Parametric Polymorphism
through run-time sealing

(Theorems for low, low prices!)

Ben Greenman
September 22,2014




wc D

s there a

"Best” Programming
(( Language!

A

frenetic >




Of course not!

VWVe live in a multi-language world



Interoperability?

C Ly I~




Interoperability?

C L g I




Jacob Matthews Amal Ahmed




Jacob Matthews Amal Ahmed







Question

® |f we mix Scheme code and ML code, what
static guarantees still apply?

® Can we prove parametricity after mixing
typed and untyped code!



Parametricity

® Parametricity is about invariances.

® A function is parametric if it has a "uniformly
given algorithm on all types”.




Parametricity

fst = A(X,y) . X




Parametricity

fst = A(X,y) . X




Parametricity




Parametricity

(1) Strachey [1967]: parametric vs. ad-hoc

(2) Reynolds [1983]: abstraction theorem

(3) Bainbridge, Freyd et. al [1988]: "parametricity”
(4) Wadler [1989]: free theorems

(1) "Fundamental Concepts in Programming Languages”

(2) "Types, Abstraction, and Parametric Polymorphism"

(3) "Functorial Polymorphism" & "Semantic Parametricity in Polymorphic Lambda Calculus”
(4) "Theorems for Free!"




Free Theorems

For all functions f: Vo .« list = o list

And any function g : B — ¥

(map g) o f =f o (map g)




Free Theorems

® Why does this work!?

® All values of type « are black boxes to f.




Free Theorems

® |n System F, Haskell, ML, etc., parametricity
is guaranteed statically.

® The type of a polymorphic function
expresses the invariants it preserves.

What about Scheme!?




Theorems for Scheme?

;; st : A
(define (fst
a)

;2 snd : A * A —-> A
(define (snd (a,b))
D)




Theorems for Scheme?

;; fst?
(define
(1f

b
a) )

: A ¥

(fst?2
(and

A —> A
(a, D))
(L1nt? a)
(= a 17))

X

"Almost always" well-behaved is NOT good enough!




Theorems for Scheme?

;; min : A * A -> A
(define (min (a,b))
(cond [(and (1nt? a) (1nt? b))
(1 (< a b) a b) ]
[(and (str? a) (str? b))
(1 (<-str a b) a b) ]

lelse (error) |))




Theorems for Scheme?

;; miln : A

(define (min
(cond [ (a

|

(
[
(




What happened!?

;; fst2 ¢+ A * A -> A
(define (fst’Z2 (a,b
(Lf (and (1nt? a)
(= a 42))

b
a) )

Programs should NOT be able to inspect a
value with an abstract type.




Dynamic Seals

® Morris [1973]: "Types are not Sets".
® Protect exported values with secret keys.

® Crash if a sealed value is used.

(define (seal v sl) :
(As2 . (1f (eg? sl s2) X

i\ ‘\i\")
) 3:
4 (: 0."‘-
\Y% il‘
(error) ) ) )




Can we combine static type checking and dynamic seals?

Dynamic Seals Polymorphism




Dynamic Seals Polymorphism




Paper Outline

l.  Define the languages + conversion rules
ll. Prove type safety + parametricity

lll. Demonstrate applications



The Languages

v=(Ax.e)|n|nil

| (cons v V)| fst] rst

e=v| (e )] x| (op ¢ ¢)

| (if0 e e €)]| (cons e e)

| (pd e)

v= Ax:z.e |n|nil

| cons v v |fst|rst

e=v|(ee)|x| opee

| if0eee | consee

r=Nat| =7 | *



The Languages

v=(Ax.e)|n|nil

| (cons v V)| fst] rst

e=v| (e )] x| (op ¢ ¢)

| (if0 e e €)]| (cons e e)

| (pd )| (SM’e)

v= Ax:z.e |n|nil

| cons v v |fst|rst

e=v|(ee)|x| opee

if0ceee | consee
‘™S e

r=Nat| =7 | *



The Languages

(SMTe) (TMS e)
Convert the ML Convert the Scheme
expression e with expression e to an
type 7 into a ML expression at

Scheme expression type 7




The Languages

v=(Ax.e)|n|nil

| (cons v V)| fst] rst

e=v| (e )] x| (op ¢ ¢)

| (if0 e e €)]| (cons e e)
| (pd €)|(SM'e)

v= Ax:z.e |n|nil

| cons v v |fst|rst

e=v|(ee)|x| opee

if0ceee | consee
‘™S e

r=Nat| =7 | *



Conversion Example

TTMS (Ax. e)

l

Ax:z. MS{(Ax. e) SM'x



The Languages

v=(Ax.e)|n|nil

| (cons v V)| fst] rst

e=v| (e )] x| (op ¢ ¢)

| (if0 e e €)]| (cons e e)
| (pd €)|(SM'e)

v= Ax:z.e |n|nil

| cons v v |fst|rst

e=v|(ee)|x| opee

if0ceee | consee
‘™S e

r=Nat| =7 | *



The Languages

v=(Ax.e)|n|nil

| (cons v V)| fst] rst

e=v| (e )] x| (op ¢ ¢)

| (if0 e e €)]| (cons e e)
| (pd €)|(SM'e)

v= Ax:z.e |n|nil
| cons v v |fst|rst
ILMSV‘AT.G
e=v|(ee)|x| opee

if0ceee | consee
™S el e{7)

r=Nat| =7 | *
| vour| ol L



Conversion Summary

® Seals are introduced at Scheme/ML
boundaries, to protect type variables.

e {0,7)is a seal on the variable «, which

should have type 7 back in ML.

e Conversion strategies k are types that
might contain seals.

e Type substitutions 1) map type variables to
closed types.



Parametricity / Fundamental
Theorem

For all seal-free terms e and e, type
environments A and value environments I:

|.f AL ~e:7 then AT Fese: 1t
2 1f AT Fe:L then AT Fe=se:L

"If type checking proves that e has type 7,

then our logical relation will prove that e is
parametric at type 7."



Proof Strategy: Logical Relations

® Syntactically relate terms in each language.

® c¢ = e :7 means that a machine running e
will behave no differently from a machine
running e'.

® (=) only relates terms that are parametric

at type 7.



Defining <
® The paper defines two logical relations, one
for Scheme and one for ML.
® The relation for ML is straightforward.
® |dentical values are related.

® Related functions map related inputs to
related outputs.

® Scheme is trickier...



Nontermination

(define omega
((AX . X X)

"You can't do that in your
typed languages!" -RBF




Solution: Step-Indexing

® Although all ML programs terminate,
Scheme programs may fail or loop forever.

® Step-indexed logical relations guarantee
some number of computational steps.

® =“relates terms for up to k steps.

Ahmed [2006] "Step-indexed syntactic logical relations for recursive and quantified types".



Defining =

§ n =n : Nat Unconditionally

|ldentical natural numbers are related
for k steps. No problem!



Defining =

§ n =n : Nat Unconditionally

§ v =V (k, v, V') € 6(x)

Two values are related at type «
if the type relation ¢ says so.



Defining =

§ n =n : Nat Unconditionally
§ v =V (k, v, V') € 6(x)
6 H[yv] [, V]: T vj<k.Vi<n.

SHvs'vi:T

Two lists are related for k steps if
you can't tell apart any pair of elements
within j<k steps.



Defining =

§ AT .e SNz e it Vi<k vy, V',
Sv=v:irt=
6 Fe[vix] ='e'[VIx]: 7

Two functions are related for k steps
if, given arguments related for j<k steps,
the outputs are related for j steps.



Defining =

§hese:r vj<k. j
(e—error = e —error)

- A\
(Vv.ev = N
N

v .e' V' AdFv=V:7)
Two expressions are related for k steps

if they both explode
or both step to related values.



Bridge Lemma

For all k=0 and type relations o:

|.If 6
2.1f 6

e <“¢': 7 then &

e <¢':L then &

7/0

/6
—MS e =

7/0

SMe=SMe':L

kT/5 Y
MSe : 7

"Sealing respects the logical relation.”



Parametricity!

If a term has type Vo . o * o = «

Then itis fst = A(x)y) . x
oritis snd = A(x,y) .y

(Or it always raises an error)

(Or it always diverges)




Application: Contracts

® Contracts are like types, but stronger.
® Dynamically check invariants.

® Using seals, we can give an ML type to a
Scheme term as its behavioral specification.

® Bridge Lemma gives a simple implementation
of higher-order, polymorphic contracts.

See Findler & Felleisen [2002] "Contracts for higher-order functions” for more on contracts
and Sumii & Pierce [2004] "A Bisimulation for Dynamic Sealing" for an alternate approach.



Bottom Line

Proved parametricity in a (simple) multi-
language setting.

Keep the clean abstractions of ML by
adding a little enforcement to Scheme.

Step-indexing handles non-termination (and
recursive types).

One step towards language interoperability.






