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Migratory Typing

Add types to a dynamlcally typed language
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Migratory Typing
Add types to a dynamically- typed language

. = untyped code . .

@ = simply-typed . @

Mixed-Typed code




Motivation

Because lots of untyped code exists.



Landscape of Models and Implementations




Challenge = Interoperability

What do types mean when
untyped values and

typed values interact?
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Research Agenda: Scientific Comparison

PR
Guarantees |, Performance "\
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Research Agenda: Results so Far

Design Space Analysis

OOPSLA 19

~

N )

ICFP 18

 \

Ben Greenman, Matthias Felleisen, and
Christos Dimoulas

Ben Greenman and Matthias Felleisen




Research Agenda: Results so Far

Design Space Analysis

OOPSLA 19

~

N )

ICFP

18

NN

Ben Greenman, Matthias Felleisen, and
Christos Dimoulas

Ben Greenman and Matthias Felleisen

Performance Evaluation

[JFP

5

PEPM

18

C N )

POPL

16

N

Ben Greenman, Asumu Takikawa, Max S. New,
Daniel Feltey, Robert Bruce Findler, Jan Vitek, and
Matthias Felleisen

Ben Greenman and Zeina Migeed

Asumu Takikawa, Daniel Feltey, Ben Greenman,
Max S. New, Jan Vitek, and Matthias Felleisen




Landscape: Guarantees




Landscape: Guarantees

Complete l\/lonitoringj

Type Soundness H

Tag Soundness‘
Dyn Soundness |

(a total spectrum)
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Type Soundness
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Complete Monitoring

Type Soundness

'Tag Soundness

Dyn Soundness
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Honest vs. Lying Types



Honest vs. Lying Types

Client IIII

(define path "/tmp/file.txt")

(define (count acc str)
(+ 1 acc))

gt—fold—file path 0 count)

API (::)

(provide
t-fold-file : (> Path Num
(=> Num Str Num) Num)))
(define t-fold-file u-fold-file)
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(define path "/tmp/file.txt") (define (u-fold-file path acc f)
: read str’ from path’

(define (count acc str) ... (f str acc) ...

(+ 1 acc)) ce)

ﬁt—fold—file path 0 count)

API (::)

(provide
t-fold-file : (-> Path Num
(=> Num Str Num) Num)))
(define t-fold-file u-fold-file)




Honest vs. Lying Types

Client . Library -

(define path "/tmp/file.txt") (define (u-fold-file path acc f)
: read str’ from path’

.......
L J
L )

(define (count acc str)k ...os(f str acc) ...
(+ 1 acc)) ce)

ﬁt—fold—file path 0 count)

API (::)

(provide
t-fold-file : (-> Path Num
(=> Num Str Num) Num)))
(define t-fold-file u-fold-file)




Honest vs. Lying Types

Client . Library

(define path "/tmp/file.txt") (define (u-fold-file path acc f)

. ; read

.......
L J
L )

‘str’

from "path’

(define (count acc str)k ...os(f str acc) ...

(+ 1 acc)) ce)

gt—fold

API <::>

(provide
t-fold-file : (-> Path Num

Do the APl types protect the Client?

(=> Num Str Num) Num)))

(define t-fold-file u-fold-file)




Honest vs. Lying Types

Client . Library -

(define path "/tmp/file.txt") (define (u-fold-file path acc f)
. ; read ‘str’ from "path’

(define (count acc s’cr)‘r ...(f str acc) ...
(+ 1 acc)) ce)

Do the APl types protect the Client?

gt—fold

t-fold-file : (—> Path Num

(=> Num Str Num) Num)))
(define t-fold-file u-fold-file)
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Landscape: Performance

Varied space, difficult to rank alternatives



Performance Comparison

Natural vs. Transient

[ ICFP 20]8]




Performance Comparison [ICFP 2018]

Natural vs. Transient

' Complete Monitoring ‘_ ’Tag Soundness

guard all boundaries rewrite typed code to

with deep checks tag-check inputs

(listof int?) list?



Performance Comparison

[ ICFP 20]8]

Natural Overhead
boundaries add "large”

overhead

Transient Overhead

Num. Types

types add "small”
overhead

Num. Types
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Goal = Migratory Typing
Problem = Performance

What to do?
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Goal

= Migratory Typing
Problem = Performance

\d

Interoperate with a
weaker semantics

~
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compiler

L
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~ Q Does migratory typing benefit
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Q Does migratory typing benefit
" from a combination of honest

and lying types?

In particular,
Natural + Transient



Complementary Strengths

Natural

types predict full behavior, but
need to avoid certain boundaries

Transient

types predict shapes, but add
overhead to all typed code




Benefits (1/3): Migration . > @
0> @ @3 +

1. Begin with Natural types
2. Switch to Transient for performance
3. Revisit Natural for debugging

4. Return to Natural after typing all
critical boundaries



Benefits (2/3): Library Interaction -=




Benefits (2/3): Library Interaction Lib

ul>» D Dl +

math/array: "25 to 50 times slower”

» (N 6Amays
< > M C Q https://docs.racket-lang.org/math/array.html
V.74
...Search manuals...
2\ Racket
top ¢prev up next- 6 ArrayS
> Math Library by Neil Toronto <ntoronto@racket-lang.org>
v b6 . . .
Performance Warning: Indexing the elements of arrays created in untyped

6.1 Quick Start

6.2 Definitions

6.3 Broadcasting
6.4 Slicing

6.5 Nonstrict Arrays

Racket is currently 25-50 times slower than doing the same in Typed Racket, due
to the overhead of checking higher-order contracts. We are working on it.

For now, if you need speed, use the typed/racket language.




Benefits (2/3): Library Interaction 5
u> T 8 +

Changing a library to Transient may improve
overall performance



Benefits (3/3): Compatibility
@>T

A @ B .
(define stx (require A)
# #,(vector 0 1))

Stx

(provide stx)



Benefits (3/3): Compatibility
ul>» D Dl +

A @ B .
(define stx (require A)
# #,(vector 0 1))

Stx

(provide stx)

Type Check: Ok



Benefits (3/3): Compatibility +
ul>» D Dl +

A @ B .
(define stx (require A)

# #,(vector 0 1))

Stx

(provide stx)

Type Check: Ok
Runtime: Error could not convert type to a contract



Benefits (3/3): Compatibility +

ul>» D Dl +

b () Can't generate fiat contrac

M) C ﬁ e https://github.com/racket/typed-racket/issues/338

racket / typed-racket

Code Issues 218 Pullrequests 19 Projects 2 Wiki Security Pulse Community

Can't generate flat contracts for (Syntaxof Any) #338 et

david-christiansen opened this issue on Apr 8, 2016 - 4 comments

ﬂ david-christiansen commented on Apr 8, 2016 +@ - Assignees

. . No one—assign yourself
What version of Racket are you using?

6.4 Labels
None yet
What program did you run?

Typed module A.rkt: Projects

None yet




Benefits (3/3): Compatibility
ul>» D Dl +

Typed Racket provides 203 base types;
12 lack runtime support (wrappers)



Benefits (3/3): Compatibility +
ul>» D Dl +

Typed Racket provides 203 base types;
12 lack runtime support (wrappers)

(Async-Channel T)  (Custodian-Box T) (C-Mark-Key T)
(Evt T) (Ephemeron T) (Future T)
(MPair T T') (MList T) (Prompt-Tag T T')

(Syntax T) (Thread-Cell T) (Weak-Box T)



Benefits (3/3): Compatibility
0> Dl +

Typed Racket provides 203 base types;
12 lack runtime support (wrappers)

Transient does not need wrappers,
so more code can run
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Q Does migratory typing benefit
from a combination of honest

and lying types?

Q1. Can honest and lying types coexist?

Q2. Are the benefits measurably significant?



Q1. Can honest and lying coexist?

Model: (i

A - - develop a combined model

- formally prove basic properties

- reduce overlap in runtime checks

a)



Q1. Can honest and lying coexist?




Q1. Can honest and lying coexist?

A

Implementation:

A — - re-use the type checker

- support all Racket values
- avold the contract library

- adapt the TR optimizer to
lying types

a)



Q2. Are the benefits significant?




Q2. Are the benefits significant?

Goal: min(Natural, Transient)
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Maybe: reduce cost of U/T edge
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How to measure performance?

N
[POPL 2016] = 72 measurements
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How to measure performance?

(N+1)
[ ICEP 20‘8] =2 measurements
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How to measure performance?

N
Next = 3 measurements?
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How to measure performance?

N
Next = 3 measurements?

umlul (D)

o

@O OO DD

QOOOOHOCOOOHIDOOOHD DD CD-EQCD CHOOOITEHODODODOD
®®®EE®®®®3®®®.I®®®I®I CUOD| Ee=as ®®.®[®®ll®®]®l®l®®c®®l

Jjuoouoy DECOOH CEUOTEIEOOTEICUTOUTE
DONDECUCUIEIDOUITOUIIOUEOEIOUETCOUOUUITICOUOCUINTOE@oUD

Need an alternative method

to measure performance
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Q2. Are the benefits significant?

Goal: change lib, improve overall
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[ ]
[ ]
L]
[ ]

measure the performance of
honest types

try to directly improve
performance

formally classify alternative types

develop a combined model,
measure combined performance




[&] measure the performance of
honest types [JFP 2019] [POPLZO]éj

[Q?] try to directly improve
performance ((oopstazos |

formally classify alternative types
[y:] Yy Yy yp

[OOPSLA 2019] [ ICFP 20]8]

[ ] develop a combined model,
measure combined performance




[ evaluation




Nov implementation

. model

Dec

Jan'20

Feb

. evaluation
Mar

Apr

. paper .
May .
. dissertation .




Timeline.

Nov implementation

. model

Dec

Jan'20

Feb

. evaluation
Mar

. paper
May
dissertation

#lang typed/racket/base #:locally-defensive
(provide make-timeline)
(require typed/racket/class typed/racket/draw typed/pict)
(require/typed ppict/2
[#:0opaque Coord refpoint-placer?]

[coord (-> Real Real Symbol Coord)l)

(require/typed "ppict-simple.rkt"
[ppict (-> Pict (Listof (Pairof Coord Pict)) Pict)])

(require/typed pict-abbrevs
[add-rounded-border
(->* [Pict]
[#:radius Real #:y-margin Real #:frame-width Real #:frame-color Stringl
Pict)])

(define-type Pict pict)

(: make-timeline-bar (-> Real Real (U #f String) (-> String Pict) Pict))
(define (make-timeline-bar w h label tcodesize)
(define color (if label "light gray" "white"))
(define bar (filled-rounded-rectangle w h 1 #:color color #:draw-border? #f))
(ppict
bar
(list (cons (coord 2/100 48/100 'lc) (tcodesize (or label ".")))
(cons (coord 98/100 48/100 'rc) (tcodesize ".")))))

(: make-timeline-span : (-> Real String (-> String Pict) (Instance Color%) Pict))
(define (make-timeline-span h label ct timeline-span-color)
(define span-radius 7)
(define bar-pict (filled-rounded-rectangle 25 h span-radius #:color timeline-span-color #:draw-border? #f))
(define label-pict (ct label))
(ht-append 10 bar-pict label-pict))

(: make-timeline (-> Real Real (Instance Color%) (-> String Pict) (-> String Pict) Pict))
(define (make-timeline w h timeline-span-color ct tcodesize)
(letx ((monthx
"("Nov" "Dec" "Jan'20" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug"))
(bar-h
(/ h (* 2 (length monthx))))
(make-span-h
(lambda ((i : Real)) (* i bar-h)))
(make-span-%
(lambda ((i : Real)) (/ (make-span-h i) h)))
(base
(for/fold : Pict
((acc : Pict (blank)))
((m : String (in-list month)))
(vl-append @ acc
(make-timeline-bar w bar-h m tcodesize)
(make-timeline-bar w bar-h #f tcodesize))))
(timeline
(ppict
base
(list
(cons (coord 14/100 (make-span-% 1) 'lt) (make-timeline-span (make-span-h 5) "model" ct timeline-span-color))
(cons (coord 29/100 @ '1t) (make-timeline-span (make-span-h 12) "implementation” ct timeline-span-color))
(cons (coord 44/100 (make-span-% 7) 'lt) (make-timeline-span (make-span-h 8) "evaluation" ct timeline-span-color))
(cons (coord 59/100 (make-span-% 11) '1t) (make-timeline-span (make-span-h 4) "paper" ct timeline-span-color))
(cons (coord 74/100 (make-span-% 13) 'lt) (make-timeline-span (make-span-h 7) "dissertation" ct timeline-span-color))))))
(add-rounded-border
#:radius 5 #:y-margin 6 #:frame-width 3 #:frame-color "slategray"

timeline)))



[ evaluation




The End






~ Q Does migratory typing benefit

" from a combination of honest






Complete Monitoring

Type Soundness

Tag Soundness

Dyn Soundness

types predict behavior

types predict behavior in typed
code, nothing in untyped code

types predict shapes in typed
code, nothing in untyped code

types predict nothing
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TR Optimizations

apply box

[ fixnum ] [ float-complex

number palr

[ struct ] unboxed-let

float

seqguence

[ vector

extflonum

[ string




= unsafe for Transient

(: g (> Str Str))
(define g
(case-lambda

(define g
[ (x) x] A (case-lambda

[(x ¥) ¥])) [[(x) x]
[(x y) (void)]))

Problem: untyped code can call (g 0 1)



= unsound for Transient

(: x (Pairof (Pairof Nat Int) Str))

(cdar x)

\4

(unsafe-cdr (unsafe-car x))

Problem: no guarantee (car x) |s a pair



apply | = safe but risky for Transient

(: h (-> Str Str))
(: xs (Listof Str))

(apply + (map h xs))

\4

(+ (h (unsafe-car xs))

(h (unsafe-car (unsafe-cdr xs)))

Caution: h must check inputs



= force choice for | T |

(: xs (List Str Str))
(list-ref xs 1)

\4

(unsafe-list-ref xs 1)

Note: |List Str Str) needs more than a tag check



number | = | T Is more than a tag check

Natural
Exact-Nonnegative-Integer
Nonpositive-Inexact-Real

ExtFlonum-Negative-Zero



unboxed-let | = safe with escape analysis

(: £ (-> Float-Complex Any))
(define (£ n)
..)

\4

(define (f n-real n-imagqg)

..)



float | = false alarm

(flrandom)

\4

(unsafe-flrandom

(current-pseudo-random-generator))

Ok because the PRNG parameter checks inputs



