
Ben Greenman 2016-02-29 Outline: Interpolants in Model Checking

Abstract

Craig Interpolants: definitions, intuitions, and applications.

1 Definitions

The following sentences A, B, C are special. For each, A implies B. Further-
more, A implies C and C implies B.

A = ¬(P ∧Q) ⇒ (¬R ∧Q)
B = (T ⇒ P ) ∧ (T ⇒ ¬R)
C = (P ∨ ¬R)

A = P ∨ (Q ∧R)
B = P ∨ ¬¬Q
C = P ∨Q

A = ¬(P ∧Q) =⇒ (¬R ∧Q)
B = (S ⇒ P ) ∨ (S ⇒ ¬R)
C = P ∨ ¬R

Definition. Craig Interpolant (1957)
Suppose A and B are logical formulas. An interpolant C for the pair (A,B) is:

• Implied by A: ⊢ A ⇒ C

• Sufficient to prove B: ⊢ C ⇒ B

• Expressed over the common variables of A and B:

atoms(C) ⊆ atoms(A) ∪ atoms(B)

Theorem. If ⊢ A ⇒ B then an interpolant for (A,B) exists [2].

Proof. By induction on the size of V = atoms(A) \ atoms(B). If V is empty,
A is an interpolant. Else choose any variable v ∈ V and define A′ = A[⊤/v] ∨
A[⊥/v]. By the induction hypothesis, an interpolant for (A′, B) is an interpolant
for (A,B).

If atoms(A) ∩ atoms(B) = ∅ then either ⊢ ¬A or ⊢ B.

Challenge. Find an optimal interpolant for (A,B) i.e. smallest, least variables,
quantifier-free.

The proof above can make an exponentially large term. Craig’s proof intro-
duces quantifiers.

1



2 Craig Interpolants in Model Checking

Very simple program:

1 void f(int n) {
2 int x = n;
3 int y = n + 1;
4 assert(y == x + 1);
5 }

Goal: prove that the assertion on line 4 is never violated.
At line 4, we have the following premise (A) and goal (B):

A = {n ∈ short ∧ x = n ∧ y = n+ 1}
B = y = x+ 1

A suitable interpolant for (A,B) is B.

2.1 Basic Strategy

Start by finding a path in the program to as assert statement. The path will be
represented by primarily by transitions T (si, sj) from one state si to a successor
state sj . The final state in the path is the assertion C we wish to prove correct;
in total we can represent the path as a formula:

p = T (s0, s1) ∧ T (s1, s2) ∧ . . . ∧ T (sn−1, sn) ∧ C(sn)

The formula should be true of a specific path, but we want to know whether
it holds for all paths. The key idea of interpolation-based model checking is to
use our proof that p is correct to find counterexamples to C.

We take the (false) formula p′:

p′ = T (s0, s1) ∧ T (s1, s2) ∧ . . . ∧ T (sn−1, sn) ∧ ¬C(sn)

and consider of each ∧ from left to right in turn as a formula A ∧ B where A
and B are mutually inconsistent. Then we apply interpolation to get a formula
A′ that is:

• Implied by A

• Inconsistent with B

• Expressed over the common atoms: atoms(A) \ atoms(B)

A good interpolant A′ will contain no irrelevant information about B. In
other words, A′ contains only the facts about A necessary to prove the assertion
C holds later in the path.

2



2.1.1 Equivalent Definitions

Note: this definition is classically equal to Craig’s original, just switch ¬B for
B. It is also more common in the model-checking community [8]. Here are a
few new-style interpolants.

A = u = x ∧ f(u, y) = z
B = v = y ∧ f(x, v) ̸= z
C = f(x, y) = z

A = x ≤ y ∧ y ≤ z
B = x− z − 1 ≥ 0
C = x ≤ z

2.2 While Programs

Take a small while program [1]:

1 int i = 0;
2 while (i < 1000)
3 i += 1;
4 assert(i <= 1000);

Using interpolation,1 we can prove that the assertion on line 4 never fails.
First, the control-flow-graph of our program is:

By unrolling the program, exploring paths, and computing interpolants for
each state (by splitting the path formula into two inconsistent conjunctions) we
get the tree:

1Also: bounded model checking, predicate abstraction, and lazy abstraction.

3



Correctness follows because the 3 error states are unreachable and state 4
covers state 8. The covering condition follows because states 4 and 8 refer to the
same control-flow condition and the proposition i < 1000 at state 8 implies the
proposition at state 4.

2.3 More Examples

From D’Silva [3]:

1 void g(int i, int j) {
2 int x = i;
3 int y = j;
4 int tmp;
5 while (*) {
6 tmp = x;
7 x = y + 1;
8 y = tmp + 1;
9 }

10 if (i == j && x <= 10) {
11 assert(y <= 10);
12 }
13 }

A few possible interpolants:

1. i = j =⇒ x ≤ y

2. i = j =⇒ y ≤ x

3. (1) ∧ (2) =⇒ x = y

3 Alternative: Image Computation

Before interpolation, “the way” to annotate states was image computation i.e.
computing all successors of each state [8]. One would compute the strongest
invariant of a program with initial state I and transition relation T by taking
the fixed point of all strongest postconditions at each reachable state.

R(I, T ) = µU. I ∨ postT (Q)

Each postT (Q) for a state formula Q is easy to express in propositional logic,
but difficult to compute:

postT (Q) = ∃S.Q ∧ T

where S is a signature representing the entire state space. At least we know
how to compute it, but the process is very slow for all but the smallest pro-

4



grams. If postT is monotonic, the least fixed point of Q exists and is the strongest
invariant of the program.2

4 How to Derive Interpolants

Core idea for how to derive an interpolant from a refutation of A ∧B.

4.1 Basic Logic

Start with a quantifier-free propositional logic and these rules for proving ̸⊢
A ∧B [3]. Very important to divide rules based on where the variables occur.

A-HYP
C ∈ A

⊢ C
A-RES

x ∈ atoms(A) \ atoms(B) ⊢ C ∨ x ⊢ ¬x ∨D

⊢ C ∨D

B-HYP
C ∈ B

⊢ C
B-RES

x ∈ atoms(B) ⊢ C ∨ x ⊢ ¬x ∨D

⊢ C ∨D

Then annotate rules with partial interpolants.

A-HYP
C ∈ A

⊢ C [{C ′ ∈ C | atoms(C ′) ⊆ atoms(B) }]

A-RES
x ∈ atoms(A) \ atoms(B) ⊢ C ∨ x [I1] ⊢ ¬x ∨D [I2]

⊢ C ∨D [I1 ∨ I2]

B-HYP
C ∈ B

⊢ C [⊤]
B-RES

x ∈ atoms(B) ⊢ C ∨ x [I1] ⊢ ¬x ∨D [I2]

⊢ C ∨D [I1 ∧ I2]

4.1.1 Sample Proof

A = (a1 ∨ ¬a2) ∧ (¬a1 ∨ ¬a3) ∧ a2
B = (¬a2 ∨ a3) ∧ (a2 ∨ a4) ∧ ¬a4

An interpolant is C = ¬a3 ∧ a2, derived below:

a1 ∨ ¬a2[¬a2] ¬a1 ∨ ¬a3 [¬a3]
¬a2 ∨ ¬a3 [¬a2 ∨ ¬a3] a2 [a2]

¬a3 [¬a3 ∧ a2]

¬a2 ∨ a3 [⊤]

a2 ∨ a4 [⊤] ¬a4 [⊤]

a2 [⊤]

a3 [⊤]

⊢ ⊥ [¬a3 ∧ a2]

2Other fixed points are inductive invariants of the program.

5



4.2 Basic Arithmetic

McMillan’s simple rules for linear inequalities [9]:

H<A
0 ≤ x ∈ A

⊢ 0 ≤ x [x]
H<B

0 ≤ x ∈ B

⊢ 0 ≤ x [⊤]

COMB
⊢ 0 ≤ y − x [y − x] ⊢ 0 ≤ z − y [z − y]

⊢ 0 ≤ c1x+ c2y [c1x
′ + c2y

′]

4.2.1 Example

A = (0 ≤ y − x) ∧ (0 ≤ z − y)
B = 0 ≤ x− z − 1

Now we show that A and B are inconsistent and derive an interpolant.

⊢ 0 ≤ y − x [y − x] ⊢ 0 ≤ z − x [z − y]

⊢ 0 ≤ z − x [z − x] ⊢ 0 ≤ x− z − 1 [⊤]

⊢ 0 ≤ −1 [z − x]

4.3 Complexity Results

At least one of the following is true [10]:

• P = NP

• NP ̸= coNP

• Then interpolants in propositional logic are not in general computable in
time polynomial in the size of (A,B).

If the propositional formula A ∧ B has a refutation of size n there is an
interpolant of circuit size 3n [7].

5 Applications of Craig Interpolation in Model Check-
ing

McMillan [8] gives three examples of using interpolants to do model checking
faster / more efficiently.

1. Find invariants of program paths

2. Choose predicates to approximate a program state. Relies on interpolants
not introducting new quantifiers.

3. Filter irrelevant details from a transition relation

6



6 Theories with Efficient Interpolants

• Resolution, bounded arithmetic theory, linear equational calculus, cut-
ting planes [7].

• Linear Arithmetic with quantifiers (LA(Q)) [9].

• Datatype theories [6].

• Quatifier-free, linear inequalities, equality, uninterpreted functions [9].

• Quantifier-free Presburger Arithmetic with arrays [1].

• DL(Q),UTVPI

• Linear Diophantine & Linear Modular equations [5]

• Bit vectors [4].

7 Reflecting

”Craig’s Theorem is about the last significant property of first-order
logic that has come to light. Is there something deeper going on
here, and if so, can we prove it?” - Van Bentham, 2008

References
[1] Angelo Brillout, Daniel Kroening, Phillip Rümmer, and Thomas Wahl. Program verification

via craig interpolation for presburger arithmetic with arrays. 2010. http://www.ccs.neu.
edu/home/wahl/Publications/bkrw10a.pdf.

[2] William Craig. Three uses of the herbrand-gentzen theorem in relating model theory and
proof theory. 1957.

[3] Vijay D’Silva. Interpolation: Theory and applications. 2015. http://www.cs.nyu.edu/

˜barrett/summerschool/dsilva.pdf.

[4] Alberto Griggio. Effective word-level interpolation for software verification. 2011.

[5] Himanshu Jain, Edmund Clarke, and Orna Grumberg. Efficient craig interpolation for linear
diophantine (dis)equations and linear modular equations. 2008.

[6] Deepak Kapur, Rupak Majumdar, and Calogero G. Zarba. Interpolation for data struc-
tures. https://www.cs.unm.edu/˜kapur/mypapers/Interpolation_for_data_
structures.pdf.

[7] Jan Krajı́c̆ek. Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic. 1997.

[8] K.L. McMillan. Applications of craig interpolants in model checking. 2005.

[9] K.L. McMillan. An interpolating theorem prover. 2005. http://www.kenmcmil.com/
pubs/TCS05.pdf.

[10] Daniele Mundici. Tautologies with a unique craig interpolant vs. nonuniform complexity.
1984.

7

http://www.ccs.neu.edu/home/wahl/Publications/bkrw10a.pdf
http://www.ccs.neu.edu/home/wahl/Publications/bkrw10a.pdf
http://www.cs.nyu.edu/~barrett/summerschool/dsilva.pdf
http://www.cs.nyu.edu/~barrett/summerschool/dsilva.pdf
https://www.cs.unm.edu/~kapur/mypapers/Interpolation_for_data_structures.pdf
https://www.cs.unm.edu/~kapur/mypapers/Interpolation_for_data_structures.pdf
http://www.kenmcmil.com/pubs/TCS05.pdf
http://www.kenmcmil.com/pubs/TCS05.pdf


Appendix: Craig’s Statement & Proof

8



9


	Definitions
	Craig Interpolants in Model Checking
	Basic Strategy
	Equivalent Definitions

	While Programs
	More Examples

	Alternative: Image Computation
	How to Derive Interpolants
	Basic Logic
	Sample Proof

	Basic Arithmetic
	Example

	Complexity Results

	Applications of Craig Interpolation in Model Checking
	Theories with Efficient Interpolants
	Reflecting

