Shallow and Optional Types

for Typed Racket

Ben Greenman

RacketCon 2022

in

"\ Racket 8.7

Typed Racket

Typed Racket

#lang typed/racket

#lang typed/racket/no-check

Typed Racket

VS mmeeceee- » #lang typed/racket/shallow

#lang typed/racket .

T==~->l#lang typed/racket/optional

#lang typed/racket/no-check

Typed Racket

e T » #lang typed/racket/shallow

#lang typed/racket .

T==~->l#lang typed/racket/optional

#lang typed/racket/no-check

1. Two New Languages

Typed Racket

VS mmeeceee- » #lang typed/racket/shallow

#lang typed/racket .

T==~->l#lang typed/racket/optional

#lang typed/racket/no-check

Typed Racket

-

#lang typed/racket .

-=» #lang typed/racket/shallow

#lang typed/racket/no-check

"“~-a'#lang typed/racket/optional

Typed Racket

#lang typed/racket

-

#lang typed/racket/shallow

"“~-¢'#lang typed/racket/optional

Typed Racket

-

) T e e »#lang typed/racket/shallow
#lang typed/racket .

TSeeos #lang typed/racket/optional

Typed Racket

VS mmeeceee- » #lang typed/racket/shallow

#lang typed/racket .

T==~->l#lang typed/racket/optional

#lang typed/racket/no-check

Typed Racket

#lang typed/racket

e T » #lang typed/racket/shallow

T==~->l#lang typed/racket/optional

#lang typed/racket/no-check

3. Better Performance at Type Boundaries

Typed Racket

#lang typed/racket

#lang typed/racket/deep

e T » #lang typed/racket/shallow

T==~->l#lang typed/racket/optional

3. Better Performance at Type Boundaries

#lang typed/racket

#lang typed/racket/deep

Typed Racket
N —— » #lang typed/racket/shallow

T==~->l#lang typed/racket/optional

3. Better Performance at Type Boundaries

deep

shallow

optional

Check everything
Check top-level shapes

Check nothing

Typed

Racket

#lang typed/racket

#lang typed/racket/deep

T -ﬁ #lang typed/racket/shallow

T==~->l#lang typed/racket/optional

#lang typed/racket

#lang typed/racket/deep

Typed Racket

e T » #lang typed/racket/shallow

T==~->l#lang typed/racket/optional

[1. Two New Languages]

[2. Static Types = Same as Before

3. Better Performance at Type Boundaries

e/

Typed Racket

[1. Two New Languages]

[2. Static Types = Same as Before

P —

3. Better Performance at Type Boundaries

e/

deep

Typed Racket

shallow

optional

[1. Two New Languages]

[2. Static Types = Same as Before

P —

3. Better Performance at Type Boundaries

e/

Strong Guarantees,
High Overhead

deep

Typed Racket

shallow

optional

[1. Two New Languages]

[2. Static Types = Same as Before

P —

3. Better Performance at Type Boundaries

e/

Weak Guarantees,
Low Overhead

Example 1D

Example 1D

Example 1D

Example 1D

deep

Types

Example 1D

deep

Types

Example 1D

Untyped Code

(says-moo? '"(A B moo CDEF G))

deep

Types

Example 1D

(Listof Symbol)

Untyped Code

(says-moo? '"(A B moo CDEF G))

deep

Types

Example 1D

(Listof Symbol)

Guarantee: list of symbols
Cost: check the entire list

Untyped Code

(says-moo? '"(A B moo CDEF G))

deep

Types

Example 1D

(Listof Symbol)

Guarantee: list of symbols

Cost: check the entire list

Untyped Code

(says-moo? '"(A B moo CDEF G))

deep]|:

contracts at boundaries

shallow| Types

Example 1S

(: says-moo? (-> (Listof Symbol)
Boolean))
(define (says-moo? 1st)
(cond
[(null? 1st)
#false]
[(eq? 'moo (car 1lst))
#true]
[else
(says-moo? (cdr 1st))1))

Untyped Code

(says-moo? '"(A B moo CDEF G))

shallow| Types

Example 1S

(: says-moo? (->|(Listof Symbol)

Boolean))

(define (says-moo? 1st)

(cond

[(null? 1st)

#false]
[(eq? 'moo
#true]
[else

(car 1lst))

(says-moo? (cdr 1st))1))

Untyped Code

(says-moo? '"(A B moo CDEF G))

shallow

Types

Example 1S

(: says-moo? (->|(Listof Symbol)

Boolean))

(define (says-moo? 1st)
(cond
[(null? 1st)
#false]

[(eq? 'moo

#true]
[else
(says-moo? (cdr 1st))1))

(car 1lst))

Guarantee: alist
Cost: list?

Untyped Code

(says-moo? '"(A B moo CDEF G))

shallow| Types

Example 1S

(: says-moo? (->

(Listof Symbol)

Boolean))

(define (says-moo? 1st)

(cond

[(null? 1st)

#false]
[(eq? 'moo
#true]
[else

(says-moo? (cdr 1st))1))

Guarantee: alist
Cost: list?

Untyped Code

(car 1lst))

Guarantee:
Cost:

moo? '(A B moo CDE F G))

a symbol

symbol?

shallow| Types

Example 1S

(: says-moo? (->

(Listof Symbol)

Boolean))

(define (says-moo? 1st)

(cond

[(null? 1st)

#false]
[(eq? 'moo
#true]
[else

(says-moo? (cdr 1st))1))

Guarantee:
Cost:

a list

list?

Untyped Code

(car 1lst))

Guarantee:
Cost:

a symbol

symbol?

moo? '(A B moo CDE F G))

shallow

. shape checks throughout typed code

optional

Types

Example 10

Untyped Code

(says-moo? '"(A B moo CDEF G))

optional

Types

Example 10

(Listof Symbol)

Guarantee: any value

Cost: free

Untyped Code

(says-moo? '"(A B moo CDEF G))

optional

Types

Example 10

(Listof Symbol)

Guarantee: any value
Cost: free

Untyped Code

(says-moo? '"(A B moo CDEF G))

optional

: no runtime checks

Perf. Overhead

deep

shallow

optional

contracts at boundaries

shape checks throughout typed code

no runtime checks

Perf. Overhead

deep

shallow

optional

contracts at boundaries

- can be expensive: ->, HashTable, ...

shape checks throughout typed code

no runtime checks

Perf. Overhead

deep

shallow

optional

contracts at boundaries

- can be expensive: ->, HashTable, ...

shape checks throughout typed code
- often cheap, but add up!

no runtime checks

Untyped Codebase

Example 2

Example 2

Untyped Codebase ... with a few Types

(-> String)

(-> String)

(-> String)

Example 2

Untyped Codebase ... with a few Types

(-> String)|| Guarantee: a function that returns strings

(-> String)

(-> String)

Example 2

Untyped Codebase ... with a few Types

(-> String)|| Guarantee: a function that returns strings

(-> String) || Guarantee: afunction

(-> String)

Example 2

Untyped Codebase ... with a few Types

(-> String)|| Guarantee: a function that returns strings

(-> String) || Guarantee: afunction

(-> String)|| Guarantee: anyvalue

Example 2

Untyped Codebase ... with a few Types

(-> String)|| Guarantee: a function that returns strings
(-> String)|| Guarantee: afunction
(-> String)|| Guarantee: anyvalue

only

deep

is reliable everywhere || + blame

Strong Guarantees,
High Overhead

Typed Racket

deep

shallow

optional

Weak Guarantees,
Low Overhead

in
"‘ Racket 8.7

in Announced in 2020 ...

"\ Racket 8.7

Shallow Typed Racket

"same types, but weaker"

fast boundaries ~~ coming soon ~~
+ more expressive RFC typed- racket/pu11/952
+ simple PR typed-racket/pull/948

- slow @ fully-typed
- temporary

in

"‘ Racket 8.7

What took so long?

1. Life Stuff

1. Life Stuff

2. Well-Typed Interactions

deep

shallow

untyped

2. Well-Typed Interactions

> shallow <

A

. .

|
|

> untyped <

elsle

2. Well-Typed Interactions

D —

Easy to switch

—

> shallow

A

deep

|

optional

> untyped

|

elsle

2. Well-Typed Interactions

D —

Easy to switch

—

> shallow

A

deep

require/typed

|

optional

> untyped

|

elsle

2. Well-Typed Interactions

D —

Easy to switch

—

> shallow

require/typed

A l
deep optional
> untyped
PLDI '22 * macros, define-typed/untyped-id, ...

3. Faster Shallow

Better base types, fewer shape checks

3. Faster Shallow

Better base types, fewer shape checks

Problem: every function call might need a shape check

3. Faster Shallow

Better base types, fewer shape checks

Problem: every function call might need a shape check

(: says-moo? (-> (Listof Symbol)
Boolean))
(define (says-moo? lst)
(cond
[(null? 1st)
#false]
[(eq? 'moo (car lst))
#true]
[else
(says-moo? (cdr 1lst))1))

3. Faster Shallow

Better base types, fewer shape checks

Problem: every function call might need a shape check

(: says-moo? (-> (Listof Symbol)
Boolean))
(define (says-moo? lst)
(cond
[(null? 1st)
#false]
[(eq? 'moo|(car 1lst))||Yes check
#true]
[else
(says-moo? (cdr 1lst))1))

3. Faster Shallow

Better base types, fewer shape checks

Problem: every function call might need a shape check

(:

says-moo? (-> (Listof Symbol)
Boolean))
(define (says-moo? 1lst)

(cond
(null? 1st) | No check
#false]

[(eq? 'moo|(car 1st)) || Yes check
#true]

[else

(says-moo? | (cdr lst)H$M)CheCkn

3. Faster Shallow

Better base types, fewer shape checks

Problem: every function call might need a shape check

(:

(define (says-moo? lst)

says-moo? (-> (Listof Symbol)
Boolean))

(cond Old Solution: trust specific IDs
(null? 1st) | No check
#false]
[(eq? 'moo| (car 1st))| Yescheck| New Solution: type-based, compositional
#true]
[else

(says-moo? | (cdr lst)H$M)CheCkH

in
"‘ Racket 8.7

++ Well-Typed Interactions
++ Faster Shallow

> shallow]

A

l I

B v) —

— shallow —

in

"‘ Racket 8.7

More to Come

++ Well-Typed Interactions

- D/S Cooperation
++ Faster Shallow / P

- Even Faster Shallow
- Macro Reuse
- Occurrence Type Boundaries

e untyped —

A
I l
A 4
]
©
+
Lotd &
o <€
>
Q
—

Faster Math?

Faster Math?

Untyped slowdown: 25x to 50x

@ sAmays [+
N C Gh https://docs.racket-lang.org/math/array.html
v.7.4
..search manuals...
) Racket
top ¢prev up next- 6 Arrays
> Math Library by Neil Toronto <ntoronto@racket-lang.org>
v 6 . . .
62 Quick Start Performance Warning: Indexing the elements of arrays created in untyped
6'2 Definitions Racket is currently 25-50 times slower than doing the same in Typed Racket, due
6.3 Broadcasting to the overhead of checking higher-order contracts. We are working on it.
6.4 Slicing

6.5 Nonstrict Arrays For now, if you need speed, use the typed/racket language.
"

Faster Math?

Untyped slowdown: 25x to 50x

@ 6Amays [+
N C Gh https://docs.racket-lang.org/math/array.html
v.7.4
...search manuals...
) Racket

top ¢prev up next- 6 Arrays
> Math Library by Neil Toronto <ntoronto@racket-lang.org>
v 6

Performance Warning: Indexing the elements of arrays created in untyped
Racket is currently 25-50 times slower than doing the same in Typed Racket, due
to the overhead of checking higher-order contracts. We are working on it.

6.1 Quick Start
6.2 Definitions
6.3 Broadcasting

6.4 Slicin
¢ For now, if you need speed, use the typed/racket language.

6.5 Nonstrict Arrays
T

Not easy, but there's hope: github.com/racket/math/issues/75

in
"‘ Racket 8.7

++ Well-Typed Interactions
++ Faster Shallow

> shallow]

A

l I

B v) —

in Shallow and Optional Types
"\ Racket 8.7

for Typed Racket

++ Well-Typed Interactions

++ Faster Shallow 1. Two New Languages]
| (shation] |le——mn—— 2. Static Types = Same as Before]
3. Better Performance at Type Boundaries

N

—_— untyped —

A
l l
A 4
]
©
+
. &
o <€
>
Q
—

THE

UNIVERSITY
OF UTAH

