Rigorous Methods for Language Design

or - Don't take my word for it. Measure!

Ben Greenman

2024-10-04

Programming Languages - Why?

Programming Languages - Why?

Programming Languages - Why?

PL = key infra

First-class Functions

Type Soundness

Polymorphism

Garbage Collection

Metaprogramming

Gradual typing

.

Is Computing an Experimental Science?

Robin Milner, Laboratory for Foundations of Computer Science, Edinburgh University

Is computing an experimental science? (! stone of theoretical computer science; it concerns
what is computable, which is strongly connected
to what is deducible. Around 1900, part of
Hilbert's programme was to show that every
mathematical truth would turn out to be a de-
ducible from a set of axioms. and it was vital to

At the Laboratory for Foundations of Computer
Science at Edinburgh we are beginning an am-
bitious programme of research. The particular
programme which we have put forward is a new

CORNELL
COMPUTER
SCIENGE
oUTH

... 20507

ANNIVERSARE

"We were living in the future"

Doing math?
Join the math dept!

Proofs

People

Performance

Image credit: Alex Aiken

Proofs

Performance

PL
research

People

Image credit: Alex Aiken

Some theories are more testable than others;
they take, as it were, greater risks."

Benchmarks for perf,
for design

Profiling type costs

Logic misconceptions

Teaching FM

Gradual soundness

Privacy-Respecting Telemetry

Gradual Typing

Untyped |>» | Typed Why not both?

Gradual Typing

Untyped |[>» | Typed

def join(do,d1,sort,how):

DataFrame

> bool >

Left|Right

Why not both?

def join(d0:DataFrame,
d1:DataFrame,
sort:bool,
how:Left|Right)
-> DataFrame:

Types where useful, that's all.

Now, what do types mean?

def join(d0:DataFrame,

d1:DataFrame, join("hello", ...)
sort:bool,

how:Left|Right)

> DataFrame: s dO really a data frame?

Now, what do types mean?

def join(d0:DataFrame,

d1:DataFrame, join("hello", ...)
sort:bool,

how:Left|Right)

> DataFrame: s dO really a data frame?

Ideally YES

"The system lives up to all expectations that developers
have of sound language implementations."

"The system lives up to all expectations that developers

have of sound language implementations."
) : o~ 3 ,‘ g . ——‘gﬂ'

B

warning on use trie functions in #lang racket?

johnbclements
to Racket Users

This program constructs a trie containing exactly two keys, ea
mmmanca o ha ad? ln tha lamath af tha b an dashbinn o 6a AEE

— U f - 1] '\
= [U Typed Racket
o [

What do sound types cost?

Typed Racket

1. Start with a program 2. Add full types

def join(do,d1,sort,how): def join(d0:DataFrame,
d1:DataFrame,
sort:bool,
how:Left|Right)
-> DataFrame:

3. Measure all combos

S — — | — —
e o | — | w— — — | a— | a— s— sn— | — | oo j s § s— | s | s | o § s) s o) o, | o0) s s S’
 — — — — — S— | — | s—, — —" —w s—"— so— s—" j " s § -0 | S5 | s) s § 0,) S0, | w0 | -, § S) S0 o0 j o0 § S50 | S0 s § s | S0 | S0) s) s § S | s | 0w § s,) s) S0 | o j s) S, | s | o) 0, | S0 | s/
i — — — — — | — | o— — i — | — ss— so— | s— j " J — § s | o5 | s s § 0 § S0, | o | o, | o) s—0, | o0 s | oo | o, oo oo | oo | o0 j ss s) 50 | s | s) s) s | S0 | o | s § s s | s) s | s | s/
s s o o e o o o | s o | o o o s s o o s o s — |
o s s o —

‘ REP'23: 21 benchmarks, +40k combos

Table 1: Benchmarks overview: purpose and characteristics

Benchmark Purpose TInit ULib TLib Adapt HOF Poly Rec Mut Imm Obj Cls
sieve prime generator (@) O (@) [] O O ® O [] o O
forth Forth interpreter [51] (@) O (@) O @) (@) ® O [] o o
fsm economy simulation [33] (@) O @) @) O O O [) [O O
fsmoo economy simulation [34) (@) O (@) (@) O (@) o e [] ® O
mbta subway map [] [] (©) O O @) o O @) ® O
morsecode Morse code trainer (23, 148] O @) O O @) @) @) [@] @) O
zombie HTDP game [151] @) @) @] [[@) [@) [@) @]
zordoz bytecode tools [53] O [] O [] [] O ® ® o O O
dungeon maze generator (@) O (©) O [] [] e o] e o
inam imancro tanle M1411 - - - [a) ~ [a) [a) - - [a) [a)

| | o e | s — | |
o s — | | | Lot of datal | | | O
e i | | I be——e—o]| | | I
o s — | | Insights for users? | | O C
) s — | | for language designers? | | O aC
o e i | | —— e | | O
o s | | [y o | s | | O aC
o s — | | [y s | s | m— | | O aC
| | [y s | s | m— | |

Key: think like a user
too slow = useless

-
| | | | | | | | | | | |
| | | | | | | | | | | |

Key: think like a user
too slow = useless

-

snake 256 configurations
100% T | T [
| | | | | I
50111 : : .
| | | | | I
| | | | | |

0 b=t | | J -

1 2 20x

X-axis = "too slow" cutoff vs. untyped code (log scale)

y-axis = % useful combos

Scaling further

fsm-6.4, fsm-7.7 16 configurations

100% +

50
snake 256 configurations 0 - . . 4 R
100% 9 1 2 20x
Mfsm-6.4 [Wfsm-7.7

50+
_———/

0+ : : ’ M — PythonFlow 10 samples of 120 configurations

1 2 20x 100%

504
0 |

1 2 ' ' 10x

— U f - 1] '\
= [U Typed Racket
o [

What do sound types cost?

s U L o =

I J U
] T 1

What do sound types cost?

Too much!

Typed Racket

A modest optimization ... still too slow

fsm 16 configurations take5 256 configurations
100% 100%
° \ / | EEN] ,J \
50';n|| T T T TTTITT S50+ T T TTTT
o4 L 0 =
1 2 583.79x 1 2 88.58x
gregor 10 samples of 130 configurations zombie 16 configurations
100% 100%
’ yi R “TH | /
50+ 1 T T 1 T 111 501111 T TTTITI
ojll ! I T T T 0 1 (RN
1 2 20x 1 2 1486.16x

Safe and Efficient Gradual Typing

Sound Gradual Typing is Nominally Alive and Well

T -

Transient Typechecks are (AlImost) Free

-

Different behaviors!

Different behaviors!

def join(do:Array[Int]):

join([0,1,2,..

1)

Different behaviors!

def join(do:Array[Int]):

join([0,1,2,..

1)

M every element looks good
‘M7 it's an array

M | don't care

X it's untyped data

Different behaviors!

def join(d0@:Array[Int]):

join([0,"XXX",...1)

X bad element

M it's an array
M | don't care

X it's untyped data

StaticP

TS* 4"’}

SafeTS
Nom

SMALLIALK-80

i Grift TPD "\

n-Ga

@ 'l PNRE

mypy

J TTTTTTTTTT @ @;

" I & PGt

PyType

Proofs + People

Proofs + People

Guarded
type soundness
complete monitoring
blame soundness

blame completeness

F Transient A
y
X X
h

X

X <

Proofs + People

Guarded
type soundness
complete monitoring
blame soundness

blame completeness

F Transient A

Question 7

1 |var x : Array(String) = ["hi", "bye"];
2 |var y = x;

3 |var z : Array(Number) = y;

4 |z[0] = 42;

5 |var a : Number = z[1];

6 |a

Error: line 4 expected String got 42
Error: line 5 expected Number got "bye"
"bye"

000&
OOOE
000§
0008

Proofs + People

Guarded
type soundness
complete monitoring
blame soundness

blame completeness

C F

Transient A

Question 7

var x : Array(String) = ["hi",

1

2 (var y = x;

3 |var z : Arra
4 |z[0] = 42;

5 |var a : Numb
6 |a

Error: line 4 expecte|

Error: line 5 expecte|
"bye"

"bye™];

SE | Student | MTurk
Deep —* Error: line 4 expected String got 42
— | Faeen |Se——
LE LU DE DU LE LU DE DU LE LU DE DU

ERASURE —" "by
[

=
N
LE LU DE DU
SHALLOW —° Erro

o

Lo

Bd \ ==
LE LU DE DU

TE LU DE DU | LE LU DE DU
r: line 5 expected Number got "bye"

e o— mym I
LE LU DE DU LE LU DE DU

L=Like D=Dislike E=Expected U=Unexpected

Proofs

People

Performance

Research Challenges

Dominic

PyType

e pitee @B @
- mypy ‘

TPD

R~ g f"@ Q&

StaticP

SafeTS TS*

& s

Same type system??
NO

RC. Whence Gradual Types?

RC. Whence Gradual Types?

A. think really hard

RC. Whence Gradual Types?

Types and
Programming

Languages

A. think really hard B. be vague

@ find actual type issues

Example pattern: dependent dict

def add_tax(item: Dict[Str, Any]) -> float:
base = item.get("price", 0) # Any
return base + (base * 0.10)

6,000 similar occurrences in 221 sample projects

Corpus Study

HATRA'24

79000
Pre-corpus Study Current Milestone 3
o

@ — Y Filter — : Study Patterns , Analysis Engine

T++

How to do Type Narrowing?

if type(a) is int:
return a + 1

def filter_nums(bs: List[Any]):
return sum([b for b in bs if type(b) is int])

def fst(c : tuplelobject, object]):
if type(c[@]) is int:
return c[0] + 1

if node.parent is not None:
total += node.parent.wins + node.parent.losses

[README

The Benchmark

According to the

Benchmark
positive

negative

alias

connectives
nesting_condition
nesting_body
custom_predicates
predicate_2way
predicate_strict
predicate_multi_args
object_properties
tuple_whole
tuple_elements
subtyping

subtyping_structural

, the following benchmark items are proposed.

Description
refine when condition is true
refine when condition is false
track test results assigned to variables
handle logic connectives
nested conditionals with nesting happening in condition
nested conditionals with nesting happening in body
allow programmers define their own predicates
custom predicates refines both positively and negatively
perform strict type checks on custom predicates
predicates can have more than one arguments
refine types of properties of objects
refine types of the whole tuple
refine types of tuple elements
refine supertypes to subtypes

refine structural subtyping

>

Untyped » Typed
Simply T. » Dependently T.

Host Lang. » DSL

>

Untyped » Typed
Simply T. » Dependently T.

Host Lang. » DSL

RC. How to bridge?

Metaprogramming!

ECOOP'24 R

Type Tailoring

Ashton Wiersdorf 2 &

University of Utah, Salt Lake City, UT, USA
Stephen Chang &1&

University of Massachusetts Boston, MA, USA

Matthias Felleisen &3 #&
Northeastern University, Boston, MA, USA

Ben Greenman & #&
University of Utah, Salt Lake City, UT, USA

——— Abstract

Type systems evolve too slowly to keep up with the quick evolution of libraries - especially libraries
that introduce abstractions. Type tailoring offers a lightweight solution by equipping the core
Innenaee with an APT for modifvine the elahamtion of surface code inta the internal lanenaee of

<p> Elixir
<%= link "Register", to: ~p"/users/register" %>
<%= link "Log in", to: ~p"/users/login" %>

</p>
Without Tailoring With Tailoring
Possible 404 at runtime Tailoring error:

no route path matches /users/login

Chorex
Type tailoring for Elixir choreographies

oo —— g
0

Chorex
Type tailoring for Elixir choreographies

Chor. —_—

Discrete log, zero-knowledge

defmodule Zkp.ZkpChor do

import Chorex

defchor [Prover, Verifier] do

#

def do_round(Verifier.({p, g, y}), Prover.({p, g, x})) do
with Prover.(r) <- Prover.(Enum.random(2..p)) do
Prover.(:crypto.mod_pow(g, r, p)) ~> Verifier.(c)

with Verifier.(choice) <- Verifier.challenge_type() do
if Verifier.(choice == :r) do
Verifier([L] ~> Prover
Prover.(r) ~> Verifier.(r)

Verifier.verify_round(c, r, p, g)

else
Verifier[R] ~> Prover
Prover.(rem(:crypto.bytes_to_integer(x) + r, p - 1)) ~> Verifier.(xr_modp)

.

\

*»

y
= Dominic =

RC. How to debug designs?

a solver-aided Ya
modeling language &

Forge =

a solver-aided Ya
modeling language &

. inspired by Alloy

Forge =

. A I}
F
L Y e ¥ L g
¢ 'I- - ey Li‘

T

M
= ’.'}' " o
b)

I“r‘fl

“| Cross-Site Request Forgery |

LS

o | J"'ﬂ;'{.,;', Problem: every request carries

User's auth. cookies

ok
3 A'H,j‘;",

L

Idea: add origin to requests,
validate at Good Server

#lang forge Sterling

abstract sig EndPoint {}) SR D = e

Datum 1D: 1
sig Server extends EndPoint { HrTPEvent2 Datum ID: 2

causes: set HTTPEvent EE Y
}

@ suny

CoONOUEWNR

sig Client extends EndPoint {}

feanafey D eweyy

abstract sig HTTPEvent { Serverl
from : one EndPoint,
to : one EndPoint,
origin : one EndPoint

@ sbunes

}

sig Request extends HTTPEvent {
response: lone Response

HTTPEventl HTTPEvent3

@ sasoqde3

sig Response extends HTTPEvent { " capdes
embeds: set Request ;
}

sig Redirect extends Response {}

Server@

B 607 @ soienjen3

Manual Datum Censcle Dump » Connected

run {} for exactly 2 Server, exactly 1 Client

run {

// can we find (hope not)
some good, bad: Server {
EnforceOrigins[good]

//

} for exactly 2 Server,
exactly 1 Client,
5 HTTPEvent

10°1 temporary-name_cacm_1

origin

HTTPEventd

atr

HT PEvent3

/

HfPEventl

@ sbumes o anofel Qoeweusr [ewi

HTTPEvent2

¥

Clientd

Serverl

[601 @ Joienens @ ssioidx3

Manual Datum Console Dump « Connected

=) BT 2

Custom Visualization Unit Testing Language Levels

Ay . ’J'
§ ? ' _‘; B] 4 r‘_JL‘_ /

Dominic

Proofs

Performance

People

RC. Types for untyped code

RC. Adding layers to languages

RC. Debugging for designs

Corpus Study

HATRA'24

79000
Pre-corpus Study Current Milestone 3
o

@ — Y Filter — : Study Patterns , Analysis Engine

T++

[README

The Benchmark

According to the ext ed key features, the following benchmark items are proposed.

Benchmark Description

positive refine when condition is true

negative refine when condition is false

EIES track test results assigned to variables

connectives handle logic connectives

nesting_condition nested conditionals with nesting happening in condition
nesting_body nested conditionals with nesting happening in body
custom_predicates allow programmers define their own predicates
predicate_2way custom predicates refines both positively and negatively
predicate_strict perform strict type checks on custom predicates

predicate_multi_args predicates can have more than one arguments

if node.parent is not None:
total += node.parent.wins + node.parent.losses

subtyping refine supertypes to subtypes

subtyping_structural refine structural subtyping

Chorex
Type tailoring for Elixir choreographies

oo —— g
O

-

LN

v)

Custom Visualization

BT

&Y
o
§Y

2N

Unit Testing

Language Levels

Sl

