ON PERFORMANCE






, This Talk is NOT About

» Horrific performance overhead
| » The death of gradual typing

» Impending doom



I "[Typed Racket is] Very nice to work with!"

"The static typechecking is invaluable to me"

"Typed Racket has improved [my Racket prototype]

considerably."



"What | find appealing about TR's gradual typing is the idea

that, like the contract system, there's not One Right Way to
I use it. For instance, I've been using TR simply as a way ot
creating better untyped code, because the typechecker

catches subtle reasoning errors."




o0 0 NGraduaITyping Across the X

€« > C DO www.ccs.neu.edu/home/types/gtp.github.io/index.html

rf-:{_ Gradual Typing Across the Spectrum

7 . . SOuﬂCdﬂEESS COUrses ) relb?JOﬂﬂoSvel
7 - 0 d e X
contracts 3 N programs ,,,,,,
apphcatxon s/OInanyStatlcally WOI’k erro_eras:s O cm reasonable
-l-\ A A H =V o 'Y 2using 2

—Ana—&

. . gl About
We are a coalition of researchers seeking to discover the unifying principles underlying the design of gradual type
systems through reproducability studies, implementations of type systems and tools, plus evaluations covering both

Research

the Feasibility of gradual typing as well as its long-term value to software engineers. People

Contact

Research Highlights News and Events
Just-in-Time Static Type Checking for Dynamic Languages by Brianna Ren and Jeffrey S. Foster to appear at Upcoming Pl meeting at ECOOP 2016.
PLDI 2016
Upcoming Pl meeting at Northeastern University,

Occurrence Typing Modulo Theories by Andrew Kent, David Kempe |l, and Sam Tobin-Hochstadt to appear at 2016-05-17. [Schedule]
PLDI 2016

Asumu Takikawa successfully defended his dissertation.




#lang scribble/html
@require["templates.rkt"]

@page[4]{

@div[class: "col-md-12"1{
@h3[class: "red-back-big"]{Get Involved}
@div[class: "col-md-12 card"]{
@div[class: "bio"1{
@p{ We are actively seeking talented students and researchers at all levels.
Stop by one of @al[href: "people.html"]{our} offices if you're in town,
or visit our websites to learn how to apply for your Masters, Ph.D, or pos
}
@admissions|[" (
(,brown-university "https://www.brown.edu/academics/gradschool/apply")
(,indiana-university "http://www.soic.indiana.edu/graduate/admissions/how-
(,northeastern-university "http://www.ccis.northeastern.edu/academics/phd/
(,university-of-maryland "https://gradschool.umd.edu/admissions"))]1}}}

@div[class: "col-md-12"]1{
@h3[class: "red-back-big"]{General Information}
@faql
@qal["For questions or comments about this website"]{@p{
Email @tt{benjaminlgreenman} at @tt{gmail.com}.}}]}}




#lang typed/racket

(define-type Year Natural)

(define-type Degree (U 'phd 'me 'bse 'diplom 'ms 'msc 'postdoc 'bs 'bsc))
(define-type Degreex (Listof (List Degree University Year)))

(define-type Email email)

(define-type Positionx (Listof (List University Year)))

(struct person (
[short-name : String]
[full-name : String]
[gender : Symbol]
[title : String]
[mailto : Emaill
[href : URL]
[degreex : Degreex]

) #:transparent )

(struct student person ([university : University]) #:transparent)
(struct pi person ([positionx : Positionx]) #:transparent)

(struct university (
[name : String]
[href : URL]

) #:transparent )




10 modules
6 untyped 4 typed

® "building web pages" "representing data"




Typed Racket is:

Sound

All runtime type
errors are caught
at a boundary
between typed
and untyped code



Typed Racket is:

sound and  EXpressive

All runtime type Seamless
errors are caught integration with
at a boundary untyped code

between typed
and untyped code



Typed Racket is:

sound and  EXpressive

All runtime type Seamless
errors are caught integration with
at a boundary untyped code

between typed
and untyped code

"The static typechecking "I've been using TR [for]
is invaluable to me’ creating better *untyped*
code”



Performance?



"From 1 ms to 12 seconds ... | feel like | got a
bit burned here”

"The end product appears to be a 50% performance hybrid
due to boundary contracts”



"So far Typed Quad is running about 10x slower than regular

...it seems that whatever I'm gaining [from the TR optimizer]

is more than offset by other factors.

"FWIW, as a practitioner, there are costs associated |
with using TR, therefore it has to provide equivalent

performance improvements to be worthwhile at all.

"‘equally good' runtime perf = net loss overall = | can't justity using it."



1 Research (uestions

I How to leverage case How to evaluate the
studies to systematically performance of a
improve performance? gradual type system?

5 Lessons — 2 Design Criteria — 1 Design



"About twice as slow on common queries"”

"From Tms to 12 seconds ...

"... a 50% performance hybrid ..."

"... about 10x slower than regular ...






Lesson 1: the problem is overhead introduced by gradual typing |



I "About twice as slow on common queries"”

I . "From Tms to 12 seconds ... "

"... a 50% performance hybrid ..."

. "... about 10x slower than regular ..."



Lesson 2: users have diverse performance requirements



3x is NOT "Deliverable"
10x is NOT "Usable"



Lesson 2: users have diverse performance requirements



I "About twice as slow on common queries”

I . "From 1ms to 12 seconds ... "

. "... about 10x slower than regular ..."



Lesson 3: developers may tolerate slowdown between releases






Lesson 1: problem = overhead
Lesson 2: diverse user requirements

Lesson 3: development vs. production

Criteria 1: evaluation must show a range of overhead values



Lesson 4: we don't know why programmers add types






- High security?
- Stable API?

- Tightly coupled?

- Easy to annotate?

Gradual typing promises to support ANY use-case



Lesson 5: fully-typed is not the goal



000 NGraduaI Typing Across the X

€« C [ www.ccs.neu.edu/home/types/gtp.github.io/index.html Qe

#lang scribble/html
@require["templates.rkt"]

@page[4]{

. ' YPin
. application |
- R

@div[class: "col-md-12"]{
@h3[class: "red-back-big"]{Get Involved}
@div[class: "col-md-12 card"]{
@div([class: "bio"]{
@p{ We are actively seeking talented students and researchers at all levels.
Stop by one of @al[href: "people.html"]{our} offices if you're in town,
or visit our websites to learn how to apply for your Masters, Ph.D, or pos
}
@admissions|[" (
(,brown-university "https://www.brown.edu/academics/gradschool/apply")
(,indiana-university "http://www.soic.indiana.edu/graduate/admissions/how-
(,northeastern-university "http://www.ccis.northeastern.edu/academics/phd/
(,university-of-maryland "https://gradschool.umd.edu/admissions"))]1}}}

We are a CO
systems thro
the Feasibili

Just-in-Time Stat
PLDI 2016

Occurrence Typi
PLDI 2016

@div([class: "col-md-12"]{
@h3[class: "red-back-big"]{General Information}
@faql
@gal["For questions or comments about this website"]{@p{
Email @tt{benjaminlgreenman} at @tt{gmail.com}.}}1}}

Asumu Takikawa






—a P = =

. l"-“v‘ vii" ‘F ‘:\., :‘v:_f : .45»-' 41
NI e
11\( /’ NS

7
o

b AW\

7 i
AN % LA
v} VoR

A J k‘;! A\
@ ’,‘*\\ ,wé
] \
Sy Ny USeR

=

o
4
= O i

-
P e

239 modules
123 typed 116 untyped

"new code" "legacy code”




W W,

RO s
| By

D i N
X AT
Q-

- " ‘ ‘ \‘- R - *!']' '1/“. ‘

O-a— 2o ®

» N 0A \
NAN
oo

Y

/ ‘\t«‘.z;-.‘;e—
Al\/ ‘
Zal
7 ,

/

”1-
4 N V72
b\ SN/

239 modules
123 typed 116 untyped

"new code" "legacy code"




Lesson 4: cannot predict use-cases

Lesson 5: fully-typed is not the goal

Criteria 2: evaluation must consider all possible ways

of gradually using types in a program



configurations

.
1

B 45
B <1 20

N <10
R I O O B



|

Criteria 1: show a range of overhead values

Criteria 2: consider all possible ways of using types in a program

-’. - - - - - -
A
T A



configurations

.
1

B 45
B <1 20

N <10
R I O O B



% Configs.

I 100%

1 20x

Overhead (vs. untyped)



% Configs.

I 100%

I 75

50

25

1 20x

Overhead (vs. untyped)



% Configs.

I 100%

75
50

25

1 1.2 14 2 4 6 8 10 12 14 20x

Overhead (vs. untyped)



3x is NOT "Deliverable"
10x is NOT "Usable"



% Configs.

I 100%

75
50

25

1 1.2 14 2 4 6 8 10 12 14 20x

Overhead (vs. untyped)



% Configs.

I 100%

I 75

50 "useful" "curious”
25
0 ° A
1 12 14 2 4 6 8 10 12 14 20x

Overhead (vs. untyped)



% Configs.

I 100%

I 75

50 "useful" "curious”

25

01 1T2 1.4 2 . 4 6 - 8 10 12 14 20x

GC ~1984 Overhead (vs. untyped)



% Configs.

I 100%

75
50

25

1 1.2 14 2 4 6 8 10 12 14 20x

Overhead (vs. untyped)



% Configs.

I 100%

75

0- |
1 1.2 14 2 4 6 8 10 12 14 20x

Overhead (vs. untyped)



% Configs.

I 100%

75

504—_——!__——_!

25

0 |
1 1.2 14 2 4 6 8 10 12 14 20x

Overhead (vs. untyped)



% Configs.

I 100%

75

25

0 |
1 1.2 14 2 4 6 8 10 12 14 20x

Overhead (vs. untyped)



% Configs.

100%

75

25

8 10 12

Overhead (vs. untyped)



sieve

suffixtree

tetris

morsecode

100%

20x

]
—
X o o
S 0
=]
e
x
S
. 3
F oy
-
X o o
S [re)
=]
=
x
[ L E—
et ol S
- .
.
R \\)*\\l
\
.
[}
.
U
1
LI R
IR |
R - .
-
o o o
S B
=]
2
x
S
39

forth
100%

kcfa

zombie
100%

100%

x
S
K] 39 [ .
.
—_—— e — — e R
t
>
—.
.
l_
N L
B e = .
- [
o o o o o
re] €3 rel
n O
-
(]
—
(=3 o X o o o
Irs) [oRPN n
€35
n ~
x
S
« I .
o
£ S
- ]
O 0 o o
[T o]
=gt
o~
x
S
o _ 1« I .
\\\\\::\..\1 e ——
““—V‘w'-‘\. S ——
[}
[}
[}
\\\\\4‘.\1 Y
.
[}
— [}
[}
.
r- <,
1 I
1} TN
i e e —
[ - e ——
—_— e — b — = l e S -
H c
[ ol-———+—-———+
- 8
o o & R [ o
re} 55 re}
S
T -~

20x

0;

20x

fsmoo

take5

quadBG

zordoz

x
S
I B « R .
[
T ®
X (=] o = R o o
s F 5 ¢
2 €2
<
S
[ « [ .
(]
S
B3 o o X o o
S 15} oy [r5)
Q
S S
2 © =
3 _
[ « -H.“
{2 T A
T
NS o o NS o o
o o
o o MO o
S S
2 o=
x
S
[ « [ .
.
L
~S S S
s
Il
N
®
..
..
[}
: [\
_—_—_— 1 — — = ]
L
- .1
_ S = ~— ]
R .. Y
[]
{1 i I
R o o X o o
S © ES o
S c o
- -

20x

20x

20x



Lessons: Criteria:

problem = overhead - show range of overheads

diverse user requirements - consider all possible ways

development vs. production of using types

cannot predict use-cases

fully-typed is not the goal

Implementation:

100

[ o SR o

4



with Zeina Migeed



» Apply methodology to Reticulated
» |dentify bottlenecks (and bugs)

» Compare cast insertion strategies



Take5

FSM

\Vi
y
%
i

°
Sy

J

\“

Evolution ..

\
bl

|

V ‘\‘ .
/



Modules Classes  Fields  Functions  Args

I Takeb 3 2 10 14 30
FSM 5 2 6 17 30
Evolution 11 10 39 +50 + 450

2''= 2048 272131072  2° = 549.755.813,888



Modules Classes Fields

Takeb 3 2 10
FSM 5 2 6 |
Evolution 11 10 39

2= 2,048 272131072 2 = 549,755.813,888




from retic import List,Tuple,Void,String,Int

class Player:

self.name = name

def __init__(self, name:Int, cards:List(Tuple(Int,Int)))->Void:
I self.cards = cards

def discard(self)->Int:
def choose_correct_stack(self, stacks:List(List(Tuple(Int,Int))))->Int:

def get_index_of_closest_stack(self, cards:List(Tuple(Int,Int)), card:Tuple(Int,Int))->Int:



Can we predict performance for
exponentially many configurations
given a linear number of

measurements?



“The End"



' Weaknesses

» No absolute runtimes
| » No map from configs. to overheads

» Does not express migration paths






/\
M=
(require “population.rkt’) (define-type Population
(define (evolve pop count) (Class ....)
(if (zero? count) (provide
null (step (Population -> Population))
(evolve (step pop) (- count 1)) (create (Natural -> Population)))

(evolve (create 100) 5)



16 configurations

fsm

| éOx

100%

50 4

b — — — —

b — — — —

100%

| éOX




' Weaknesses 2

» Many ways of typing a program

| » Many ways of modularizing a program



Data from Reticulated



transient

Taked

FSM =.

50

(




FSM ™7

guarded

low overheads!

20x



Finally, it is absurd to make
elaborate security checks on
debugging runs, when no trust
is put in the results, and then
remove them in production
runs, when an erroneous result
could be expensive or
disastrous.

What would we think of a sailing
enthusiast who wears his
lifejacket when training on dry
land, but takes it off as soon as
he goes to sea?

- C.A.R. Hoare

On the other hand, that sailor
isn't so foolish if life vests are
extremely expensive and if he is
such an excellent swimmer that
the chance of needing one is
quite small compared with the
other risks he is taking.

- Donald Knuth



3x is NOT "Deliverable"
10x is NOT "Usable"



Takikawa et. al 2016

4.2 Reading the Figures

Our method defines the number of L-step N/M-usable configura-
tions as the key metric for measuring the quality of a gradual type
system. For this experiment we have chosen values of 3x and 10x
for N and M, respectively, and allow up to 2 additional type con-
version steps. These values are rather liberal,” but serve to ground
our discussion.

"We would expect that most production contexts would not tolerate any-
thing higher than 2x, if that much.



Misc. Quotes from Typed Racket users



But user time s limited too. In my case, I'm
trying to decide whether TR is a cost-effective
upgrade for my Racket program

The end-product appears to be a 50%-
performance hybrid due to boundary contracts,
but ameliorated runtime-wise by utilizing the
typed/racket/no-check language after it's all
working in type checked mode. JGC



needs to be at least 10x faster. This was the original impetus for
trying TR — improving performance by avoiding contracts +
getting type-optimized operations. But it seems that whatever
I'm gaining is more than offset by other factors.

MB

I use typed racket in production
too, and I also heavily use

Scribble on the same source
codebase. WG

Unfortunately, the
prototype worked so well

that I'm using it now for
real JGC



For me as a programmer, Typed Racket is a different language
from Racket, because a valid program in one language is not a valid
program in the other. Whether or not Typed Racket's hash ends up
calling plain Racket's hash is an implementation detail I don't care
about, except perhaps when dealing with interfacing modules in the

two languages.

From this point of view, Typed Racket is to a large degree an
undocumented language. Much of the documentation simply
points to the one of plain Racket, which doesn't fully apply.
Moreover, there is no simple set of rules that would let me deduce

Typed Racket's API (which includes types) from plain Racket's API.

KH

https://groups.google.com/forum/#!searchin/racket-users/typed$ 20racket/racket-
users/-RI1p1Z1ZRE/u2e6ECZ1 Lc]



the recurring tasks that sends me looking for documentation is
instantiating polymorphic functions into appropriate type-specific
forms using " (inst proc args ...) .



