

Mixing Typed and Untyped Code

A Tale of Proofs, Performance, and People

Ben Grfeenman @liml BROWN
Spring 2022] [

. e ¢ _ .
Typed or Untyped?

Typed or Untyped?
&, | Javaistyped JavaScript is untyped
Java (statically typed) JS (dynamically typed)

HashMap<String, Integer> m = _

new HashMap<>();

Typed or Untyped?
&, | Javaistyped JavaScript is untyped
Java (statically typed) JS (dynamically typed)

HashMap<String, Integer> m = _

new HashMap<>();

With types, languages can:
+ Prevent classes of bugs
+ Support tools

Typed or Untyped?
&, | Javaistyped JavaScript is untyped
Java (statically typed) JS (dynamically typed)

HashMap<String, Integer> m = _

new HashMap<>();

With types, languages can: Without types, programmers can:
+ Prevent classes of bugs + Focus on the code
+ Support tools + Build flexible systems

Typed or Untyped?
&, | Javaistyped JavaScript is untyped
Java (statically typed) JS (dynamically typed)

HashMap<String, Integer> m = _

new HashMap<>();

With types, languages can: Without types, programmers can:
+ Prevent classes of bugs + Focus on the code
+ Support tools + Build flexible systems

Either way, long-term implications for
development and maintenance

. e ¢ _ .
Typed or Untyped

T | e

Strong support for both sides

Typed or Untyped

T

Strong support for both sides

"The advantages of typed PLs are obvious"
Lamport & Paulson, TOPLAS 1999

10

. e ¢ _ .
Typed or Untyped

T | e

Strong support for both sides

11

. e ¢ _ .
Typed or Untyped

T | e

Strong support for both sides

‘madnight.github.io,

GitHut 2.0

A SMALL PLACE TO DISCOVER LANGUAGES IN GITHUB s

l
%
|
\ {

PULL REQUEST

s://madnight.github.io/githut/#/pull_requests/2021/4

12

X Typed or Untyped

T |

13

X Typed or Untyped

T |

v/ Typed AND Untyped
Gradual Typing

14

. % e ¢ _ . |
Gradual Typing

Key Motivation: improve stable code with types

15

.. ¢ ¢ _ -
Gradual Typing

Key Motivation: improve stable code with types

. % e ¢ _ . |
Gradual Typing

Key Motivation: improve stable code with types

function parse_lfd_chain(bv:Bytes, pos:Natural, order:Symbol, max_depth:Natural)
-> List[PTs]:

Document the parameters,

tag_count = bv_ref(bv, pos, order) benefit from type checks
next_offset = pos + 2 + (* tag_count 12)

next_pos = bv_ref(bv, next_offset, order)

pts = parse_tags(tag_count)

if next_pos ==

return pts
else:
return pts ++ parse_lfd_chain(bv, next_pos, order, max_depth - 1)

17

. % e ¢ _ . |
Gradual Typing

Key Motivation: improve stable code with types

18

. % e ¢ _ . |
Gradual Typing

Key Motivation: improve stable code with types

/\
(- -) (-
\/

19

. % e ¢ _ . |
Gradual Typing

Key Motivation: improve stable code with types

/\
(- -) (-
\/

Add types to one component,
leave the others unchanged

/_\
-] -
\/

20

. % e ¢ _ . |
Gradual Typing

Key Motivation: improve stable code with types

21

Gradual Typing

T < >

Key Motivation: improve stable code with types

22

Gradual Typing

[]

Key Motivation: improve stable code with types

T

"For really large codebases, static languages™
have their uses"

* (despite all their visual overhead
and compilation cycles and build tools)

23

. % e ¢ _ . |
Gradual Typing

24

. % e ¢ _ . |
Gradual Typing

Active space!

25

. % e ¢ _ . |
Gradual Typing

Active space!

1993

Common Lisp
<1990

26

Gradual Typing

Active space!

1993

Common Lisp
<1990

2006

27

Gradual Typing G- g

T | L u] "Q ﬁ

"ij JS

-
@ Vo Y JS
- o L@ € ST
! . Ly 4
(| \ e
v s
1t -
= . -
Y . L
~ 4 .
z ~ L
;/s g
B =
” /i ol

®
radal Typing |

2006 + Many Research PLs

1993

Common Lisp
<1990

28

. % e ¢ _ . |
Gradual Typing

Active space!

Major companies involved

29

Gradual Typing

Active space!

Major companies involved

Facebook Microsoft Google Dropbox Instagram Stripe

f HLGQ @ B
B G
e a4 &

JS

Javascript PHP Python Ruby Dart

30

. % e ¢ _ . |
Gradual Typing

Active space!

Major companies involved
Growing community interest

31

Gradual Typing

Active space!

Major companies involved
Growing community interest

DefinitelyTyped

The repository for high quality TypeScript type definitions

+ 8k interfaces

L + 5k contributors
JS + 1 million clients

32

Gradual Typing

Active space!

Major companies involved
Growing community interest

DefinitelyTyped

The repository for high quality TypeScript type definitions

JS

+ 8k interfaces
_ Interface

+ 5k contributors
+ 1 million clients

Common case: new types for old libraries

N~

Client

33

. % e ¢ _ . |
Gradual Typing

So what's the problem?

'@JS.D @ﬁJs'ﬂf-@]

JS

i;ﬂl?ﬁ d;Gri"iEJS fl”%"j'ﬁmﬂﬂ
T A

34

. % e ¢ _ . |
Gradual Typing

So what's the problem?

Lots of Languages, but also Lots of Variety

'@JS.D @ﬁJs'ﬂf-@]

JS

i;ﬂl?ﬁ d;Gri"iEJS fl”%"j'ﬁmﬂﬂ
T A

35

Example 1

Typed Function

function add1(n : Num)
n + 1

#@JSD @ﬁJs'ﬂf-@]

JS

i;t‘.I-_TQ d;Gri #EJsfmwﬂj'ﬁum\D
I e

36

Example 1

Typed Function

function add1(n : Num)
n + 1

Q. Isnreally a number?

#@JSD @ﬁJs'ﬂf-@]

JS

i;t‘.I-_TQ d;Gri #EJsfmwﬂj'ﬁum\D
I e

37

Example 1
Typed Function Untyped Caller
function add1(n : Num) _
n+ 1
Q. Isnreally a number?
g]
& s & = Gree
A IS ﬁ Iy '*;J f 15

i;t‘.I'_TQ d;Gri @Jsfmwﬂj'ﬁmmﬂ
I e

38

Example 1

Typed Function Untyped Caller
function add1(n : Num) _
n+ 1

Q. Isnreally a number?

Some say yes, others say no

'FN““‘D égfm@ C? noﬂ ng

- B _ m 33
iri[IS ¢ Jé Js @9 ,if"’

46

Example 2

"@Js.D @ﬁJs'ﬂf-@]

Qd;GriD#EJsemwﬂj'ﬁmmﬁ

47

Example 2
Untyped Array Typed Client
_ nums : Array(Num) = arr
nums[0]

g@JSD @ﬁJs'ﬂf-@]

JS

W e ,iE s f!”x@"ﬂ"gmﬁ
. °*J 4

48

Example 2
Untyped Array Typed Client
_ nums : Array(Num) = arr
nums[0]

Q. Isarr an array of numbers?

g@JSD @ﬁJs'ﬂf-@]

JS

W e ,iE 55 "’g"j"gmm
. J e

49

Example 2

Untyped Array Typed Client
_ nums : Array(Num) = arr
nums[0]

Q. Isarr an array of numbers?

Three common answers: yes, no, and sort of

Ci; ? w on JSD [\

yes IS no sort of

a ﬂg” JQ é JS 2C Grace) ifriu , S,D

57

What Should Types Mean?

No consensus on basic questions!

Num Array(Num)

58

What Should Types Mean?

No consensus on basic questions!

Num Array(Num)

Q. Did anyone ask programmers?

59

What Should Types Mean?

No consensus on basic questions!

Num Array(Num)

Q. Did anyone ask programmers?

Challenge: How to compare languages?

60

Challenge: How to compare languages?

¥ - P

"@Js.D @ﬁJs'ﬂf-@]

JS

5 C@‘m ,iE Js f”’%'ﬂﬂgmﬁ

61

Challenge: How to compare languages?

L 9 G,

'@JS.D @ﬁJs'ﬂf-@]

JS

Q@WQB@ﬁgﬁgﬂm

62

Challenge: How to compare languages?

ICFP'18

Don'tl Compare semantics instead.

A Proofs

T

»
>

]

g@JS @ﬁJs'ﬂf-Q’
W e "iEJS f!”x@"ﬂ"gmﬁ
. “J e

[]

JS

63

Challenge: How to compare languages?

Don'tl Compare semantics instead.

ICFP'18 A Proofs

Guarded Transient Erasure
Types enforce Types enforce Types enforce
behaviors top-level shapes nothing

64

& ¢ ¢ _ ________________ ___
Study: Behavior of Gradual Types ois1s | M) People

A method to compare semantics

65

& ¢ ¢ _ ________________ ___
Study: Behavior of Gradual Types ois1s | M) People

_ A method to compare semantics

nums : Array(Num) = arr
nums[0]

66

& ¢ ¢ _ ________________ ___
Study: Behavior of Gradual Types ois1s | M) People

_ A method to compare semantics

nums : Array(Num) = arr

nums[0]

(G says) Error: line 2

(T says) Error: line 3

(E says) "A"

67

Study: Behavior of Gradual Types

nums : Array(Num) = arr

nums[0]

(G says) Error: line 2

(T says) Error: line 3

(E says) "A"

DLS'18 ‘ People

A method to compare semantics

Expected

Unexpected

Like Dislike

68

Study: Behavior of Gradual Types ois1s | M) People

_ A method to compare semantics

» One program
» Distinct results
» Task: Label each result

l Like Dislike

(G says) Error: line 2

nums : Array(Num) = arr
nums[0]

Expected

(T says) Error: line 3

Unexpected

(E says) "A"

69

Study: Behavior of Gradual Types ois1s | M) People
N amazon
m%me \% nechanical turk
Engineers Students Turkers

70

Study: Behavior of Gradual Types ois1s | M) People
N amazon
m%me \% nechanical turk
Engineers Students Turkers

How do the responses relate to the 3 semantics?

Guarded Transient Erasure
Types enforce Types enforce Types enforce
behaviors top-level shapes nothing

71

Study: Behavior of Gradual Types ois1s | M) People

N amazon
[}gn%me M '\"w":ij hlr\ rl\ tu rb‘l
Engineers Students Turkers
Expected & Like Unexpected & Dislike
\/Guarded XTransient XErasure
Types enforce Types enforce Types enforce
behaviors top-level shapes nothing

72

Case Closed?

\/Guarded XTransient XErasure
Types enforce Types enforce Types enforce
behaviors top-level shapes nothing

73

Case Closed?

'i@JSD @ﬁmﬁ}f-gf]

JS

R) o ,iE s &F gt o .0

\/Guarded XTransient XErasure
Types enforce Types enforce Types enforce
behaviors top-level shapes nothing

74

Case Closed? No!

Funny split ...

'@ By o LT 'ij ﬂ ‘@ Jﬂ JE
JQEJSD B %JS— a¥ "E'é'
gr

\/Guarded ‘ XTransient XErasure
G
Types enforce Types enforce Types enforce
behaviors top-level shapes nothing

82

Case Closed? No!

Funny split ...

Research Languages vs. Popular Languages

rmrmrm o]

GnD Nom A N &
533 @? S E

gr
\/Guarded ‘ XTransient XErasure
G
Types enforce Types enforce Types enforce
behaviors top-level shapes nothing

83

Case Closed? No!

'@ By o LT 'ij ﬂ ‘@ Jﬂ JE
JQEJSD B %JS— a¥ "E'é'
gr

\/Guarded ‘ XTransient XErasure
G
Types enforce Types enforce Types enforce
behaviors top-level shapes nothing

84

Case Closed? No!

There are two problems:

» How should gradual types behave?
» What do behaviors cost?

' '*" orl] em A ﬂ
Js Js s ﬁ-‘ﬁiﬁ % Js } "E 'é’

gr

\/Guarded ‘ XTransient XErasure
G
Types enforce Types enforce Types enforce
behaviors top-level shapes nothing

85

Where Do Costs Come From?

86

Where Do Costs Come From?

nums : Array(Num) = arr

nums[0]

(G says) Error: line 2

(T says) Error: line 3

(E says) A

87

Where Do Costs Come From?

nums : Array(Num) = arr
nums[0]

l To detect an Error:

- traverse array at boundary
- or wrap and delay checks

(G says) Error: line 2

Cost of checks can add up!

(T says) Error: line 3

(E says) A

88

. & e ¢ _ - |
Caution: Typed Racket "\

Guarded type guarantees, but huge worst-case costs

89

Q. Are bad points common, or rare?

Need a method to measure performance

A Performance

"@Js.D @ﬁJs'ﬂf-@]

JS

W e ,iE s f!’r’w"j'ﬁmﬁ
. °*J 4

90

One Program, Many Points

What to Measure = All Gradual Possibilities

91

One Program, Many Points

What to Measure = All Gradual Possibilities

A N s | N |

One program with 5 components ...

92

One Program, Many Points

What to Measure = All Gradual Possibilities

A N s | N |

One program with 5 components ...

v

o s s | |
| s s o v s s o s s o s s o s s s o s o | |
e s o o o o o B o o o o — o o — o
e s o s o s o f o o f o e o o o o o o o o oY o o o o o o o o s s o o o o o o | o
o s s e s s s s s o e e s s e f s e s |
(I (N N e .

... leads to 32 gradual points

In general, N components => 2AN points

93

One Program, Many Points

What to Measure = All Gradual Possibilities

A N s | N |

One program with 5 components ...

v

I | | —

@@@__@@_@_@@_E_S@%E_-@%E_%-_%E_%-@j Challenge: How to analyze the data?

e s o s s s o s o o o o f o o o o o o |
[0 O ([(O (e) [(e [e .
I S .

... leads to 32 gradual points

In general, N components => 2AN points

94

Performance Insight

Challenge: How to analyze the data?

Focus on D-deliverable configurations

95

D-deliverable: The Idea

Are we fast enough?’

COE]
A

CE .
A

[] T [[

A
[)) [

96

& e ® 000 e
D-deliverable: The Idea

COE]
A

CE .
A

[] T [[

A
?
Are v fast enough? pm (N (D (N) (D

Worst-case overhead is not important

Dx slower is the upper bound

97

D-deliverable: How to Use

| s o | o | |
e s s oy v s s o o s s s o s s s o s s o o s o | |
e s o e — e — — o o e o - —n e — — e e i o— e | —0 o— —| i s o | e o o f e o |)|
e s o e s e s e I) S . e i s s o o o e s s o | |
[() () (S (S (S) [(S (S (N (S T (N (S (S [(R T [(e [e .
[e e

98

D-deliverable: How to Use

| s o | o | |
e s s oy v s s o o s s s o s s s o s s o o s o | |
s s s o o s o n f f —n n — o —n — e o— o — e — — e o —n o) —n o — o o o — e — e — e o — e Yo o | m— | —|
e s o o o o f o o o o o o f o e o oY o o o o o o s e s s o o s o o | o
[() () (S (S (S) [(S (S (N (S T (N (S (S [(R T [(e [e .
[e e

Compress to a proportion ...

D=2
Y
50%

99

D-deliverable: How to Use

| s o | o | |
e s s oy v s s o o s s s o s s s o s s o o s o | |
s s s o o s o n f f —n n — o —n — e o— o — e — — e o —n o) —n o — o o o — e — e — e o — e Yo o | m— | —|
e s o o o o f o o o o o o f o e o oY o o o o o o s e s s o o s o o | o
[() () (S (S (S) [(S (S (N (S T (N (S (S [(R T [(e [e .
[e e

Compress to a proportion orto a CDF

D=2 D €[1, 20]
Y Y

0
50% / 100%

2X 20x

100

D-deliverable: How to Scale

I i B | |
I i o = S I B | —
N I B B B o o — e — e — e — e — e S S — e S — | — — —
I Y — Y — Y Y —) — — e S — Y S— — — e — — e — e — — e —p e —
) () () () (R () (R () () () () (R (R [(R) () () () () (e () () (e ()) (e () (T (e e T) (e (e (e e T s e
() () () () () (SO (N () () (S (SO (S (S (N (T (SN (DN (NN (DN (S (N () (R (S (S (S (NN (N [(R (N (R (e e e
(I () (e () (e (e

101

& e ® 000 e
D-deliverable: How to Scale

I i B | |
I i o = S I B | —
N I B B B o o — e — e — e — e — e S S — e S — | — — —
I Y — Y — Y Y —) — — e S — Y S— — — e — — e — e — — e —p e —
) () () () (R () (R () () () () (R (R [(R) () () () () (e () () (e ()) (e () (T (e e T) (e (e (e e T s e
() () () () () (SO (N () () (S (SO (S (S (N (T (SN (DN (NN (DN (S (N () (R (S (S (S (NN (N [(R (N (R (e e e
(I () (e () (e (e

Choosing D enables a Bernoulli random variable

I || || |
CCEs CEsT] | —e > v
TN S e v
(N T

XXLL
X X

102

& e ® 000 e
D-deliverable: How to Scale

I i B | |
I i o = S I B | —
N I B B B o o — e — e — e — e — e S S — e S — | — — —
I Y — Y — Y Y —) — — e S — Y S— — — e — — e — e — — e —p e —
) () () () (R () (R () () () () (R (R [(R) () () () () (e () () (e ()) (e () (T (e e T) (e (e (e e T s e
() () () () () (SO (N () () (S (SO (S (S (N (T (SN (DN (NN (DN (S (N () (R (S (S (S (NN (N [(R (N (R (e e e
(I () (e () (e (e

Choosing D enables a Bernoulli random variable

I || || |
CCEs CEsT] | —e > v
TN S e v
(N T

XXLL
X X

If 50% of all points are D-deliverable
=>
A random point has a 50% chance of being fast enough

103

D-deliverable: How to Scale

I i B | |
I i o = S I B | —
N I B B B o o — e — e — e — e — e S S — e S — | — — —
I Y — Y — Y Y —) — — e S — Y S— — — e — — e — e — — e —p e —
) () () () (R () (R () () () () (R (R [(R) () () () () (e () () (e ()) (e () (T (e e T) (e (e (e e T s e
() () () () () (SO (N () () (S (SO (S (S (N (T (SN (DN (NN (DN (S (N () (R (S (S (S (NN (N [(R (N (R (e e e
(I () (e () (e (e

Linear sampling has been effective
for approximating the true proportion

/
2X 20x 2X 20x

(Orange intervals surround the two green curves)

104

Method

1. Collect benchmark programs

2. Measure all configurations
or alinear number of samples

3. Focus on the D-deliverable configurations

/_/

/

A

Larger Area = Better Performance

105

Applications

POPL'16 JFP'19)
"\ Typed Racket P Reticulated Python | Pepv'1s

OOPSLA'18

106

. e ¢ _ .
Applications

Curated benchmarks for two languages

POPL'16 JFP'19

" Typed Racket Reticulated Python | Pepv'1s
OOPSLA'18

...search manuals... Gradual Typing Across the Spectrum
3.1 acquire Description G yping p

top < oprev o oup next o

» author: Matthias Felleisen
source: github.com/mfelleisen/Acquire

dependencies: None Benchmarks
GTP Benchmarks Simulates a board game between player objects. The players send messages to an
1 Running a benchmark administrator object; the administrator enforces the rules of the game. Reticulated Python

11 QuickRo (Bt O Dyt 6) et 3 O}
ot q‘:fnﬁﬁg%sﬁzﬁszzhs”"
1.2 Official Route N X KL = ps://gi /nupri/retic
: S R\
1.3 Semi-Auto Route \)‘-‘/
N

Suite of Python programs adapted from: case studies reported by Vitousek, Kent, Siek, and Baker; the
module-level evaluation of Big Types in Little Runtime; and open-source programs. Each function in
these benchmarks may be typed or untyped. In other words, for a program with 10 functions the
benchmark explores 1024 configurations of gradual typing.

make-configurations

2 Version Notes

3 Benchmark Descriptions
3.1 acquire Description
3.2 dungeon Description

0. admin.rkt 3.board.rkt 6. state.rkt 9. ../base/untyped.rkt
1. auxiliaries.rkt 4. main.rkt 7. strategy.rkt
2. basics.rkt 5. player.rkt 8. tree.rkt

docs.racket-lang.org/gtp-benchmarks

Appeared in:
« On the Cost of Type-Tag Soundness. Ben Greenman and Zeina Migeed. PEPM 2018

nuprl.github.io/gtp/benchmarks

from GitHub, Racket packages, Python benchmarks, ... usually without types

107

Applications

OOPSLA'18

POPL'16 JFP'19)
"\ Typed Racket ﬁ Reticulated Python | Pepv'1s

» Guarded semantics
» Bad news! Most over 20x
» Better today, but still slow

108

Applications

POPL'16 JFP'19)
"\ Typed Racket P Reticulated Python | PePM'18

OOPSLA'18

» Guarded semantics
» Bad news! Most over 20x
» Better today, but still slow

Example: 2015 to 2020

fsm ’—__///'
e

I
I A O

synth

109

Applications

JFP'19

'\ - d Rack POPL'16
‘ ype acket OOPSLA'18

» Guarded semantics
» Bad news! Most over 20x
» Better today, but still slow

ﬁ Reticulated Python | PePM'18

» Transient semantics
» Not bad! All under 10x

110

Applications

JFP'19

'\ g " POPL'16
‘ Type Racket OOPSLA'18

» Guarded semantics
» Bad news! Most over 20x
» Better today, but still slow

ﬁ Reticulated Python | PePM'18

» Transient semantics
» Not bad! All under 10x

Q. Are Guarded and Transient "equally" type-sound?

111

Applications

OOPSLA'18

POPL'16 JFP'19)
"\ Typed Racket ﬁ Reticulated Python | Pepv'1s

» Guarded semantics » Transient semantics
» Bad news! Most over 20x » Not bad! All under 10x
» Better today, but still slow

Q. Are Guarded and Transient "equally" type-sound?
|

Need a method to assess type guarantees

A Proofs

112

Q. Are Guarded and Transient "equally" type-sound?

113

Q. Are Guarded and Transient "equally" type-sound?

Type Soundness (TS) is the standard property for typed languages
"typed code agrees with the types"

114

Q. Are Guarded and Transient "equally" type-sound?

Type Soundness (TS) is the standard property for typed languages
"typed code agrees with the types"

Both Guarded and Transient satisfy TS theorems ...

115

Q. Are Guarded and Transient "equally" type-sound?

Type Soundness (TS) is the standard property for typed languages
"typed code agrees with the types"

Both Guarded and Transient satisfy TS theorems ...

... but our survey says they're different

. / / //- -~ //- -~ //' -~
Lo o [o o [e Lo o [o e D
| | | | | |

N N

\/Guarded XTransient

116

Q. Are Guarded and Transient "equally" type-sound?

Type Soundness (TS) is the standard property for typed languages
"typed code agrees with the types"

nums : Array(Num) = arr
nums[0]

Both Guarded and Transient satisfy TS theorems ...

... but our survey says they're different

L. o /[o o /[o . L. o [o . . .
| | | | | |
N SN

\/Guarded XTransient (G says) Error: line 2

(T says) Error: line 3

(E says) A

117

From TS to CM OOPSLA' 19 In Submission'22

Both Guarded and Transient satisfy type soundness (TS)
Only Guarded satisfies complete monitoring (CM)

118

From TS to CM OOPSLA' 19 In Submission'22

Both Guarded and Transient satisfy type soundness (TS)
Only Guarded satisfies complete monitoring (CM)

nums : Array(Num) = arr

119

From TS to CM OOPSLA' 19 In Submission'22

Both Guarded and Transient satisfy type soundness (TS)
Only Guarded satisfies complete monitoring (CM)

nums : Array(Num) = arr

|

G Error: line 2

T IlAII

120

From TS to CM

OOPSLA"19

In Submission'22

Both Guarded and Transient satisfy type soundness (TS)
Only Guarded satisfies complete monitoring (CM)

N

nums : Array(Num) = arr

|

G Error: line 2

T IIAII

Interface

121

From TS to CM

OOPSLA"19

In Submission'22

Both Guarded and Transient satisfy type soundness (TS)
Only Guarded satisfies complete monitoring (CM)

| T>~— |

nums : Array(Num) = arr

|

G Error: line 2

T IIAII

~y v

122

From TS to CM OOPSLA' 19 In Submission'22

Both Guarded and Transient satisfy type soundness (TS)
Only Guarded satisfies complete monitoring (CM)

nums : Array(Num) = arr \ /

l Q. Do types protect the derived channel?

G Error: line 2

T IIAII

123

From TS to CM OOPSLA' 19 In Submission'22

Both Guarded and Transient satisfy type soundness (TS)
Only Guarded satisfies complete monitoring (CM)

nums : Array(Num) = arr \ /

l Q. Do types protect the derived channel?

Guarded (CM+TS): Yes
G | Error:line 2 types made the channel

Transient (TS): No
channel is untyped to untyped

T IIAII

124

Applications

"\ Typed Racket P Reticulated Python

125

Applications

"\ Typed Racket P Reticulated Python

Q. Are Guarded and Transient types equally strong?

126

Applications

"\ Typed Racket P Reticulated Python

Q. Are Guarded and Transient types equally strong?
|

No!

127

Applications

"\ Typed Racket P Reticulated Python

Q. Are Guarded and Transient types equally strong?
|

No!

Challenge: Can the two interoperate?
|

128

Applications

"\ Typed Racket P Reticulated Python

Q. Are Guarded and Transient types equally strong?
|

No!

Challenge: Can the two interoperate?
|
Yes, Deep+Shallow Racket

129

g@JSD @ﬁJs'ﬂﬂ-@]

Foundations for Gradual Languages

— [

People

Performance A Proofs

JS

Q@Mmeﬁgﬁgﬂm

130

Foundations for Gradual Languages

— [

People

Performance A Proofs

“ s
GriD

m

o

]

Research Contributions: o
» Characterizing Designs
» Directing Improvements
» Inspiring New Languages @ﬁ

131

Ongoing Work

People

Performance A Proofs

132

Ongoing Work

Static Python at Instagram &2

Few types, but fast performance
Gradual soundness: type guarantees vs. ease-of-use

People

Performance A Proofs

133

Ongoing Work

Static Python &2
Gradual Soundness

Rational Programmer

A method for PL pragmatices
Humans out-of-the-loop

People

Performance A Proofs

134

Ongoing Work

Static Python &2
Gradual Soundness Directly measure pragmatics

Rational Programmer

Human Factors for Formal Methods:

Language levels for Alloy
LTL misconceptions (next slide)

People

Performance A Proofs

135

LTL Misconceptions

Linear Temporal Logic
used in: verification, synthesis, and robot planning

136

LTL Misconceptions

Linear Temporal Logic
used in: verification, synthesis, and robot planning

Is Green eventually on?

137

LTL Misconceptions

Linear Temporal Logic
used in: verification, synthesis, and robot planning

Is Green eventually on?

True

138

LTL Misconceptions

Linear Temporal Logic
used in: verification, synthesis, and robot planning

Is Green eventually on?

True

Q. In what ways is LTL tricky, and what can we do about it?
Studies with researchers & students

139

LTL Misconceptions

Linear Temporal Logic
used in: verification, synthesis, and robot planning

Is Green eventually on?

True

Q. In what ways is LTL tricky, and what can we do about it?
Studies with researchers & students

Farly outcome: Better syntax for Alloy 6

140

Ongoing Work

Static Python &2 Rational Programmer Human Factors for FM
Gradual Soundness Directly measure pragmatics Alloy and LTL
People

Performance A Proofs

141

Future Work

142

Future Work

Typed + Untyped is a multi-language problem

» 2 similar languages

» higher-order interoperability

» strong vs. weak invariants

143

Future Work

Multi-language systems are everywhere!

144

Future Work
Multi-language systems are everywhere!
J- [
Solvers
S,

Datasets
Java R
FFIS

145

Future Work

Multi-language systems are everywhere!

7 e (el-ICh

Solvers Datasets Gradual Borrowing?

=
= JS %

FFIs

>

Gradual Security?

146

Future Work

Multi-language systems are everywhere!

7 e (el-ICh

Solvers Datasets Gradual Borrowing?

=
= JS %

FFIs

>

Gradual Security?
All MLS need:

» Expressive Boundaries

» Correct & Fast Validation A PPP

Balanced Foundation

147

148

People »
Behavior of Gradual Types)
Human Factors for Formal Methods > (@ |®
Performance o
Measuring Costs at Scale Smm S - /
Proofs
. Q’@ G ..-u 0 ﬂj..,m .9 = Fan [
Comparing Type Guarantees & == o 5
W-@CQW,QE IS "jd @'ﬁm@
~[aad] [8 -

Methods for multi-language systems

S

—lLls

149

150

Teaching Alloy

Alloy is a modeling language that comes with two styles:

Predicate

all a, b, c: univ |
a->b in f and b->c in f
implies a->c in f

Relational

f.f in f

(f is transitive)

Problem: errors assume you know both styles!

Q. Can language levels give a smooth introduction?

Predicate > Relational

>

LTL / Alloy 6

151

Informal Landscape

Erasure

RDL[52]"

ActionScript 3.0[50]" Common Lisp[63]" mypyi Flow[14]1 Hacki Pyrei Pytypei
Strongtalk[11]"

TypeScript[7]i Typed Clojure[9]" Typed Lua[41]" }

Natural
4 N\
Gradualtalk[2] :
Grift[40],
TPD[81]"

\Typed Racket[70]“/

Transient Concrete e ‘S bet' RN
Grace[55] C# Dart?2 - 0; e. *t[54] \
Pallene[35]" Nom[46] . \ rongo r:;’ 3]
Reticulated[77]}, SafeTS[51] TS*[65]] ~-_ .-
': Pyret) \’: " Static Python [4] ‘ ‘:)

- .
e - . - — e-e-————

\
|

/

152

Deep + Shallow
Benchmark Best w/D+S Benchmark Best w/D+S
forth 12% zordoz 47%
fsm 38% Inm 66%
fsmoo 31% suffixtree 48%
mbta 19% kcfa 55%
morsecode 25% snake 46%
zombie 6% take5 36%
dungeon 31% acquire 64%
jpeg 38% tetris 62%

Percent of gradual points that run fastest with a Deep+Shallow mix

153

Deep or Shallow (1/2)

mbta-7.8.0.5, mbta-transient 16 configurations ipeg-7.8.0.5, jpeg-transient 32 configurations
1m%] 1 | 1 w% I | I | | | | |
)] 4 | | | 1 | | | |
50 1 | / | 50 | / | 1 | | (B
T T T T T T T T T T T T T
/ -] | | AR I [T T T B
I 1 1 | I] ! ! J | | | 1 | |
o i : I i 0 I : Sl e : I i 'l i
1 1.91x 1 2 23.18x
Hmbta-7.8.0.5 MEmbta-transient Wjpeg-7.8.0.5 Mjpeg-transient
morsecode-7.8.0.5, morsecode-transient 16 configurations zordoz-7.8.0.5, zordoz-transient 32 configurations
100% — 100%
_—+ |] :
| | | |
o, 1 50 — ‘
I i i i i :
o 3 s s s 0 J i
1 2 2.77x 1 2 2.75x
M morsecode-7.8.0.5 M morsecode-transient Mzordoz-7.8.0.5 Mzordoz-transient
bie-7.8.0.5, zc 1 t 16 configurations Inm-7.8.0.5, Inm-transient 64 configurations
1m% | LI) I I U | 1 W% /_J
1 | (I} I I U | [}
| [) I | I]
50 T ——— 50 '
: L1l / 1 [| (O | 1
LT 1 11] 1 [) U I A | [
0 ! d S 4 3 S 0 . -
1 2 46.23x 1 1.23x
Mzombie-7.8.0.5 [Mzombie-transient Binm-7.8.0.5 M@Inm-transient

32 configurations

suffixtree-7.8.0.5, suffixtree-transient
100%

64 configurations

00% 177 1 T [/ T T

Hn e LI B |) I I | | (I |

ol HH 5ot A

01“1‘ :1:““ o= — ! : i —
1 2 15273.83x 1 2 31.38x

Mdungeon-7.8.0.5

B dungeon-transient

M suffixtree-7.8.0.5

W suffixtree-transient

154

Deep or Shallow (2/2)

kcfa-7.8.0.5, kefa-transient 128 configurations tetris-7.8.0.5, tetris-transient 512 configurations
100% 7 - -] 100% — ; ——
/] | | [I — 1
50 — ! 50111 : S
| | | | : : : LV 1] I |
I 1 | | 1 T 1 1 |] 1 I | |
0 : . i L i O e i I i I i | 3 i
1 2 4.33x 1 2 12.75x
BMkcfa-7.8.0.5 [Mkcfa-transient Mtetris-7.8.0.5 Mtetris-transient
ke-7.8.0.5, sr 1 t 256 configurations synth-7.8.0.5, synth-transient 1,024 configurations
100% 1]] | 100%]] / |] [
| | | T / | | | | | [I |
50 — / ; 504ttt ; M
I |] |) I I | | | 1
| | | | I I J [|
0 . . i 0 / T I P S |
1 2 12.02x 1 2 47.34x
Wsnake-7.8.0.5 @ snake-transient Wsynth-7.8.0.5 @ synth-transient
take5-7.8.0.5, take5-transient 256 configurations gregor-7.8.0.5, gregor-t i 8,192 configurations
100% | | | 1 1 | | | 100% //
| | | I | | | 1 |
501111 : e 50 :
I 1l | 1 1 I I [] |
| I | | ' LI B | |
o i L i 4 I IO) O i
1 2 44 06x 1 1.72x
Mtake5-7.8.0.5 [MtakeS-transient BMgregor-7.8.0.5 Mgregor-transient
acq 7.8.0.5, acquire-ti ient 512 configurations ?30?-7.8.0.5, quadT-transient 16,384 configurations
! RN T L
50 ; 50} ———1— : RN
I | | | | | 1
__,___/-”'/ | /x_./ / 1 I [
o 3 ' : c I et 4 4 s 3. el
1 2 4.22x 1 2 25.75x

Macquire-7.8.0.5

M acquire-transient

M quadT-7.8.0.5

B quadT-transient

155

L & e ® 0000000 .]
Prior Work

Guarded Transient Erasure
type soundness
dyn. gradual guarantee

blame theorem

156

L & e ® 0000000 .]
Prior Work

Guarded Transient Erasure

type soundness v V4 X
dyn. gradual guarantee \/ \/ \/

blame theorem \/ \/ \/

Standard tools do not tell the difference!

157

A Toolbox to Measure Type Guarantees

Guarded Transient

158

A Toolbox to Measure Type Guarantees

Guarded Transient

complete monitoring \/ X

CM: Do types protect all channels?

159

A Toolbox to Measure Type Guarantees

Guarded Transient
complete monitoring \/ X
blame soundness \/ X
blame completeness \/ X

CM: Do types protect all channels?
BS: Do errors point to only relevant channels?

BC: Do errors point to all relevant channels?

160

A Toolbox to Measure Type Guarantees

Guarded C F Transient A E
type soundness
complete monitoring
blame soundness
blame completeness

error preorder

le1l

A Toolbox to Measure Type Guarantees

Guarded C F Transient A E
type soundness \/ \/ \/ y \/ X
complete monitoring \/ \/ X X X X
blame soundness \/ \/ \/ h \/ 0
blame completeness \/ \/ \/ X \/ X
error preorder Guarded < C < F < Transient = A< E

162

. e ¢ _ .
Example: Clickable Plot

Type Soundness cannot distinguish Guarded and Transient

@ | | | | 1 1.Plot data

2. Listen for a click

3. Draw an image

163

. e ¢ _ .
Example: Clickable Plot

Type Soundness cannot distinguish Guarded and Transient

@ | | | | 1 1.Plot data

2. Listen for a click

3. Draw an image

164

Example: Clickable Plot

Type Soundness cannot distinguish Guarded and Transient

@ | | | | 1 1.Plot data

| 2. Listen for a click
¢ 7] .
oo il 3.Draw an image

165

. e ¢ _ .
Example: Clickable Plot

Type Soundness cannot distinguish Guarded and Transient

166

. e ¢ _ .
Example: Clickable Plot

Type Soundness cannot distinguish Guarded and Transient

type ClickPlot
init
Num,Num -> Image

mouseHandler

MouseEvt -> Void

show
-> Void

167

. % e ¢ _ . |
Example: Clickable Plot

Type Soundness cannot distinguish Guarded and Transient

type ClickPlot
init
Num,Num -> Image

mouseHandler

MouseEvt -> Void

show
-> Void

168

. e ¢ _ .
Example: Clickable Plot

Type Soundness cannot distinguish Guarded and Transient

type ClickPlot
init
Num,Num -> Image

Guarded: error at the type boundary
(coordinate pair vs. mouse event)

Transient: error within the client
the real issue is off the stack!

169

. e ¢ _ .
Example: Clickable Plot

Type Soundness cannot distinguish Guarded and Transient

Y i

’__---------~~

- -
" ~§
-

Q. Do types protect the callback channel?

Guarded: Yes
types made the channel

Transient: No
the channel is untyped to untyped

170

171

