ON THE COST OF TYPE-TAG SOUNDNESS e eeew 201

“XERN ()
A ki) \!
AN
2 B <
ortncastieri Dl@I‘Sl
R
N MASSASZ

Ben Greenman

RETICULATED

» Gradual typing for Python

* Enforces type-tag soundness

TYPE-TAG SOUNDNESS

If —~e:Tt and |T)=K then either:

« e—¥Vv and v matches K
« e—¥* 0 (runtime error)
e diverges

where |t | =K maps a type to a
type-tag for its canonical forms, e.g.:

1Int | = Int

1 TX T | = Pair

| T— T =Fun

RUN-TIME ENFORCEMENT

Reticulated performs a run-time tag
check on each dynamically-typed
value v that flows into a typed
context E expecting type T :

E[7:Int] ——E[7]
E[(1'NaN") : IntxInt] — E| (1,'NaN")]
E[snd((1'NaN")) : Int] » Tag Error

These checks affect performance.

EXPERIMENT

* Evaluated 21 Reticulated programs
* 18 via exhaustive evaluation
* 3 via approximate evaluation

« Ran on the Karst at Indiana
University cluster

CONCLUSIONS

 Worst-case overhead: under 10x
e Best-case overhead: 1x -- 4x
* Always slower than Python

* Overhead typically increases
linearly with the number of type
annotations

[__; Zeina Migeed

REFERENCGES

* Vitousek, Swords, Siek. Big Types in
Little Runtime:Open World Soundness
and Collaborative Blame for Gradual
Type Systems. POPL 2017

» Takikawa, Feltey, Greenman, New, Vitek,
Felleisen. Is Sound Gradual Typing
Dead?. POPL 2016.

QUESTION what is the performance overhead of
type-tag soundness in Reticulated?

METHOD

* Add type annotations to Python programs
 Enumerate partially-typed configurations

» Measure performance relative to Python

GRANULARITY function def and class @fields

Example: 1 function + 1 class + 1 Method =————————fp 23 configurations

def addl(n : Int) -> Int:
return n + 1

@Qfields({"x"
class A:
x = 0;y

: Int, "y"

y = 03

Int) -> Void:

def move(self :
self.x += 2z
return None

A, z :

EXHAUSTIVE EVALUATION for small programs

* Measure all configurations
* Count the % of configurations that run at most D times slower than Python

Example: for D between 1x and 10x.

espiohage 4,096 configurations
100%
All configurations
are 6-deliverable
50% of all configurations
50% :
are 4-deliverable
1x 2X 4x 6Xx 8x 10x

APPROXIMATE EVALUATION for large programs

* Measure R samples of S configurations drawn uniformly at random
* Build a confidence interval for the true % of D-deliverable configurations

Example: for a program with 234 configurations.

aespython 10 samples of 340 configurations

100%

All configurations
are 7-deliverable
In all samples

50%

With 95% confidence,

8% - 10% of all configs.

are 4-deliverable

2X 4x 6Xx 8x 10x

