
The Behavior of Gradual Types:

A User Study

Preston Tunnell Wilson1

Ben Greenman2

Justin Pombrio1

Shriram Krishnamurthi1

✭ 1 2

1

Intuition: Gradual Typing

2

Intuition: Gradual Typing

Dynamic Typing

un(i)typed components
value safe

3

Intuition: Gradual Typing

Dynamic Typing

un(i)typed components
value safe

Static Typing

typed components
type safe

4

Intuition: Gradual Typing

Dynamic Typing

un(i)typed components
value safe

Static Typing

typed components
type safe

Gradual Typing

typed + untyped components
.... safe?

5

Gradual Typing Helps Programmers?

DLS'14
Combining static and dynamic typing within the same
language offers clear benefts to programmers

6

Gradual Typing Helps Programmers?

ESOP'12
We conjecture that a programmer would like
the guarantee that the values produced by their
components are never used in violation to the
interface specifcations ...

7

Gradual Typing Helps Programmers?

POPL'17

... [run-time checks] inspect the top-level type (or
type-tag) of each value, ensuring safe interaction and
providing the expected type safety to
programmers

8

Gradual Typing Helps Programmers?

ECOOP'17

A programmer may favour unsound monitoring
over wrappers that change the semantics of their
program.

9

Gradual Typing Helps Programmers?

POPL'15

SNAPL'17

SNAPL'15

POPL'08

OOPSLA'17

ECOOP'14

Being sound, Safe TypeScript endows types with
many of the properties that Java or C# programmers
might expect but not fnd in TypeScript

The system lives up to all expectations that
developers have of sound language implementations.

... programmers should be able to add or remove
type annotations without any unexpected impacts
on their program

1�

DLS'14

ESOP'12

POPL'17

ECOOP'17

POPL'15

SNAPL'17

SNAPL'15

POPL'08

OOPSLA'17

ECOOP'14

Data to Support Claims?

11

DLS'14

ESOP'12

POPL'17

ECOOP'17

POPL'15

SNAPL'17

SNAPL'15

POPL'08

OOPSLA'17

ECOOP'14

Data to Support Claims?

12

DLS'14

ESOP'12

POPL'17

ECOOP'17

POPL'15

SNAPL'17

SNAPL'15

POPL'08

OOPSLA'17

ECOOP'14

Three Different Approaches!

Deep

Shallow

Erasure

13

DLS'14

ESOP'12

POPL'17

ECOOP'17

POPL'15

SNAPL'17

SNAPL'15

POPL'08

OOPSLA'17

ECOOP'14

Three Different Approaches!

Deep

Shallow

Erasure

types are sound/enforced

14

DLS'14

ESOP'12

POPL'17

ECOOP'17

POPL'15

SNAPL'17

SNAPL'15

POPL'08

OOPSLA'17

ECOOP'14

Three Different Approaches!

Deep

Shallow

Erasure

types are sound/enforced

typed code cannot
get stuck

15

DLS'14

ESOP'12

POPL'17

ECOOP'17

POPL'15

SNAPL'17

SNAPL'15

POPL'08

OOPSLA'17

ECOOP'14

Three Different Approaches!

Deep

Shallow

Erasure

types are sound/enforced

typed code cannot
get stuck

types do not affect
behavior

16

DLS'14

ESOP'12

POPL'17

ECOOP'17

POPL'15

SNAPL'17

SNAPL'15

POPL'08

OOPSLA'17

ECOOP'14

Three Different Approaches!

Deep

Shallow

Erasure

types are sound/enforced

typed code cannot
get stuck

types do not affect
behavior

17

In this paper:

We begin to address the lack of data with a

developer survey contrasting the different

approaches to gradual typing

Deep vs. Shallow

Erasure

18

Survey based on 8 example programs

19

Survey Prompt

We are designing a language that mixes typed
and untyped code.

2�

Survey Prompt

We are designing a language that mixes typed
and untyped code.

We want your opinion on what should happen
when untyped values flow into typed expressions.

21

Survey Prompt

We are designing a language that mixes typed
and untyped code.

We want your opinion on what should happen
when untyped values flow into typed expressions.

Our language has static type checking but does
not have type inference ... The following
[programs] pass the static type checker.

22

Survey Prompt

We are designing a language that mixes typed
and untyped code.

We want your opinion on what should happen
when untyped values flow into typed expressions.

Our language has static type checking but does
not have type inference ... The following
[programs] pass the static type checker.

We are not looking for feedback on syntax.

23

Survey Prompt

We are designing a language that mixes typed
and untyped code.

We want your opinion on what should happen
when untyped values flow into typed expressions.

Our language has static type checking but does
not have type inference ... The following
[programs] pass the static type checker.

We are not looking for feedback on syntax.

24

Question 7

1

2

3

4

5

6

var x : Array(String) = ["hi" "bye"];

var y = x;

var z : Array(Number) = y;

z[0] = 42;

var a : Number = z[1];

a

25

Question 7

1

2

3

4

5

6

var x : Array(String) = ["hi" "bye"];

var y = x;

var z : Array(Number) = y;

z[0] = 42;

var a : Number = z[1];

a

Type annotations

26

Question 7

1

2

3

4

5

6

var x : Array(String) = ["hi" "bye"];

var y = x;

var z : Array(Number) = y;

z[0] = 42;

var a : Number = z[1];

a

27

Question 7

1

2

3

4

5

6

var x : Array(String) = ["hi" "bye"];

var y = x;

var z : Array(Number) = y;

z[0] = 42;

var a : Number = z[1];

a

Array operations

28

Question 7

1

2

3

4

5

6

var x : Array(String) = ["hi" "bye"];

var y = x;

var z : Array(Number) = y;

z[0] = 42;

var a : Number = z[1];

a

29

Question 7

1

2

3

4

5

6

var x : Array(String) = ["hi" "bye"];

var y = x;

var z : Array(Number) = y;

z[0] = 42;

var a : Number = z[1];

a

 Error: line 4 expected String got 42
 Error: line 5 expected Number got "bye"
"bye"

Multiple behaviors
(unlabeled)

3�

Question 7

1

2

3

4

5

6

var x : Array(String) = ["hi" "bye"];

var y = x;

var z : Array(Number) = y;

z[0] = 42;

var a : Number = z[1];

a

 Error: line 4 expected String got 42
 Error: line 5 expected Number got "bye"
"bye"

Multiple behaviors
(unlabeled)

(Deep)
(Shallow)
(Erasure)

31

Question 7

1

2

3

4

5

6

var x : Array(String) = ["hi" "bye"];

var y = x;

var z : Array(Number) = y;

z[0] = 42;

var a : Number = z[1];

a

 Error: line 4 expected String got 42
 Error: line 5 expected Number got "bye"
"bye"

Expected

Unexpected

Like Dislike

32

Question 7

1

2

3

4

5

6

var x : Array(String) = ["hi" "bye"];

var y = x;

var z : Array(Number) = y;

z[0] = 42;

var a : Number = z[1];

a

 Error: line 4 expected String got 42
 Error: line 5 expected Number got "bye"
"bye"

Expected

Unexpected

Like

LE

LU

Dislike

DE

DU

33

Question 7

1

2

3

4

5

6

var x : Array(String) = ["hi" "bye"];

var y = x;

var z : Array(Number) = y;

z[0] = 42;

var a : Number = z[1];

a

 Error: line 4 expected String got 42
 Error: line 5 expected Number got "bye"
"bye"

LE LU DE DU

Expected

Unexpected

Like

LE

LU

Dislike

DE

DU

34

Question 7

1

2

3

4

5

6

var x : Array(String) = ["hi" "bye"];

var y = x;

var z : Array(Number) = y;

z[0] = 42;

var a : Number = z[1];

a

 Error: line 4 expected String got 42
 Error: line 5 expected Number got "bye"
"bye"

LE LU DE DU

35

Question 5

1

2

3

4

5

var obj0 = {

 k = 0;

 add = function(i : Number) { k = i }};

var t = "hello";

obj0.add(t);

var k : String = obj0.k;

k

 Error: line 1 expected Number got "hello"
"hello"

Two distinct behaviors

36

Question 5

1

2

3

4

5

var obj0 = {

 k = 0;

 add = function(i : Number) { k = i }};

var t = "hello";

obj0.add(t);

var k : String = obj0.k;

k

 Error: line 1 expected Number got "hello"
"hello"

Two distinct behaviors

(Deep,Shallow)
(Erasure)

37

Question 5

1

2

3

4

5

var obj0 = {

 k = 0;

 add = function(i : Number) { k = i }};

var t = "hello";

obj0.add(t);

var k : String = obj0.k;

k

 Error: line 1 expected Number got "hello"
"hello"

LE LU DE DU

38

Question 5

1

2

3

4

5

var obj0 = {

 k = 0;

 add = function(i : Number) { k = i }};

var t = "hello";

obj0.add(t);

var k : String = obj0.k;

k

 Error: line 1 expected Number got "hello"
"hello"

LE LU DE DU

Objects instead of closures,
to avoid confusion

39

Followup Question

Agree/Disagree: Type annotations should
 not change the behavior of a program.

4�

Summary: Survey Design

Solicit opinions on the
semantics of a "new" language

Survey Prompt

We are designing a language that mixes typed
and untyped code.
....

Gather Like × Expect
preference on eight small
programs designed to classify
approaches

Question N

1

2

3

4

5

6

var x : Array(String) = ["hi" "bye"];

var y = x;

var z : Array(Number) = y;

z[0] = 42;

var a : Number = z[1];

a

 Error: line 4 expected String got 42
 Error: line 5 expected Number got "bye"

"bye"

LE LU DE DU

Explicit followup about optional
typing

Followup Question

Agree/Disagree: Type annotations should
 not change the behavior of a program.

41

Summary: Survey Design

Solicit opinions on the
semantics of a "new" language

Survey Prompt

We are designing a language that mixes typed
and untyped code.
....

Gather Like × Expect
preference on eight small
programs designed to classify
approaches

Question N

1

2

3

4

5

6

var x : Array(String) = ["hi" "bye"];

var y = x;

var z : Array(Number) = y;

z[0] = 42;

var a : Number = z[1];

a

 Error: line 4 expected String got 42
 Error: line 5 expected Number got "bye"

"bye"

LE LU DE DU

Explicit followup about optional
typing

Followup Question

Agree/Disagree: Type annotations should
 not change the behavior of a program.

Why 8?

42

Goal: cover all interactions

43

Summary: Survey Design

Solicit opinions on the
semantics of a "new" language

Survey Prompt

We are designing a language that mixes typed
and untyped code.
....

Gather Like × Expect
preference on eight small
programs designed to classify
approaches

Question N

1

2

3

4

5

6

var x : Array(String) = ["hi" "bye"];

var y = x;

var z : Array(Number) = y;

z[0] = 42;

var a : Number = z[1];

a

 Error: line 4 expected String got 42
 Error: line 5 expected Number got "bye"

"bye"

LE LU DE DU

Explicit followup about optional
typing

Followup Question

Agree/Disagree: Type annotations should
 not change the behavior of a program.

44

Distribution

45

Distribution

Software
Engineers

CS
Students

MTurk
workers

46

Distribution

Software
Engineers

CS
Students

MTurk
workers

34 participants 17 participants 90 participants
(96 filtered)

47

Results

48

49

5�

Followup Question

Agree/Disagree: Type annotations should
 not change the behavior of a program.

51

Followup Question

Agree/Disagree: Type annotations should
 not change the behavior of a program.

Software
Engineers

CS
Students

MTurk
workers

44% agree 12% agree 51% agree

52

Conclusions

Deep Liked + Expected

53

Conclusions

Deep Liked + Expected

Shallow

 Disliked + Unexpected

Erasure

54

Conclusions

Deep Liked + Expected

Shallow

 Disliked + Unexpected

Erasure

Conjecture: programmers
 would Like + Expect
 correct blame.

55

Takeaways

Unless there’s a strong reason, choose Deep

 Programmers seem to expect it!

Non-Deep languages must document their
design and rationale

 Start with the survey examples

cs.brown.edu/research/plt/dl/dls2018

56

57

Threats to Validity

Indirect questions ("new" language)

Possible ambiguity:

 lack of type inference

 interpretation of code / error outputs

 runtime vs. static errors

58

Threats to Generalizability

Selective engineer + student populations

Very diverse MTurk population

Other implications:

 runtime performance

 quality of error messages

59

Concrete Types 2

concrete = every value carries a runtime type

Limits expressiveness of "untyped" code

Preferred by Dart users?

Another point to explore!

6�

Followup Question

Agree/Disagree: Type annotations should
 not change the behavior of a program.

Software
Engineers

CS
Students

MTurk
workers

44% agree 12% agree 51% agree

61

Followup Question

Agree/Disagree: Type annotations should
 not change the behavior of a program.

Software
Engineers

CS
Students

MTurk
workers

44% agree 12% agree 51% agree

62

63

64

Why is the compiler complaining about
line 1? The error message should be
attached to line 3, that’s the source
of the problem!

65

Why is the compiler complaining about
line 1? The error message should be
attached to line 3, that’s the source
of the problem!

66

Why is the compiler complaining about
line 1? The error message should be
attached to line 3, that’s the source
of the problem!

67

68

69

Shallow cannot get 'stuck' if:

1. Total reduction relation for
dynamic code

2. Partial reduction relation for
static code (possible to get stuck)

3. Shallow checks can distinguish
stuck vs. non-stuck states

7�

Three Approaches to G.T.

71

72

How to enforce the type boundaries?

73

Example: Base Type

Deep Shallow Erasure

"hello" Int
?

74

Example: Base Type

Deep Shallow Erasure

"hello" Int

75

Example: Base Type

Deep Shallow Erasure

"hello" Int

76

Example: Base Type

Deep Shallow Erasure

"hello" Int
"hello"

77

Example: Higher-Order Type

Deep Shallow Erasure

string-trim Int->Int
?

78

Example: Higher-Order Type

Deep Shallow Erasure

string-trim Int->Int
λ(x)...

79

Example: Higher-Order Type

Deep Shallow Erasure

string-trim Int->Int
string-trim

8�

Example: Higher-Order Type

Deep Shallow Erasure

string-trim Int->Int
string-trim

81

Example: Inductive Type

Deep Shallow Erasure

(1, "A") Int×Int
?

82

Example: Inductive Type

Deep Shallow Erasure

(1, "A") Int×Int

83

Example: Inductive Type

Deep Shallow Erasure

(1, "A") Int×Int
(1, "A")

84

Example: Inductive Type

Deep Shallow Erasure

(1, "A") Int×Int
(1, "A")

85

Three Approaches, Summary

Deep Shallow Erasure

invariant t C(t) v

base types check check -

coinductive
types

wrap check -

inductive
types

traverse check -

boundaries static,
higher-order

static,
selectors

-

86

