
Abstract

Short presentation of Kildall’s algorithm [?, k-unified] These notes are
deliberately sparse on examples; it’s hard to improve on that aspect of
the original paper.

Kildall & Static Analysis

Gary Kildall (1942–1994) grew up in Seattle, attended U. Washington, taught
at the US Naval Postgraduate School, and worked at Intel. He is best known for
developing the PL/M [3] and CP/M [1] microprocessor programming languages.

Static Analysis is the technical term for analyzing and modifying a program
before running it. In 1973, just after finishing his doctorate at UW, Kildall
published an algorithm unifying many similar static analyses for control-flow
graphs.

Preliminaries

Define a language of control-flow graphs (CFGs) with:1

Variables v := x | y | . . .
Constants c := Z | . . .

Expressions e := v ← e | e1 + e2 | e1 − e2 | . . .

Henceforth we will use meta-variables V , C, and E to denote the set of all
variables, constants, and expressions, respectively.

A program is given as a graph (V,E, I) where:

• V is a collection of expressions (nodes in the CFG)

• E ⊆ V × V represents directed edges between expressions in V . By con-
vention, E = (e1, e2) means that control flows from e1 into e2.

• I ⊆ V is a collection of entry points to the program.

Lastly, define the immediate successors of an expression e ∈ V as the set
succ(e) = {e′ | (e, e′) ∈ E}.

The Algorithm

Input

The algorithm requires:

• A program (V,E, I)

• A finite pool P of optimizing information

1The language as given does not allow an expression to conditionally branch to 2 or more
expressions. This is an imporant feature, but orthogonal to understanding Kildall’s algorithm.

1

https://en.wikipedia.org/wiki/Gary_Kildall
http://www.nps.edu/
http://www.cs.cornell.edu/courses/cs412/2008sp/lectures/lec24.pdf
http://www.cs.cornell.edu/courses/cs412/2008sp/lectures/lec24.pdf

• An equivalence relation = on P

• A commutative, associative meet operation ∧ : P × P → P such that the
strict partial order p1 < p2 ≡ p1 ∧ p2 = p1 ∧ p1 ̸= p2 is well-founded

• A token ⋆ such that ∀p ∈ P, p ∧ ⋆ = p

• A store Σ : V → P of information associated with expression nodes.
Initially, Σ(e) = λ(v).⋆. Note that we model Σ as a function, but it is
very much stateful.

• An analysis function f : V ×P → P that propogates information through
an expression

• A start function η : I → P of information about entry points. One possible
implementation is λ(i).∅.

Together, P , ∧, and ⋆ form a meet-finite semilattice.
Intuitively, the pool is the domain of information obtained via static analysis

and the analysis function refines the information associated with an expression.
Running the algorithm will produce the “most refined” information for each
expression in the program graph.

Algorithm

Kildall’s algorithm maintains a worklist L ∈ P((V × P)) of nodes to visit, and
repeatedly propogates information through the program graph. If (e, p) ∈ L,
then expression e has new information p flowing into it from a predecessor
expression.

We assume two basic set operations on L:

• pop : L→ (V × P) remove and return an arbitrary element of L

• ∪ : L × L → L comine two worklists, removing duplicates. (Removing
duplicates is not strictly necessary, but improves performance.)

Note that there may be two elements (e, p1), (e, p2) associated with an expression
e in L.

1: L← {(i, η(i)) | i ∈ I}
2: while L ̸= ∅ do
3: (e, pi)← pop(L)
4: pe ← Σ(e)
5: p+e ← pe ∧ pi
6: if p+e ̸= pe then
7: Σ(e)← p+e
8: L← L ∪ {(e′, f(e, p+e)) | e′ ∈ succ(e)}
9: end if

10: end while

Information propogates through the whole program regardless of branching
structure. That is really great. No matter how many while-loops or GOTO

statements in a program, Kildall’s algorithm can handle it.

2

Properties

Theorem 1. Kildall’s algorithm runs in “polynomial time”.

Proof. Each iteration of the outer loop removes an element from L. Elements
are added to L on line 8, so it suffices to show that line 8 is executed only finitely
many times.

We reach line 8 only if p+e ̸= pe, or rather, only if pe ∧ pi ̸= pe. In terms of
the well-founded order <, this condition is pi < pe; intuitively, pi must refine
the information in Σ. Now since pe = Σ(e) is initialized to ⋆ and ∧ is a meet
operation, pi < pe can only be true finitely often.

In particular, the running time of Kildall’s algorithm is O(|V | ∗ ∥P∥), where
|V | is the cardinality of V and ∥P∥ is the length of the longest path from ⋆ to
∅ in the lattice defined by P and ∧.

After finishing the proof, we see the reason for the quotes around “polynomial
time”. Running time is polynomial with respect to the number of expressions
in the program and the height of the optimizing lattice.

For the next theorem, let p∗e be the result of Σ(e) after Kildall’s algorithm
terminates. Also let path(e) be the set of all paths e∗ = e1, . . . , em, e from an
expression e1 ∈ I to e and let f∗ be the extension of f to paths, defined as
f∗(e∗) = f(e, f(em, . . . f(e1, η(e1)) . . .)).

Theorem 2. p∗e =
∧

e∗∈path(e)

f∗(e∗)

Proof. Kildall’s algorithm enumerates paths e∗ of length k (henceforth e∗k) in
a breadth-first manner. The enumeration continues as long as e∗k > e∗k+k′ for
each successive pair of paths. Conversely, once a pair e∗k ≤ e∗k+k′ is found then
e∗k ≤ e∗k+k′′ for all longer paths (of length k + k′′). Thus Kildall’s algorithm
halts when

∧
reaches a fixed-point.

Corollary 1. Theorem 2 holds for any implementation of pop.

Proof. Follows from Theorem 2 and the associativity of ∧. The order expressions
are processed does not matter—for correctness. The order does, however, affect
how quickly the algorithm converges.

Example Passes

Constant Propogation

The goal of constant propogation is to replace variables with compile-time con-
stants, where possible. For example, the sequence of instructions:

a <− 1
b <− a

Could easily be converted to:

3

a <− 1
b <− 1

and so on for more complicated expressions, if an optimizing pass associates
variable references with known constants. To this end, we can implement the
parameters for Kildall’s algorithm:

• The pool P is all sets of all pairs of variables and constants: P((V ×C)).

• The meet operation ∧ is set intersection; the empty set means we have no
information about constants in an expression.

• The optimizing function f is such that (v, c) ∈ f(e, p) if and only if:

– (v, c) ∈ p and e is not an assignment v < −e′

– e is an assignment v < −c

After computing Σ, a final pass through the program can substitute constants.

Common-Subexpression Elimination

CSE replaces computations with variable references when the computation has
previously been stored in a variable. As a quick example:

a <− 1234 ∗ 5678
b <− 1234 ∗ 5678

Only needs to perform a single multiplication. Other pure computations can
also be memoized.

In this analysis:

• The pool is all sets of equivalence classes of expressions, P(P(E))

• The meet operation is pointwise intersection of equivalence classes:

p1 ∧ p2 = {p′1 ∩ p′2 | p′1 ∈ p1 ∧ p′2 ∈ p2}

• The optimizing function puts sub-expressions into equivalence classes and
tries to replace expressions with variable references.

– First, traverse the AST of the node e and replace known sub-expressions
with variable references.

– Create a new equivalence class for e, add all expressions with sub-
expressions equivalent to a sub-expression in e

– If e is an assignment a < −e′, remove all references to a in the pool
and make copies of all expressions containing e′, substituting a for e′

in the copy.

4

Register Optimization

Register optimization seeks to minimize the number of variables stored in reg-
isters at a program node. For example the following expression needs space to
store 4 computations:

a <− b + c

One for b, one for c, one for b + c, and one for a. If b and c are not used in
subsequent expressions, then their registers may be recycled.

Kildall’s algorithm can determine the number of occupied registers at each
node by reversing edges in the program graph:

• The pool is P(V ∪ E), because variables and expressions require register
space.

• The meet is set union; in the worst case, we need registers for every variable
in the program.

• The optimizing function records the variables referenced in a node:

– If e is an assignment to v, remove v from the current pool.

– Add every sub-expression in the AST of e to the pool. For instance,
a+ b creates a pool {a, b, a+ b}.

Modern Applications

CompCert

The CompCert compiler [5, 6]2 uses Kildall’s algorithm in 8 of its 203 major
passes.

The optimized passes are:
Pass Title Explanation
Allocation Register allocation
ConstProp Constant Propogation

CSE Common-Subexpression Elimination
DeadCode Dead-Code Elimination
Linearize Linearize a control-flow graph
Liveness Liveness analysis for registers
RegAlloc Register Allocation
Splitting Split registers’ live range

The End of Optimizing Compilers?

When preparing these notes, I downloaded a few compilers and grepped their
sources for the string “kildall” (case insensitive).

2Version 2.6, as of 2015-01-24.
3See the “Compiler Passes” section of: http://compcert.inria.fr/doc/index.html

5

https://github.com/AbsInt/CompCert/releases
http://compcert.inria.fr/doc/index.html

gcc

clang

llvm

javac (jdk 8)

ghc

ocaml

ceylon

lua jit

racket

CompCert

Only CompCert returned matches. Maybe because there are faster algo-
rithms today.

After a little more digging, I found the slides for a talk titled The Death of
Optimizing Compilers [2], which claims that optimizing compilers are becoming
less useful today.

• Improving hardware gives more power and throughput, so we tend to see
very small patches of hot code and lots of little-used code.

• The largest bottlenecks are due to bad algorithms. Optimizing compilers
do not convert bad algorithms into good ones (i.e. convert bubble sort
into merge sort).

Makes sense to me. The benefits of constant propogation seem tiny in the
grand scheme of writing a better algorithm, and experiments like Stabilizer [4]
give evidence that the best optimization technology has hit a ceiling.

References
[1] CP/M Plus programmers guide. 1983. http://www.cpm.z80.de/manuals/cpm3-pgr.pdf.

[2] Daniel A. Bernstein. The death of optimizing compilers. 2015. https://cr.yp.to/talks/
2015.04.16/slides-djb-20150416-a4.pdf.

[3] Intel Corporation. PL/M-80 programming manual. 1980. http://bitsavers.

trailing-edge.com/pdf/intel/PLM/9800268B_PLM-80_Programming_Manual_Jan80.pdf.

[4] Charlie Curtsinger and Emery Berger. Stabilizer: Statistically sound performance evalu-
ation. In ASPLOS, 2013. http://plasma.cs.umass.edu/emery/stabilizer.html.

[5] Xavier Leroy. The CompCert verified C compiler commented coq development. 2015.
http://compcert.inria.fr/doc/index.html Last updated 2015-06-12.

[6] Xavier Leroy. The CompCert verified C compiler documentation and user’s manual. 2015.
http://compcert.inria.fr/man/manual.pdf Last updated 2015-06-11.

6

http://www.cpm.z80.de/manuals/cpm3-pgr.pdf
https://cr.yp.to/talks/2015.04.16/slides-djb-20150416-a4.pdf
https://cr.yp.to/talks/2015.04.16/slides-djb-20150416-a4.pdf
http://bitsavers.trailing-edge.com/pdf/intel/PLM/9800268B_PLM-80_Programming_Manual_Jan80.pdf
http://bitsavers.trailing-edge.com/pdf/intel/PLM/9800268B_PLM-80_Programming_Manual_Jan80.pdf
http://plasma.cs.umass.edu/emery/stabilizer.html
http://compcert.inria.fr/doc/index.html
http://compcert.inria.fr/man/manual.pdf

