
ON THE COST OF TYPE-TAG SOUNDNESS @ PEPM 2018
Northeastern UniversityBen Greenman Zeina Migeed

RETICULATED
• Gradual typing for Python

• Enforces type-tag soundness

METHOD
• Add type annotations to Python programs

• Enumerate partially-typed configurations

• Measure performance relative to Python

QUESTION what is the performance overhead of
type-tag soundness in Reticulated?

GRANULARITY function def and class @fields

def add1(n : Int) -> Int:
 return n + 1

@fields({"x" : Int, "y" : Int})
class A:
 x = 0; y = 0;

 def move(self : A, z : Int) -> Void:
 self.x += z
 return None

Example: 1 function + 1 class + 1 method 32 configurations

TYPE-TAG SOUNDNESS
If and then either:

• and matches

• (runtime error)

• diverges

where maps a type to a 
type-tag for its canonical forms, e.g.:

⊢ e : τ

ve v*

e Ω*

⌊τ⌋ = K

⌊Int⌋ = Int

⌊τ × τ'⌋ = Pair

⌊τ → τ'⌋ = Fun

⌊τ⌋ = K

e

K

REFERENCES
• Vitousek, Swords, Siek. Big Types in

Little Runtime:Open World Soundness
and Collaborative Blame for Gradual
Type Systems. POPL 2017

• Takikawa, Feltey, Greenman, New, Vitek,
Felleisen. Is Sound Gradual Typing
Dead?. POPL 2016.

EXHAUSTIVE EVALUATION for small programs
• Measure all configurations

• Count the % of configurations that run at most D times slower than Python
Example: for D between 1x and 10x.

100%

50%

4x2x 6x 8x 10x1x

espionage 4,096 configurations

All configurations

 are 6-deliverable

50% of all configurations

 are 4-deliverable

In paper: results for 17 more programs

• Measure R samples of S configurations drawn uniformly at random

• Build a confidence interval for the true % of D-deliverable configurations

APPROXIMATE EVALUATION for large programs

100%

50%

4x2x 6x 8x 10x1x

aespython 10 samples of 340 configurations
Example: for a program with 2 configurations.34

All configurations

 are 7-deliverable

 in all samples

With 95% confidence,

 8% - 10% of all configs.

 are 4-deliverable

RUN-TIME ENFORCEMENT
Reticulated performs a run-time tag 
 check on each dynamically-typed 
 value that flows into a typed 
 context expecting type :

E[7 : Int]

E[(1,"NaN") : Int Int]

E[snd((1,"NaN")) : Int]

These checks affect performance.

E
v

τ

×

E[7]

E[(1,"NaN")]

Tag Error

EXPERIMENT
• Evaluated 21 Reticulated programs

• 18 via exhaustive evaluation

• 3 via approximate evaluation

• Ran on the Karst at Indiana
University cluster

CONCLUSIONS
• Worst-case overhead: under 10x

• Best-case overhead: 1x -- 4x

• Always slower than Python

• Overhead typically increases
linearly with the number of type
annotations

