int):

nums = []

for i in range(l, l+count):
nums .append (f) # typo!

return nums

get numbers (4)
¥ [<fun>, <fun>, <fun>, <fun>]

def apply first(funs):
return funs[0] (10)

apply first(get numbers(4))

55

12-15

Another Something Weird

@fields({"dollars": Int
,""cents": Int})
class Cash:

def add dollars(self, dollars):

self.dollars += dollars

def get cash()->Cash:
c = Cash(()
c.add dollars(3.14159)
return c

get cash()
Cash(3.14159, 0)

16-17

STAGE II: DENIAL

Type Soundness

If e hastype T,then either:
- e reduces to a value v withtype T
* e raises an error due to a partial primitive

- e diverges

19

Reticulated Type Soundness

If e hastype T,then either:
- e reduces to a value v with type | T
©ed. | Int->Int| = ->
- e raises a blame error

- e diverges

20

Big Types in Little Runtime
Open-World Soundness and Collaborative Blame for Gradual Type Systems

Michael M. Vitousek Cameron Swords

Indiana University, USA
{mvitouse,cswords,jsiek } @indiana.edu

Abstract

Gradual typing combines static and dynamic typing in the same
language, offering programmers the error detection and strong
guarantees of static types and the rapid prototyping and flexible
programming idioms of dynamic types. Many gradually typed
languages are implemented by translation into an untyped tar-
get language (e.g., Typed Clojure, TypeScript, Gradualtalk, and
Reticulated Python). For such languages, it is desirable to sup-

Jeremy G. Siek

typed code interacts: the consistency relation plays the role that
type equality usually does in the type system. Types are consistent
if they are equal up to the presence of .

Most existing gradually typed languages operate by translating
a surface language program into an underlying target language,
which is then executed. For many gradually-typed systems such as
Typed Racket and TypeScript, the target language is a dynamically

typed programming language, and gradually-typed programs are

AAAAAAAA A bn mmnnmalanale: limbncnnt et Tnmnnes anda 2 than devmncanla

21

Corollary 5.5.1 (Type soundness). If) - es ~ e : T then
0;0F e: |T| and either:

¢ (e,0,0) —* (v,0,B)and ;X Fv: |T| and ¥ + o, or

o (e,0,0) —* BLAME(L), or

® for all < such that {e,0,)) —™ <, have that s = (€', o, B) and
exists <" such that (¢’,o,B) — ¢'.

22

[x] =% lint] = int
|77 = T2) =— |ref T'| = ref
Te>T
ref T > ref T * > ref %
In =T >17 = 15 x> % —> %
T ~T

int ~ int * ~ T T ~ %

11 ~ T5 I7 ~ T3 To ~ T4

ref T ~ ref 1o Th1 = To ~ T3 — T}y

Figure 3. Translation from A*, to)\f.

23

STAGE Ill: ANGER, BARGAINING, DEPRESSION

What are Reticulated Types Good For?

* Protect invariants? No
« Reliable documentation? No

- Enable optimizations? No

Any untyped code
=>

No compositional reasoning!

25-29

STAGE IV: ACCEPTANCE

Interoperability & Performance

31

Interoperability

def get numbers (count)->List (Int):
return proxy (nums, List (Int))

- The proxy must be compatible with existing code

nums .append(....)
len (nums)

nums 1s nums

32-35

Performance

def get numbers (count)->List (Int):

return proxy (nums, List (Int))

» Allocation cost
- Traverse, recursively proxy

- Interpose on future operations

36-39

Measuring Typed Racket

« 20 programs
- Measured all gradually-typed configurations

- How many 20-deliverable?

100.0%

50.0-

0.0 i

Benchmark
40-41

Measuring Typed Racket

Worst-Case Overhead

acquire
dungeon
forth

fsm

fsmoo
gregor

kcfa

Inm

mbta
morsecode

S

10
27
1527
233

2
S
1
1
1

quadBG 4
quadMB 139
sieve 43
shake 32
suffixtree 29
synth 47
take5 1
tetris 34
zombie 292

zordoz T

4?2

Measuring Typed Racket

Frequently an order-of-magnitude slowdown

43

Measuring Reticulated

- 19 different programs
- Measured all function-level configurations

- How many 20-deliverable?

100.0%

50.0-

0.0

Benchmark
44-45

Measuring Reticulated

- 19 different programs
- Measured all function-level configurations

- How many 10-deliverable?

100.0%

50.0-

0.0

Benchmark
46-47

Measuring Reticulated

Worst-Case Overhead

futen

http2

slowSHA
call_method
call_method_slots
call_simple

chaos

fannkuch

float

go

1

N WO = W W oo N DN W

meteor
nbody
nqueens
pidigits
pystone
spectralnorm
Espionage
PythonFlow
take5

— d O O N = =2 =2 DN

48

Measuring Reticulated

Never an order-of-magnitude slowdown

49

STAGE V: MOVING ON

Moving On

Q1. Is Reticulated’s soundness practical?
Q2. Can Typed Racket soundness be performant?
Q3. Is Typed Racket soundness portable?

Q4. Is there a useful, “efficient” Soundness 3.0?

51

52

