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contracts at boundaries

- can be expensive: ->, HashTable, ...

shape checks throughout typed code
- often cheap, but add up!

no runtime checks
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Untyped Codebase ... with a few Types

(-> String)|| Guarantee: a function that returns strings
(-> String)|| Guarantee: afunction
(-> String)|| Guarantee: anyvalue

only

deep

is reliable everywhere || + blame
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Shallow Typed Racket

"same types, but weaker"

fast boundaries ~~ coming soon ~~
+ more expressive RFC typed- racket/pu11/952
+ simple PR typed-racket/pull/948

- slow @ fully-typed
- temporary
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Better base types, fewer shape checks

Problem: every function call might need a shape check

(:

(define (says-moo? lst)

says-moo? (-> (Listof Symbol)
Boolean))

(cond Old Solution: trust specific IDs
(null? 1st) | No check
#false]
[(eq? 'moo| (car 1st))| Yescheck| New Solution: type-based, compositional
#true]
[else

(says-moo? | (cdr lst)H$M)CheCkH
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More to Come

++ Well-Typed Interactions

- D/S Cooperation
++ Faster Shallow / P

- Even Faster Shallow
- Macro Reuse
- Occurrence Type Boundaries

e untyped —
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62 Quick Start Performance Warning: Indexing the elements of arrays created in untyped
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@ 6Amays [+
N C Gh https://docs.racket-lang.org/math/array.html
v.7.4
...search manuals...
) Racket

top ¢prev up next- 6 Arrays
> Math Library by Neil Toronto <ntoronto@racket-lang.org>
v 6

Performance Warning: Indexing the elements of arrays created in untyped
Racket is currently 25-50 times slower than doing the same in Typed Racket, due
to the overhead of checking higher-order contracts. We are working on it.

6.1 Quick Start
6.2 Definitions
6.3 Broadcasting

6.4 Slicin
¢ For now, if you need speed, use the typed/racket language.

6.5 Nonstrict Arrays
T

Not easy, but there's hope: github.com/racket/math/issues/75
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