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Example:
Cross-Site Request Forgery

4



User

101010
010101

Evil Server

Good Server

5



User

101010
010101

Evil Server

Good Server

Problem: every request carries
    User's auth. cookies

6



User

101010
010101

Evil Server

Good Server

Problem: every request carries
    User's auth. cookies

Idea: add origin to requests,
    validate at Good Server
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Datatypes

abstract sig EndPoint {}

sig Client

 extends EndPoint {}
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Datatypes

abstract sig EndPoint {}

sig Client

 extends EndPoint {}

sig Server

 extends EndPoint {

  causes: set HTTPEvent

} multiplicity
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Datatypes

abstract sig EndPoint {}

sig Client

 extends EndPoint {}

sig Server

 extends EndPoint {

  causes: set HTTPEvent

}

abstract sig HTTPEvent {

  from : one EndPoint,

  to : one EndPoint,

  origin : one EndPoint

}

// Request, Response, Redirect

//  extends HTTPEvent
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Datatypes ==>   Exploration

11



Relations

Type 1:  facts about the world

pred RequestResponse {

  all r: Response | one response.r

  // every Response is paired with

  //  a unique request

}

// ...
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Relations

Type 2:  facts about our design

pred EnforceOrigins[good: Server] {

  all r:Request | r.to = good =>

    r.origin = good    // from good server

    or

    r.origin = r.from  // from client

}
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Checks

run {

  // can we find (hope not)

  some good, bad: Server {

    EnforceOrigins[good]

    // ...

  }

} for exactly 2 Server,

      exactly 1 Client,

      5 HTTPEvent

bounds
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Checks

run {

  // can we find (hope not)

  some good, bad: Server {

    EnforceOrigins[good]

    // ...

  }

} for exactly 2 Server,

      exactly 1 Client,

      5 HTTPEvent

Uh Oh!
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User

101010
010101

Evil Server

Good Server

Idea: add origin to requests,
    validate at Good Server

Redirects can be mis-labeled

How about a set of origins??
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Quickly found a bug!
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Proof Assistants

Model Checkers

Lightweight FM
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Lightweight FM

Usability  >>  Completeness

Insight:  Most bugs have small instances
small scope hypothesis - D. Jackson
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What sets Forge apart?
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What sets Forge apart?

Custom Visualization Unit Testing Language Levels
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Custom Visualization
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Custom Visualization
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Custom Visualization

Much more than pretty pictures!
Building on decades of CogSci research
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Unit Testing

example assert test suite test expect

How do we know the model
is correct?
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Unit Testing

Challenge:  Programming  !=  Modeling
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Language Levels

r not in r.^(response.embeds)

??
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Language Levels

r not in r.^(response.embeds)

??

CS1 in prereqs.CS2

"What a travesty that would be!"
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Language Levels

#lang forge/temporal
++ Linear Temporal Logic

#lang forge/relational
++ N-ary Relations

#lang forge/bsl
Functional Relations
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Language Levels

#lang forge/temporal
++ Linear Temporal Logic

#lang forge/relational
++ N-ary Relations

#lang forge/bsl
Functional Relations
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In what ways is LTL difcult to use?

+3  years of studies with researchers and students

31



Categories of LTL Errors

Bad Prop Implicit G

Bad State Index Implicit Prefix

Bad State Quantification Other Implicit

Cycle G Trace Split U

Exclusive U Spreading X

Implicit F Weak U
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Q. Translate to LTL:
  The green light turns on exactly once

F = eventually    G = always    X = next state
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Q. Translate to LTL:
  The green light turns on exactly once

F = eventually    G = always    X = next state

F(green) & G(green => X(!green))
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Q. Translate to LTL:
  The green light turns on exactly once

F = eventually    G = always    X = next state

F(green) & G(green => X(!green))

F(green) & G(green => X(G(!green)))

Implicit G
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Datatypes

Relations

Exploration +
Bounded Verifcation

Custom Visualization Unit Testing Language Levels
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https://forge-fm.org

blg@cs.utah.edu
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