Ben Greenman 2016-02-29 Quitline: Interpolants in Model Checking

Abstract

Craig Interpolants: definitions, intuitions, and applications.

1 Definitions

The following sentences A, B, C are special. For each, A implies B. Further-
more, A implies C' and C implies B.

= ~(PAQ) = (FRAQ)
(S=P)V(S=-R)
= PV-R

A = =(PAQ)= (-RAQ)
B = (I'=P)AN(T=-R)
C = (PV-R)

A = PV(QAR)

B = P\/ﬁﬁQ

C = PvQ

A

B

C

Definition. Craig Interpolant (1957)
Suppose A and B are logical formulas. An interpolant C for the pair (A, B) is:

o Implied by A:+ A= C
e Sufficient to prove B: - C' = B

o Expressed over the common variables of A and B:
atoms(C') C atoms(A) U atoms(B)

Theorem. If- A = B then an interpolant for (A, B) exists [2].

Proof. By induction on the size of V' = atoms(A) \ atoms(B). If V is empty,
A is an interpolant. Else choose any variable v € V and define A’ = A[T /v] v
A[L/v]. By the induction hypothesis, an interpolant for (A’, B) is an interpolant
for (A, B).

If atoms(A) Natoms(B) = () then either - - A or - B. O

Challenge. Find an optimal interpolant for (A, B) i.e. smallest, least variables,
quantifier-free.

The proof above can make an exponentially large term. Craig’s proof intro-
duces quantifiers.

Qs WN -

2 Craig Interpolants in Model Checking

Very simple program:

void f (int n) {

int x = n;
int vy = n + 1;
assert(y == x + 1);

Goal: prove that the assertion on line 4 is never violated.
At line 4, we have the following premise (A) and goal (B):

A = {neshortAz=nAy=n+1}
B = y=z+1

A suitable interpolant for (4, B) is B.

2.1 Basic Strategy

Start by finding a path in the program to as assert statement. The path will be
represented by primarily by transitions 7'(s;, s;) from one state s; to a successor
state s;. The final state in the path is the assertion C' we wish to prove correct;
in total we can represent the path as a formula:

p="T(s0,51) NT(s1,82) A ... AT (Sp—1,5n) A C(sp)

The formula should be true of a specific path, but we want to know whether
it holds for all paths. The key idea of interpolation-based model checking is to
use our proof that p is correct to find counterexamples to C.

We take the (false) formula p':

p =T(s0,81) ANT(s1,82) A ... AT (81, 8r) A C(5y)

and consider of each A from left to right in turn as a formula A A B where A
and B are mutually inconsistent. Then we apply interpolation to get a formula
A’ that is:

e Implied by A
e Inconsistent with B
o Expressed over the common atoms: atoms(A) \ atoms(B)

A good interpolant A’ will contain no irrelevant information about B. In
other words, A’ contains only the facts about A necessary to prove the assertion
C holds later in the path.

=~ W -

2.1.1 Equivalent Definitions

Note: this definition is classically equal to Craig’s original, just switch —B for
B. It is also more common in the model-checking community [8]. Here are a
few new-style interpolants.

= u=zA f(u,y) =2
v=yA f(z,v) #z
= f(x,y):z

= r<yANy<z
= rx—2—-1>0
= <z

Qe Qo

2.2 While Programs

Take a small while program [{]:

int 1 = 0;
while (i < 1000)
i +=1;

assert (1 <= 1000);

Using interpolation,” we can prove that the assertion on line 4 never fails.
First, the control-flow-graph of our program is:

ERR

G[iilU'JU]

{
U[i}=1900]

[1<1000]

By unrolling the program, exploring paths, and computing interpolants for
each state (by splitting the path formula into two inconsistent conjunctions) we
get the tree:

trice

ERR

=0
() [i»1000] (2‘; [i>=1000]) L.'L/ i<1000
=0

false Jfalse <1000 "-_(wmmg’\

ERR SRR ERR
®-; 1000) \O [i>=1000] &) [i<1000 D v U presrrms Q) [i>1000] 11
fulse i=1000 i<= 1000 i< 1000 i<=1000 i=1000 false

1 Also: bounded model checking, predicate abstraction, and lazy abstraction.

—_
SOOI UlLk WN -

[
W N =

Correctness follows because the 3 error states are unreachable and state 4
covers state 8. The covering condition follows because states 4 and 8 refer to the
same control-flow condition and the proposition ¢ < 1000 at state 8 implies the
proposition at state 4.

2.3 More Examples
From D’Silva [3]:

void g(int i, int j) {

int x = i;
int y = J;
int tmp;
while (x) {
tmp = Xx;
x =y + 1;

y = tmp + 1;

}

if (1 == § §&& x <= 10) {
assert (y <= 10);

}

A few possible interpolants:
lLi=7j = z<y
2.1=5 = y<zx

3.(OANQR) = z=y

3 Alternative: Image Computation

Before interpolation, “the way” to annotate states was image computation i.e.
computing all successors of each state [8]. One would compute the strongest
invariant of a program with initial state I and transition relation T by taking
the fixed point of all strongest postconditions at each reachable state.

R(I,T) = pU. IV posty(Q)
Each post;(Q) for a state formula @ is easy to express in propositional logic,
but difficult to compute:

post;(Q) =3S.Q AT

where S is a signature representing the entire state space. At least we know
how to compute it, but the process is very slow for all but the smallest pro-

grams. If post is monotonic, the least fixed point of () exists and is the strongest
invariant of the program.?

4 How to Derive Interpolants
Core idea for how to derive an interpolant from a refutation of A A B.

4.1 Basic Logic

Start with a quantifier-free propositional logic and these rules for proving #
A A B [B]. Very important to divide rules based on where the variables occur.

x € atoms(A) \ atoms(B) FCvz F-zVvD

A-Hyp A-RES
FC FCvVvD
CeB x € atoms(B) FCvez F-xzvD
B-Hyr B-RES
FC FCVD

Then annotate rules with partial interpolants.

AH CeA
-Hyp
HC [{C € C |atoms(C’) C atoms(B) }|
ARes ” € atoms(A) \ atoms(B) FCvVva [L] F-xzVvD [I]

FCVD [V

x € atoms(B) FCVz [] F-zVv D [L]

B-HYP ———— B-RESs
FC [T] FCOVD [AL

4.1.1 Sample Proof

A = (a1 \Y —\0,2) N (_‘al V —\0,3) A as
B = ("(12 \Y ag) A ((ZQ \Y CL4) N —ay

An interpolant is C = —ag A az, derived below:

a1 V —ao [_\ag] —a1 \Y —as ["CLg] as V a4 [T] a4 [T}
—az V asg [ﬁag vV ﬁ(lg] ao [ag] —ag V oasg [T] ao [T}
—as ["(13 N CLQ] as [T]

FL ["CL3 A\ ag]

20Other fixed points are inductive invariants of the program.

4.2 Basic Arithmetic

McMillan’s simple rules for linear inequalities [4]:

He A 0<zecA HeB 0<zeB

<A —M— <b —mmmmm—

FOo<z [x] Fo<z [T]
FO<y-— _ F0<z—y [z—

comp -2V~ [y—2] <z-y [z—y

FO<ciz+cy [e12’ + coyf]

421 Example

A = 0<y—2)A0<z—y)
B = 0<zxz—2-1

Now we show that A and B are inconsistent and derive an interpolant.

FO<y—z [y—x FOo<z—2z [z—1y]
FO<z—2z [z—1] FOo<az—2z-1 [T]
FO< -1 [z—2]

4.3 Complexity Results

At least one of the following is true [I0]:
e P=NP
e NP # coNP

e Then interpolants in propositional logic are not in general computable in
time polynomial in the size of (4, B).

If the propositional formula A A B has a refutation of size n there is an
interpolant of circuit size 3n [[].

5 Applications of Craig Interpolation in Model Check-
ing
McMillan [8] gives three examples of using interpolants to do model checking
faster / more efficiently.
1. Find invariants of program paths

2. Choose predicates to approximate a program state. Relies on interpolants
not introducting new quantifiers.

3. Filter irrelevant details from a transition relation

6

7

Theories with Efficient Interpolants

e Resolution, bounded arithmetic theory, linear equational calculus, cut-
ting planes [7].

e Linear Arithmetic with quantifiers (LA(Q)) [9].

e Datatype theories [f].

o Quatifier-free, linear inequalities, equality, uninterpreted functions [H].
o Quantifier-free Presburger Arithmetic with arrays [[].

e DL(Q),UTVPI

e Linear Diophantine & Linear Modular equations [H]

e Bit vectors [4].

Reflecting

”Craig’s Theorem is about the last significant property of first-order
logic that has come to light. Is there something deeper going on
here, and if so, can we prove it?” - Van Bentham, 2008

References

(1]

(2]

(3]

(4]
(5]

6]

(71

(8]
(9]

[10]

Angelo Brillout, Daniel Kroening, Phillip Riimmer, and Thomas Wahl. Program verification
via craig interpolation for presburger arithmetic with arrays. 2010. http://www.ccs.neu.
edu/home/wahl/Publications/bkrwlla.pdf.

William Craig. Three uses of the herbrand-gentzen theorem in relating model theory and
proof theory. 1957.

Vijay D’Silva. Interpolation: Theory and applications. 2015. http://www.cs.nyu.edu/
~barrett/summerschool/dsilva.pdf.

Alberto Griggio. Effective word-level interpolation for software verification. 2011.

Himanshu Jain, Edmund Clarke, and Orna Grumberg. Efficient craig interpolation for linear
diophantine (dis)equations and linear modular equations. 2008.

Deepak Kapur, Rupak Majumdar, and Calogero G. Zarba. Interpolation for data struc-
tures. https://www.cs.unm.edu/~kapur/mypapers/Interpolation for data
structures.pdi.

Jan Krajicek. Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic. 1997.

K.L. McMillan. Applications of craig interpolants in model checking. 2005.

K.L. McMillan. An interpolating theorem prover. 2005. http://www.kenmcmil.com/
pubs/TCSUS ., pdf.

Daniele Mundici. Tautologies with a unique craig interpolant vs. nonuniform complexity.
1984.

http://www.ccs.neu.edu/home/wahl/Publications/bkrw10a.pdf
http://www.ccs.neu.edu/home/wahl/Publications/bkrw10a.pdf
http://www.cs.nyu.edu/~barrett/summerschool/dsilva.pdf
http://www.cs.nyu.edu/~barrett/summerschool/dsilva.pdf
https://www.cs.unm.edu/~kapur/mypapers/Interpolation_for_data_structures.pdf
https://www.cs.unm.edu/~kapur/mypapers/Interpolation_for_data_structures.pdf
http://www.kenmcmil.com/pubs/TCS05.pdf
http://www.kenmcmil.com/pubs/TCS05.pdf

Appendix: Craig’s Statement & Proof

THE Jovswal oF Syumouic Locic
Valume 22, Number 3, Sept, 1957

THREE USES OF THE HERBRAND-GENTZEN THEOREM IN
RELATING MODEL THEORY AND PROOF THEORY

WILLIAM CRAIG

2. Lemma and extensions. We shall consider a system PCr of first-
order predicate calculus without identity and a system PCr= of first-order
predicate calculus with identity, PCr shall contain individual variables
and constants, and predicate variables and constants of # = 0 arguments.
PCr shall not contain a symbol for identity and shall nof contain symbols
for functions of # = 1 individual arguments. (Most results of this paper
do not hold for first-order predicate calculus with function symbols but
without axioms for identity.) The result of adding to PCr these further
symbols, changing the formation rules accordingly, and adding also axioms
for identity shall be PCr=. } and F_ shall stand for derivability in PCr or
PCr= respectively. The letters A, B, C, etc. shall refer to the formulas of
the system concerned. Those formulas in which no individual variable
occurs free shall be semfemces. (Hence any O-place predicate symbol is a
sentence.) The individual constants and the individual variables occurring
free in a formula shall be the individual parameters of that formula. Likewise,
the function symbols in a formula and the predicate symbols other than
the identity sign shall be its function or predicate paramelers ® respectively.
The identity sign shall not be a parameter but a logical constant, sinee its
interpretation cannot vary (except for the range of definition). Thus among
the parameters of a formula of PCr are all its predicate symbols, no function
symbols, and none or more individual symbols. Among the parameters of a
formula of PCr= are all its predicate symbols except the identity sign,
all its function symbols, and none or more individual symbols,

LemMa 1. Jf FADA™ and if A and A’ have a predicate parameter in
comman, then there is an "intermediate’” formula B swuch that F A S B,
FB o A', and all parameters of B are parameters of both A and A’. Alsoe,
if FADA and if A and A’ have no predicate parameter in common, 4 then
gither F— A or F A",

* This nsage is taken from [1].

4 This case was first called to my attention by P. C. Gilmore. For the special case
where in addition A and A" are sentences, he has found a much simpler argument in
terms of satisfiability.

THREE USES OF THE HERBRAND-GENTZEN THEOREM 271

Proor. The results of (4] hold a fortiori for PCr in place of first-order
predicate calculus with function symbols. Hence by Theorem 5 of [4],
which is derived from the Herbrand-Gentzen Theorem, there is a B¥ which
satisfies all the requirements of the lemma except perhaps that B* may
contain individual parameters which are not parameters of both A and A"
Now take each individual parameter of B* which is not a parameter of A,
replace all its free occurrences in B* by a new individual variable, and then
universally quantify this variable over the entire formula. In the resulting
formula similarly replace by an existentially quantified variable any in-
dividual parameter which is not a parameter of A". The formula B which
thus finally results satisfies the lemma,

The methods of [4] allow a more detailed study than is needed here of
how the structure of A and B are related. For example, if A is a formula
in prenex normal form containing only universal quantifiers and containing
all the individual parameters of A’, then B can easily be shown to be a
formula of the same kind.

	Definitions
	Craig Interpolants in Model Checking
	Basic Strategy
	Equivalent Definitions

	While Programs
	More Examples

	Alternative: Image Computation
	How to Derive Interpolants
	Basic Logic
	Sample Proof

	Basic Arithmetic
	Example

	Complexity Results

	Applications of Craig Interpolation in Model Checking
	Theories with Efficient Interpolants
	Reflecting

