
Ben Greenman Type systems, logics, and modeling languages are powerful
tools for writing formal specifications. Specifications can

help programmers validate their designs and synthesize
components — provided that the specifications are correct.

 But specifications may not model the intended behavior.

To address this general problem, we need to study faulty specifications and develop actionable plans.

I have been studying these questions in several contexts using a variety of research methods.

UNIVERSITY

Specifications can be wrong.PROBLEM:

In what ways?Q1: What can we do about it?Q2:

Thanks to the CIFellows program, I have gained experience with a broad set  
 of research methods that I can use throughout my career.

Alloy Models

File snapshots, Grounded theory

RQ. What misconceptions do programmers face?

Language levels: functional, relational, temporal

A. Yes — because and is commutative

LTL Formulas

Surveys, Talk-alouds, Crowdsourcing

Test instruments, Code book of errors

RQ. Do users understand linear temporal logic?

Q. Is the formula eventually Red and eventually Green 
 satisfied by the trace below?

Algebraic Properties

Wheat and Chaff specifications

Data-driven chaffs

RQ. Can learners write correct instances?

 A = a + b + c
 r = a->a + b->b + c->c 
 + a->b + b->c + c->a

Incorrect Example: 
 transitivity vs. reachabilityType Interfaces

Mutation analysis, Experiment design  
 "The Rational Programmer"
TRP method, Evidence for design choices

RQ. How well do languages help debug wrong types?

