
Usable Model-Finding

IETF 120

Usable Model-Finding

Ben Greenman
Siddhartha Prasad
Tim Nelson
Shriram Krishnamurthi

1

Datatypes

Relations

2

Datatypes

Relations

Exploration +
Bounded Verifcation

3

Example:
Cross-Site Request Forgery

4

User

101010
010101

Evil Server

Good Server

5

User

101010
010101

Evil Server

Good Server

Problem: every request carries
 User's auth. cookies

6

User

101010
010101

Evil Server

Good Server

Problem: every request carries
 User's auth. cookies

Idea: add origin to requests,
 validate at Good Server

7

Datatypes

abstract sig EndPoint {}

sig Client

 extends EndPoint {}

8

Datatypes

abstract sig EndPoint {}

sig Client

 extends EndPoint {}

sig Server

 extends EndPoint {

 causes: set HTTPEvent

} multiplicity

9

Datatypes

abstract sig EndPoint {}

sig Client

 extends EndPoint {}

sig Server

 extends EndPoint {

 causes: set HTTPEvent

}

abstract sig HTTPEvent {

 from : one EndPoint,

 to : one EndPoint,

 origin : one EndPoint

}

// Request, Response, Redirect

// extends HTTPEvent

10

Datatypes ==> Exploration

11

Relations

Type 1: facts about the world

pred RequestResponse {

 all r: Response | one response.r

 // every Response is paired with

 // a unique request

}

// ...

12

Relations

Type 2: facts about our design

pred EnforceOrigins[good: Server] {

 all r:Request | r.to = good =>

 r.origin = good // from good server

 or

 r.origin = r.from // from client

}

13

Checks

run {

 // can we find (hope not)

 some good, bad: Server {

 EnforceOrigins[good]

 // ...

 }

} for exactly 2 Server,

 exactly 1 Client,

 5 HTTPEvent

bounds

14

Checks

run {

 // can we find (hope not)

 some good, bad: Server {

 EnforceOrigins[good]

 // ...

 }

} for exactly 2 Server,

 exactly 1 Client,

 5 HTTPEvent

Uh Oh!

15

User

101010
010101

Evil Server

Good Server

Idea: add origin to requests,
 validate at Good Server

Redirects can be mis-labeled

How about a set of origins??

16

Quickly found a bug!

17

Proof Assistants

Model Checkers

Lightweight FM

18

Lightweight FM

Usability >> Completeness

Insight: Most bugs have small instances
small scope hypothesis - D. Jackson

19

What sets Forge apart?

20

What sets Forge apart?

Custom Visualization Unit Testing Language Levels

21

Custom Visualization

22

Custom Visualization

23

Custom Visualization

Much more than pretty pictures!
Building on decades of CogSci research

24

Unit Testing

example assert test suite test expect

How do we know the model
is correct?

25

Unit Testing

Challenge: Programming != Modeling

26

Language Levels

r not in r.^(response.embeds)

??

27

Language Levels

r not in r.^(response.embeds)

??

CS1 in prereqs.CS2

"What a travesty that would be!"

28

Language Levels

#lang forge/temporal
++ Linear Temporal Logic

#lang forge/relational
++ N-ary Relations

#lang forge/bsl
Functional Relations

29

Language Levels

#lang forge/temporal
++ Linear Temporal Logic

#lang forge/relational
++ N-ary Relations

#lang forge/bsl
Functional Relations

30

In what ways is LTL difcult to use?

+3 years of studies with researchers and students

31

Categories of LTL Errors

Bad Prop Implicit G

Bad State Index Implicit Prefix

Bad State Quantification Other Implicit

Cycle G Trace Split U

Exclusive U Spreading X

Implicit F Weak U

32

Q. Translate to LTL:
 The green light turns on exactly once

F = eventually G = always X = next state

33

Q. Translate to LTL:
 The green light turns on exactly once

F = eventually G = always X = next state

F(green) & G(green => X(!green))

34

Q. Translate to LTL:
 The green light turns on exactly once

F = eventually G = always X = next state

F(green) & G(green => X(!green))

F(green) & G(green => X(G(!green)))

35

Q. Translate to LTL:
 The green light turns on exactly once

F = eventually G = always X = next state

F(green) & G(green => X(!green))

F(green) & G(green => X(G(!green)))

36

Q. Translate to LTL:
 The green light turns on exactly once

F = eventually G = always X = next state

F(green) & G(green => X(!green))

F(green) & G(green => X(G(!green)))

Implicit G

37

38

39

Datatypes

Relations

Exploration +
Bounded Verifcation

40

Datatypes

Relations

Exploration +
Bounded Verifcation

Custom Visualization Unit Testing Language Levels

41

https://forge-fm.org

blg@cs.utah.edu

42

43

