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Typed or Untyped?

Java is typed
  (statically typed)

HashMap<String, Integer> m =

  new HashMap<>();

JavaScript is untyped
  (dynamically typed)

var m = {}
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Typed or Untyped?

Java is typed
  (statically typed)

HashMap<String, Integer> m =

  new HashMap<>();

JavaScript is untyped
  (dynamically typed)

var m = {}

With types, languages can:
+ Prevent classes of bugs
+ Support tools

Without types, programmers can:
+ Focus on the code
+ Build fexible systems

Either way, long-term implications for 
development and maintenance
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Typed or Untyped
T U
Strong support for both sides
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Typed or Untyped
T U
Strong support for both sides

"The advantages of typed PLs are obvious"

Lamport & Paulson, TOPLAS 1999  
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Typed or Untyped
T U
Strong support for both sides

https://madnight.github.io/githut/#/pull_requests/2021/4

Untyped PLs dominate
on GitHub

1. Ruby

2. Python

3. JavaScript

4. PHP

5. Java
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Typed or Untyped
T U

13



Typed or Untyped
T U

Typed AND Untyped

Gradual Typing

T U
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Gradual Typing

T U
Key Motivation: improve stable code with types
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Gradual Typing

T U
Key Motivation: improve stable code with types

function parse_lfd_chain(bv, pos, order, max_depth):

  ....

  tag_count = bv_ref(bv, pos, order)

  next_offset = pos + 2 + (* tag_count 12)

  next_pos = bv_ref(bv, next_offset, order)

  pts = parse_tags(tag_count)

  if next_pos == 0:

    return pts

  else:

    return pts ++ parse_lfd_chain(bv, next_pos, order, max_depth - 1)
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Gradual Typing

T U
Key Motivation: improve stable code with types

function parse_lfd_chain(bv, pos, order, max_depth):

  ....

  tag_count = bv_ref(bv, pos, order)

  next_offset = pos + 2 + (* tag_count 12)

  next_pos = bv_ref(bv, next_offset, order)

  pts = parse_tags(tag_count)

  if next_pos == 0:

    return pts

  else:

    return pts ++ parse_lfd_chain(bv, next_pos, order, max_depth - 1)

function parse_lfd_chain(bv:Bytes, pos:Natural, order:Symbol, max_depth:Natural)

   -> List[PTs]:

  ....

  tag_count = bv_ref(bv, pos, order)

  next_offset = pos + 2 + (* tag_count 12)

  next_pos = bv_ref(bv, next_offset, order)

  pts = parse_tags(tag_count)

  if next_pos == 0:

    return pts

  else:

    return pts ++ parse_lfd_chain(bv, next_pos, order, max_depth - 1)

Document the parameters,
beneft from type checks
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Key Motivation: improve stable code with types
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Key Motivation: improve stable code with types
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Gradual Typing

T U
Key Motivation: improve stable code with types

Add types to one component,
leave the others unchanged
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T U
Key Motivation: improve stable code with types
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Gradual Typing

T U
Key Motivation: improve stable code with types

"For really large codebases, static languages*
  have their uses"

  * (despite all their visual overhead
      and compilation cycles and build tools)
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T U
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T U

Active space!
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Common Lisp
<1990

StrongTalk
1993
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Active space!

Common Lisp
<1990

StrongTalk
1993

Gradual Typing
2006
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Gradual Typing

T U

Active space!

Common Lisp
<1990

StrongTalk
1993

Gradual Typing
2006 + Many Research PLs
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Gradual Typing

T U

Active space!
Major companies involved
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Gradual Typing

T U

Active space!
Major companies involved

Facebook Microsoft Google Dropbox Instagram Stripe

Javascript PHP Python Ruby Dart
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Growing community interest
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Gradual Typing

T U

Active space!
Major companies involved

Growing community interest

+ 8k interfaces
+ 5k contributors
+ 1 million clients

Common case: new types for old libraries

Library Interface Client

Client
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Gradual Typing

T U

So what's the problem?
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Gradual Typing

T U

So what's the problem?

Lots of Languages, but also Lots of Variety
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Example 1

Typed Function
function add1(n : Num)

  n + 1
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Example 1

Typed Function
function add1(n : Num)

  n + 1

Q.  Is n really a number?
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Example 1

Typed Function
function add1(n : Num)

  n + 1

Untyped Caller
add1("A")

Q.  Is n really a number?
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Example 1

yes no

Typed Function
function add1(n : Num)

  n + 1

Untyped Caller
add1("A")

Q.  Is n really a number?

Some say yes, others say no

46



Example 2
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Example 2
Untyped Array

arr = ["A", 3]

Typed Client
nums : Array(Num) = arr

nums[0]

48



Example 2
Untyped Array

arr = ["A", 3]

Typed Client
nums : Array(Num) = arr

nums[0]

Q.  Is arr an array of numbers?
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Example 2

yes no sort of

Untyped Array
arr = ["A", 3]

Typed Client
nums : Array(Num) = arr

nums[0]

Q.  Is arr an array of numbers?

Three common answers: yes, no, and sort of
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What Should Types Mean?
No consensus on basic questions!

Num Array(Num)

58



What Should Types Mean?
No consensus on basic questions!

Num Array(Num)

Q.  Did anyone ask programmers?
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What Should Types Mean?
No consensus on basic questions!

Num Array(Num)

Q.  Did anyone ask programmers?

Challenge: How to compare languages?
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ICFP'18 Proofs
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Challenge: How to compare languages?

vs?
Don't!  Compare semantics instead.

ICFP'18 Proofs

T U

Guarded

Types enforce
behaviors

Transient

Types enforce
top-level shapes

Erasure

Types enforce
nothing
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Study: Behavior of Gradual Types DLS'18 People

A method to compare semantics
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Error: line 2(G says)
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Expected

Unexpected

Like Dislike
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Study: Behavior of Gradual Types DLS'18 People

A method to compare semanticsarr = ["A", 3]         

nums : Array(Num) = arr

nums[0]

Error: line 2(G says)

Error: line 3(T says)

"A"(E says)

Expected

Unexpected

Like Dislike

One program
Distinct results
Task: Label each result
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Study: Behavior of Gradual Types DLS'18 People

Engineers Students Turkers
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Study: Behavior of Gradual Types DLS'18 People

Engineers Students Turkers

Guarded

Types enforce
behaviors

Transient

Types enforce
top-level shapes

Erasure

Types enforce
nothing

How do the responses relate to the 3 semantics?
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Study: Behavior of Gradual Types DLS'18 People

Engineers Students Turkers

Guarded

Types enforce
behaviors

Transient

Types enforce
top-level shapes

Erasure

Types enforce
nothing

Expected & Like Unexpected & Dislike
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Case Closed?

Guarded

Types enforce
behaviors

Transient

Types enforce
top-level shapes

Erasure

Types enforce
nothing
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Case Closed?

Guarded

Types enforce
behaviors

Transient

Types enforce
top-level shapes

Erasure

Types enforce
nothing
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Case Closed? No!

Guarded

Types enforce
behaviors

Transient

Types enforce
top-level shapes

Erasure

Types enforce
nothing

Funny split ...
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Case Closed? No!

Guarded

Types enforce
behaviors

Transient

Types enforce
top-level shapes

Erasure

Types enforce
nothing

Funny split ...

Research Languages vs. Popular Languages
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Case Closed? No!

Guarded

Types enforce
behaviors

Transient

Types enforce
top-level shapes

Erasure

Types enforce
nothing
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Case Closed? No!

Guarded

Types enforce
behaviors

Transient

Types enforce
top-level shapes

Erasure

Types enforce
nothing

There are two problems:
How should gradual types behave?
What do behaviors cost?
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Where Do Costs Come From?
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Where Do Costs Come From?

arr = ["A", 3]         

nums : Array(Num) = arr

nums[0]

Error: line 2(G says)

Error: line 3(T says)

"A"(E says)
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Where Do Costs Come From?

arr = ["A", 3]         

nums : Array(Num) = arr

nums[0]

Error: line 2(G says)

Error: line 3(T says)

"A"(E says)

To detect an Error:
 - traverse array at boundary
 - or wrap and delay checks

Cost of checks can add up!
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Caution: Typed Racket

Guarded type guarantees, but huge worst-case costs

25x 180x 1400x
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Q.  Are bad points common, or rare?

Need a method to measure performance

Performance
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One Program, Many Points
What to Measure = All Gradual Possibilities
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One Program, Many Points
What to Measure = All Gradual Possibilities

One program with 5 components ...
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One Program, Many Points
What to Measure = All Gradual Possibilities

One program with 5 components ...

... leads to 32 gradual points

In general, N components  =>  2^N points
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One Program, Many Points
What to Measure = All Gradual Possibilities

One program with 5 components ...

... leads to 32 gradual points

In general, N components  =>  2^N points

Challenge: How to analyze the data?
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Performance Insight

Challenge: How to analyze the data?

Focus on  D-deliverable  confgurations

95



D-deliverable: The Idea

5x

Are we  fast enough?
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D-deliverable: The Idea

5x

Are we  fast enough?

Worst-case overhead is not important

Dx slower is the upper bound
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D-deliverable: How to Use
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D-deliverable: How to Use

Compress to a proportion ...

D = 2

50%
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D-deliverable: How to Use

Compress to a proportion ...

D = 2

50%

... or to a CDF

D ∈ [1, 20]

2x 20x

100%

1��



D-deliverable: How to Scale
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D-deliverable: How to Scale

Choosing D enables a Bernoulli random variable
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D-deliverable: How to Scale

Choosing D enables a Bernoulli random variable

If 50% of all points are D-deliverable
=>

A random point has a 50% chance of being fast enough
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D-deliverable: How to Scale

Choosing D enables a Bernoulli random variableLinear sampling has been efective
 for approximating the true proportion

2x 20x 2x 20x

(Orange intervals surround the two green curves)
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Method

1. Collect benchmark programs

2. Measure all confgurations
      or  a linear number of samples

3. Focus on the D-deliverable confgurations

Larger Area = Better Performance  
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Applications

Typed Racket
POPL'16 JFP'19

OOPSLA'18
Reticulated Python PEPM'18
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Applications
Curated benchmarks for two languages

Typed Racket
POPL'16 JFP'19

OOPSLA'18

docs.racket-lang.org/gtp-benchmarks

Reticulated Python PEPM'18

nuprl.github.io/gtp/benchmarks

from GitHub, Racket packages, Python benchmarks, ... usually without types
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Applications

Reticulated Python PEPM'18Typed Racket
POPL'16 JFP'19

OOPSLA'18

Guarded semantics
Bad news! Most over 20x
Better today, but still slow
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Applications

Reticulated Python PEPM'18Typed Racket
POPL'16 JFP'19

OOPSLA'18

Guarded semantics
Bad news! Most over 20x
Better today, but still slow

Example: 2015 to 2020
fsm

synth
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Applications
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Transient semantics
Not bad! All under 10x
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Applications

Typed Racket
POPL'16 JFP'19

OOPSLA'18

Guarded semantics
Bad news! Most over 20x
Better today, but still slow

Reticulated Python PEPM'18

Transient semantics
Not bad! All under 10x

Q.  Are Guarded and Transient "equally" type-sound?

Need a method to assess type guarantees

Proofs
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Type Soundness (TS) is the standard property for typed languages
"typed code agrees with the types"
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Q.  Are Guarded and Transient "equally" type-sound?

Type Soundness (TS) is the standard property for typed languages
"typed code agrees with the types"

Both Guarded and Transient satisfy TS theorems ...

... but our survey says they're diferent

Guarded Transient

116



Q.  Are Guarded and Transient "equally" type-sound?

Type Soundness (TS) is the standard property for typed languages
"typed code agrees with the types"

Both Guarded and Transient satisfy TS theorems ...

... but our survey says they're diferent

Guarded Transient

arr = ["A", 3]         

nums : Array(Num) = arr

nums[0]

Error: line 2(G says)

Error: line 3(T says)

"A"(E says)
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From  TS  to  CM OOPSLA'19 In Submission'22

Both Guarded and Transient satisfy type soundness (TS)
Only Guarded satisfes complete monitoring (CM)
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From  TS  to  CM OOPSLA'19 In Submission'22

Both Guarded and Transient satisfy type soundness (TS)
Only Guarded satisfes complete monitoring (CM)

arr = ["A", 3]         

nums : Array(Num) = arr

nums[0]
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From  TS  to  CM OOPSLA'19 In Submission'22

Both Guarded and Transient satisfy type soundness (TS)
Only Guarded satisfes complete monitoring (CM)

arr = ["A", 3]         

nums : Array(Num) = arr

nums[0]

G Error: line 2

T "A"
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From  TS  to  CM OOPSLA'19 In Submission'22

Both Guarded and Transient satisfy type soundness (TS)
Only Guarded satisfes complete monitoring (CM)

arr = ["A", 3]         

nums : Array(Num) = arr

nums[0]

G Error: line 2

T "A"

Library Interface Client

Q.  Do types protect the derived channel?
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From  TS  to  CM OOPSLA'19 In Submission'22

Both Guarded and Transient satisfy type soundness (TS)
Only Guarded satisfes complete monitoring (CM)

arr = ["A", 3]         

nums : Array(Num) = arr

nums[0]

G Error: line 2

T "A"

Library Interface Client

Q.  Do types protect the derived channel?

Guarded (CM+TS): Yes
    types made the channel
Transient (TS): No
    channel is untyped to untyped
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Applications

Typed Racket Reticulated Python
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Applications

Typed Racket Reticulated Python

Q.  Are Guarded and Transient types equally strong?
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Applications

Typed Racket Reticulated Python

Q.  Are Guarded and Transient types equally strong?

No!
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Applications

Typed Racket Reticulated Python

Q.  Are Guarded and Transient types equally strong?

No!

Challenge: Can the two interoperate?
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Applications

Typed Racket Reticulated Python

Q.  Are Guarded and Transient types equally strong?

No!

Challenge: Can the two interoperate?

Yes, Deep+Shallow Racket

PLDI'22
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Foundations for Gradual Languages

 Performance 

People

 Proofs
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Foundations for Gradual Languages

 Performance 

People

 Proofs

Research Contributions:
Characterizing Designs
Directing Improvements
Inspiring New Languages
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 Performance 

People

 Proofs

Ongoing Work
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 Performance 

People

 Proofs

Ongoing Work

Static Python at Instagram

Few types, but fast performance
Gradual soundness: type guarantees vs. ease-of-use
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 Performance 

People

 Proofs

Ongoing Work

Static Python
Gradual Soundness

Rational Programmer

A method for PL pragmatices
Humans out-of-the-loop

134



 Performance 

People

 Proofs

Ongoing Work

Static Python
Gradual Soundness

Rational Programmer
Directly measure pragmatics

Human Factors for Formal Methods:
Language levels for Alloy
LTL misconceptions (next slide)
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LTL Misconceptions
Linear Temporal Logic

used in: verifcation, synthesis, and robot planning
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Linear Temporal Logic

used in: verifcation, synthesis, and robot planning

...

Is Green eventually on?
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LTL Misconceptions
Linear Temporal Logic

used in: verifcation, synthesis, and robot planning

...

Is Green eventually on?
True

Q.  In what ways is LTL tricky, and what can we do about it?
Studies with researchers & students

139



LTL Misconceptions
Linear Temporal Logic

used in: verifcation, synthesis, and robot planning

...

Is Green eventually on?
True

Q.  In what ways is LTL tricky, and what can we do about it?
Studies with researchers & students

Early outcome: Better syntax for Alloy 6

14�



 Performance 

People

 Proofs

Ongoing Work

Static Python
Gradual Soundness

Rational Programmer
Directly measure pragmatics

Human Factors for FM
Alloy and LTL
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Future Work
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Future Work

Typed + Untyped is a multi-language problem

L0 L1

2 similar languages

higher-order interoperability

strong vs. weak invariants
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Future Work

Multi-language systems are everywhere!
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Future Work

Multi-language systems are everywhere!

Alloy

Solvers

L

Datasets

FFIs
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Gradual Security?
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Future Work

Multi-language systems are everywhere!

Alloy

Solvers

L

Datasets

FFIs

Gradual Borrowing?

Gradual Security?
All MLS need:

Expressive Boundaries

Correct & Fast Validation PPP
Balanced Foundation
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People
Behavior of Gradual Types
Human Factors for Formal Methods

Performance
Measuring Costs at Scale

Like

Expected

T U

Proofs
Comparing Type Guarantees

Methods for multi-language systems
Alloy L

149
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Teaching Alloy
Alloy is a modeling language that comes with two styles:

Predicate

all a, b, c: univ |        
a->b in f and b->c in f

implies a->c in f

Relational

f.f in f

(f is transitive)

Problem: errors assume you know both styles!

Q.  Can language levels give a smooth introduction?

Predicate Relational LTL / Alloy 6
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Informal Landscape
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Deep + Shallow

Percent of gradual points that run fastest with a Deep+Shallow mix
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Deep or Shallow (1/2)
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Deep or Shallow (2/2)
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Prior Work

Guarded Transient Erasure

type soundness

dyn. gradual guarantee

blame theorem
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Prior Work

Guarded Transient Erasure

type soundness

dyn. gradual guarantee

blame theorem

Standard tools do not tell the diference!
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A Toolbox to Measure Type Guarantees

Guarded Transient
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A Toolbox to Measure Type Guarantees

Guarded Transient

complete monitoring

CM: Do types protect all channels?
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A Toolbox to Measure Type Guarantees

Guarded Transient

complete monitoring

blame soundness

blame completeness

CM: Do types protect all channels?

BS: Do errors point to  only  relevant channels?

BC: Do errors point to  all  relevant channels?

16�



A Toolbox to Measure Type Guarantees

Guarded C F Transient A E

type soundness

complete monitoring

blame soundness

blame completeness

error preorder
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A Toolbox to Measure Type Guarantees

Guarded C F Transient A E

type soundness y

complete monitoring

blame soundness h 0

blame completeness

error preorder Guarded C F Transient A E< < < = <
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Example: Clickable Plot
Type Soundness cannot distinguish Guarded and Transient

1 1. Plot data

2. Listen for a click

3. Draw an image
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Example: Clickable Plot
Type Soundness cannot distinguish Guarded and Transient

2 1. Plot data

2. Listen for a click

3. Draw an image
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Example: Clickable Plot
Type Soundness cannot distinguish Guarded and Transient

3 1. Plot data

2. Listen for a click

3. Draw an image
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Example: Clickable Plot
Type Soundness cannot distinguish Guarded and Transient
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Example: Clickable Plot
Type Soundness cannot distinguish Guarded and Transient

type ClickPlot

  init

    Num,Num -> Image

  mouseHandler

    MouseEvt -> Void

  show

    -> Void

class ClickPlot

  init(onClick)

    # set up

  mouseHandler(evt)

    i = onClick(evt)

    # add image

  show()

    # display
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Example: Clickable Plot
Type Soundness cannot distinguish Guarded and Transient

function h(x)

  if 0 < fst(x)

    pumpkin

  else

    fish

p = ClickPlot(h)

p.show()

# user clicks

type ClickPlot

  init

    Num,Num -> Image

  mouseHandler

    MouseEvt -> Void

  show

    -> Void

class ClickPlot

  init(onClick)

    # set up

  mouseHandler(evt)

    i = onClick(evt)

    # add image

  show()

    # display
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Example: Clickable Plot
Type Soundness cannot distinguish Guarded and Transient

function h(x)

  if 0 < fst(x)

    pumpkin

  else

    fish

p = ClickPlot(h)

p.show()

# user clicks

type ClickPlot

  init

    Num,Num -> Image

  mouseHandler

    MouseEvt -> Void

  show

    -> Void

class ClickPlot

  init(onClick)

    # set up

  mouseHandler(evt)

    i = onClick(evt)

    # add image

  show()

    # display

Guarded: error at the type boundary
    (coordinate pair vs. mouse event)

Transient: error within the client
    the real issue is of the stack!
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Example: Clickable Plot
Type Soundness cannot distinguish Guarded and Transient

Client Interface Library

Q.  Do types protect the callback channel?

Guarded: Yes
    types made the channel

Transient: No
    the channel is untyped to untyped
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