The Typed Racket Optimizer

vs. Transient

Ben Greenman

2019-11-11

Context

mixed-typed code

Context

Typed Racket
+ Racket

A

Typed Racket
+ Racket

A

Natural Transient
- strong guarantees - weak guarantees

- high runtime - lower overhead
overhead

Type Soundness

Example: Int

Example: Listof Str

e : Listof Str

Example: Str -> Str

e : Str -> Str

Runtime Checks

Example: Int

Example: Listof Str

Listof Str

aaaaa
’
4
4
’

’

Example: Str -> Str

Str -> Str

——-
T S

Questions on Natural

and Transient?

TR compiler

TR compiler

Optimize

Optimize

()
"I'm curious whether any of TR's

optimizations are in fact unsound

for transient. Have you checked?"
\. J

L2

A

Sam Tobin-Hochstadt

Standard Example

(define (f (n : Flonum) (m : Flonum))

(£1+ n m))

(define (f (n : Flonum) (m : Flonum))

(unsafe-fl+ n m))

Standard Example

(define (f (n : Flonum) (m : Flonum))

(£1+ n m))

(define (f (n : Flonum) (m : Flonum))

(unsafe-fl+ n m))

SAFE for Transient

Optimizations

Optimizations

[apply] [box] [dead-code] [extflonum]

: fixnum [float-complex] [float] [list]
number [pair] [sequence] [string]

: struct [unboxed-let] [vector]

Q. Do any rely on full types?
T wvs. [T

Optimizations

[apply] [box] [dead-code] [extflonum]

: fixnum [float-complex] [float] [list]
number [pair] [sequence] [string]

: struct [unboxed-let] [vector]

Optimizations

[apply] [box] [extflonum]

r fixnum 1 [float-complex] [float] [list]

number [sequence] [string]

struct [unboxed-let] [vector]

= unsafe for Transient

(: g (-> Str Str))
(define g
(case-lambda
[(x) x]
[(x y) ¥I1))

4

\

(define g

(case-lambda

[(x) x]
[(x y)

(void) 1))

Problem: untyped code can call (g 0 1)

= unsound for Transient

(: x (Pairof (Pairof Nat Int) Str))

\ 4

[(unsafe-cdr (unsafe-car x))]

(cdar x)

Problem: no guarantee (car x) is a pair

Optimizations

[apply] [box] [extflonum]

r fixnum 1 [float-complex] [float] [list]

number [sequence] [string]

struct [unboxed-let] [vector]

Optimizations

apply [box] [extflonum]

r fixnum 1 [float-complex] [float] [list]

number [sequence] [string]

struct [unboxed-let] [vector]

Optimizations

apply [box] [extflonum]
r fixnum ‘ [float-complex] [float]

number sequence [string]

struct [unboxed-let] [vector]

Optimizations

apply [box] [extflonum]
[fixnum] [float-complex] float

[struct] unboxed-let [vector]

Looking Ahead

- some TR passes are
bad for Transient

- may be other issues;
need to code & see

Optimizations

apply [box] [extflonum]
[fixnum] [float-complex] float

[struct] unboxed-let [vector]

apply | = safe but risky for Transient

(: h (-> Str Str))
(: xs (Listof Str))
(apply + (map h xs))

\ 4

(+ (h (unsafe-car xs)) (h (unsafe-car (unsafe-cdr xs)))

Caution: h must check inputs

()

(: xs (List Str Str))
(list-ref xs 1)

\ 4

[(unsafe-list-ref xs 1)]

Note: |List Str str; needs more than a tag check

number | = T, is more than a tag check

Natural
Exact-Nonnegative-Integer
Nonpositive-Inexact-Real

ExtFlonum-Negative-Zero

unboxed-let | = safe with escape analysis

(: £ (-> Float-Complex Any))
(define (f n)

\ 4

(define (f n-real n-imag)

..)

float | = false alarm

[(flrandom)]

\ 4

(unsafe-flrandom (current-pseudo-random-generator))

Ok because the PRNG parameter checks inputs

A Brief History

— first commit in 2010 by Sam T-H (leb6aaf)

- appeared in PADL 2012, OOPSLA 2012,
and St-Amour's dissertation

- contributors: Eric Dobson, Ryan Culpepper,
Asumu Takikawa, Spencer Florence, Ben
Greenman, Andrew Kent, and Matthew Flatt

