
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Toward a Corpus Study of the Dynamic Gradual Type
DIBRI NSOFOR, University of Utah, USA
BEN GREENMAN, University of Utah, USA

Gradually-typed languages feature a dynamic type that supports implicit coercions, greatly weakening the
type system but making types easier to adopt. Understanding how developers use this dynamic type is a
critical question for the design of useful and usable type systems. This paper reports on an in-progress corpus
study of the dynamic type in Python, targeting 221 GitHub projects that use the mypy type checker. The study
reveals eight patterns-of-use for the dynamic type, which have implications for future refinements of the
mypy type system and for tool support to encourage precise type annotations.

ACM Reference Format:
Dibri Nsofor and Ben Greenman. 2024. Toward a Corpus Study of the Dynamic Gradual Type. 1, 1 (Septem-
ber 2024), 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Programming languages have traditionally forced developers to choose between the “flexibility and
simplicity” of untyped code [32] and the maintenance benefits of static types (e.g. [31]). Gradual
typing offers a compromise through a flexible dynamic type that can be used in any context without
a type error [60, 61]. For example, a function that expects an argument of the dynamic type (named
Any in Python) can treat the argument as though it has any precise type; the code below assumes
its dynamic argument is a class, adds a method to it, and returns the updated class:

import types; from typing import Any # the dynamic type in Python

def addPrice(cls: Any) -> Any: # mixin, add method to class
cls.price = types.MethodType(lambda self: 99, cls)
return cls

A caller can send any value to the addPrice function without raising a compile time type error.
Incorrect calls, such as addPrice(11) result in a runtime error when executed.
The dynamic type adds a degree of optimism to the typechecker, fundamentally changing the

nature of type analysis. Without the dynamic type, a well-typed program is certifiably made of
parts that fit together (it cannot “go wrong” [46]). With the dynamic type, a well-typed program
is code that may fit together provided that every occurrence of the dynamic type receives well-
behaved values at runtime—which, as noted in work on static blame [63], may be impossible.
Moreover, the dynamic type renders type analysis unsound (unless coercions are backed by runtime
checks, see section 2): any value can inhabit any type after coercion. The dynamic type also

Authors’ addresses: Dibri Nsofor, Kahlert School of Computing, University of Utah, Salt Lake City, Utah, 84112, USA,
dibrinsofor@gmail.com; Ben Greenman, Kahlert School of Computing, University of Utah, Salt Lake City, Utah, 84112, USA,
benjamin.l.greenman@gmail.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Association for Computing Machinery.
XXXX-XXXX/2024/9-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: September 2024.

HTTPS://ORCID.ORG/0009-0003-7599-2657
HTTPS://ORCID.ORG/0000-0001-7078-9287
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0009-0003-7599-2657
https://orcid.org/0000-0001-7078-9287
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Dibri Nsofor and Ben Greenman

pokes loopholes into other traditional properties. For example, the simply-typed lambda calculus is
strongly normalizing, but loses this property with the addition of a dynamic type [45].
Given the perils of the dynamic type, it ought to be used sparingly: either as a temporary

measure in prototype software, or as a last resort when precise types do not exist. And yet, its
use is widespread. In our collection of 221 projects that use the mypy typechecker (section 3),
there are 28,478 occurrences of the dynamic Any type. Understanding why these Anys appear
in widely-used code is a critical question for the adoption of types. If more-precise alternatives
exist, that motivates tool support for writing types. If the Any types cover up limitations of the
typechecker, that motivates research on type system design. If the rationale for certain Any types is
unclear, that motivates interviews and developer surveys.
This paper is a progress report of our journey to discover the precise reason behind Any types

across a large corpus of Python projects. Based on a combination of manual and script-driven
analysis on a small number of sample projects, it presents:

• the design of a corpus study to study use of the dynamic type (section 3),
• eight usage patterns (section 4) and discussions of how to identify the patterns automatically.

A major goal of this paper is to solicit early-stage feedback on the design of our corpus study
experiment. Automated software analysis is a powerful but dangerous tool, as flaws in the protocol
can lead to questionable conclusions [6, 7, 54, 55]. In particular, our methods for detecting usage
patterns must guard against false positives before we apply them at scale. The paper concludes
with future work (section 5), related work (section 6), and a discussion that positions this study in
the broader context of gradual languages (section 7).

2 BACKGROUND: OPTIONAL TYPING AND MYPY
Gradually-typed languages come in many varieties because the question of how to enforce static
types in the midst of untyped code exposes a complex design space. Full enforcement via behavioral
contracts is a compelling vision [21, 64], but leads to high run-time overhead [29] without custom
runtime support [3, 20, 39]. One alternative is to enforce only the top-level shape of types, but this
can still lead to overheads of 2x or more [25, 28, 72]. A second alternative is to forbid untyped data
structures from entering typed code [43, 48, 75]. A third alternative is to forgo enforcement (and
type soundness) altogether. This third option is the most popular choice [26], and is known as
optional typing [10].
Mypy is an optional typing system for Python [51]. It equips the PEP 484 syntax for types [69]

with static checks that detect inconsistencies between types and code. Mypy can efficiently analyze
millions of lines of code [40] and has been widely adopted. Mypy supports annotations on variable,
class, and function declarations. Developers can annotate as many or as few of these positions as
they choose. By default, unannotated positions receive the dynamic Any type, though developers can
change this default through configuration options that fine-tune mypy or by writing a comment of
the form #type:ignore[ERR] with ERR replaced by a specific mypy error code [50]. For programs
that depend on untyped libraries, developers can write interfaces, called type stubs, that declare
types for library exports. The (untyped) definitions of these exports are not typechecked, but their
uses (in typed code) are typechecked.
In summary, there are several ways that the Any type can enter a mypy codebase: explicitly

through developer-provided Any annotations, implicitly through configuration options, and ex-
plicitly through lines with #type:ignore comments. All three sources are important for a corpus
study. But whereas configuration options and comments come with metadata to describe how they
systematically incorporate an Any type, developer-provided annotations require manual analysis.
The main focus of this paper is on the manual analysis.

, Vol. 1, No. 1, Article . Publication date: September 2024.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Toward a Corpus Study of the Dynamic Gradual Type 3

Study PatternsFilter Analysis Engine

Pre-corpus Study

Corpus Study

Current Milestone

221
REPOS

79000
REPOS

𝝉++
Fig. 1. Project overview with a marker at the current milestone: Study Patterns

3 CORPUS STUDY DESIGN
Our goal is to learn why developers resort to the dynamic type by analyzing thousands of open-
source projects. Currently, we are in the midst of an initial, formative stage of the project (herein
called the pre-corpus study), in which we study instances of the dynamic type by hand. As patterns
emerge, the next step is to build automated tools and measure how common each pattern is across
our corpus of approximately 79,000 projects. Figure 1 sketches this overall pipeline and highlights
the current focus. This section describes our protocols for building a corpus (section 3.1), filtering
uninteresting instances of the Any type (section 3.2), and manually finding patterns (section 3.3).

3.1 Building the Corpus
We built a corpus by querying GitHub via Mozilla’s agithub utility [47] and filtering the results. The
query asked for Python projects with a modest number of GitHub stars (80 stars) and at least one of
the following configuration files, which may contain mypy options: mypy.ini, pyproject.toml,
setup.cfg, and config. This query resulted in over 79K projects. We chose a sample of 221 projects
that had at least 250 GitHub stars and that actually used mypy (confirmed manually) as a target for
the pre-corpus study.

3.2 Filtering Any Types
Mypy comes with a utility called stubgen that extracts the type annotations from a Python file into
a type stub interface (section 2). We use these stubs as the first step toward manual analysis. The
stubs from our 221 sample projects contain 318,564 lines of annotations that include the Any type.
Many of the annotations are of low priority for building formative hypotheses. First, method

annotations whose only Any is in the first argument position are common and often uninteresting;
these come about because mypy infers Any when a method argument lacks an annotation. Second,
a file may contain several duplicate signatures. After filtering both sorts of annotations, we arrived
at 41,447 distinct lines in which to search for patterns.
The majority of annotations in project files are for functions or methods. We further classified

these arrow types into three categories using a script: methods with Any for their first parameter
(i.e., self parameter), arrows with Any inside a callback argument (Callable[T1,T2]), and arrows
with Any inside a dictionary argument (Dict[T1,T2] or Mapping[T1,T2]). These categories helped
to guide our manual analysis.

3.3 Manually Studying Patterns
Both authors of this paper manually examined type annotations and code to identify patterns of
use for the Any type. One author studied every annotation in 10 large projects for a total of over

, Vol. 1, No. 1, Article . Publication date: September 2024.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Dibri Nsofor and Ben Greenman

5K annotations. The other author took an ad-hoc sample of 30 projects (spread throughout the
alphabet, from BentoML to wandb) and sampled types in those projects that used Any inside of a
Callable or Dict type, inspecting a total of 92 annotations. Whenever the authors found an Any
type that seemed likely to reveal typing challenges, they searched for its origin in the source code
to learn more.

4 PATTERNS OF DYNAMIC TYPE USE
Ourmanual study of types and code in a few dozen sample projects has revealed eight ways in which
developers appear to use the Any type in mypy (implicitly and explicitly). These eight categories
range from specific anti-patterns to vague cases where precise types exist but the code uses Any
nevertheless. Below, we present each pattern with a code example and discuss how source-code
analysis might identify the pattern at scale. For some patterns, we have implemented a related
analysis; where applicable, we report data based on our 221 sample projects.

4.1 Dynamic Instead of a Type Variable
Every occurrence of the Any type is a wildcard. By contrast, type variables can introduce a degree
of uniformity. Consider this equality function from our corpus:

def eq(a: Any, b: Any) -> bool:
return a == b

Every call of the form eq(x, y) is type correct, even though the function cannot return True
when its arguments have different types. If the type signature used a variable in place of the two
Anys, developers would know more about the function’s behavior (even though mypy cannot easily
report a type error, see section 4.2). If the intent is indeed to allow type-mismatched inputs, the
type could say so with distinct variables for its two parameters.
We do not have an automatic analysis for this pattern. It is unclear what to look for in a type

signature: although type variables would help this eq function, other functions that take two Anys
as input may not benefit. As another example, we have found reduce functions that return an Any
and therefore fail to describe type constraints between their inputs and outputs. But, not every
function with Any as its return type is parametrically polymorphic in the same way as a reducer.

4.2 Implicit Dynamic Due to Unconstrained Type Variables
Two occurrences of the same type variable must be instantiated with matching types. Mypy’s
default notion of matching is rather loose because of subtyping, and thus may lead to surprising
outcomes. In the following example, the call to count_cars instantiates the variable Car as
both a string and a number; this is not a type error because strings and numbers have a common
supertype in mypy:

Car = TypeVar('Car') # car is unconstrained / unbounded
Traffic = Union[Car, List['Traffic']]

def count_cars(x: Traffic, car: Car) -> int:
if isinstance(x, List):

x.append(car)
return len(x)

count_cars(["FJ40", "Baja Buggy"], 5) # NOT a type error

, Vol. 1, No. 1, Article . Publication date: September 2024.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Toward a Corpus Study of the Dynamic Gradual Type 5

To prevent such weakening, type variables must be declared with either a set of constraints or an
upper bound (e.g., TypeVar('Car', str, bytes) or TypeVar('Car', bound=AnyStr)).

Unconstrained type variables are straightforward to detect: there are 471 of them across our 221
sample projects. Discovering where these variables lead to weak types is another matter, and this
calls for instrumentation within mypy to report variables that get instantiated with a top type.

4.3 Dynamic Instead of a Self Type
Some methods that return their receiver object use Any as the return type to allow for subclass
polymorphism. In the example below, the return type Shape would be too conservative (it would
prevent the use of subclass methods after Circle().move(...)) and the return type Circlewould
be unsound. Using Any gets rid of spurious errors by skipping type analysis altogether:

class Shape:
def move(self, dist: int) -> Any: # imprecise return type, Self is better
self.position += dist
return self

class Circle(Shape):
pass

Circle().move(4)

A precise alternative is Self as a return type, which propagates the type of the receiver to the
result. Mypy added support for Self in version 1.0 [49]; code in our corpus evidently needs an
upgrade, either because of a knowledge gap or because it was written before the mypy 1.0 release.
To flag this pattern, an analysis must find methods that return their first parameter and use Any as
the return type.

4.4 Dynamic for Dependent Dictionaries
The mypy type Dict[T1, T2] describes simple dictionaries with keys of type T1 and values of
type T2. This type cannot express dictionaries in which specific keys point to values of different
types. In the example below, for instance, the key "price" assumes float values:

def get_discount(item: Dict[str, Any]) -> int:
if "price" in item:
discount = item["price"] * 0.15
return item["price"] - discount

This is a modest form of dependent types that appears throughout our corpus. In the 221 sample
projects, there are 6,831 signatures that use Any for dictionary values (i.e., Dict, Dict[T1,Any],
or Mapping[T1,Any]). Row polymorphism using scoped labels [41] or singleton types (as in
Haskell [19], Typed Racket [65], or Elixir [14]) may suffice to improve mypy. Alternatives are
to adapt TypeScript’s indexed access types [68], introduce a metaprogramming layer for type
tailoring [74], or integrate an SMT solver [37, 70].

4.5 Dynamic for Method Overrides
TypeScript infamously allows covariant method overrides—even though they are unsound—because
developers apparently want to write subclass methods that assume a narrow set of inputs [8]. Mypy

, Vol. 1, No. 1, Article . Publication date: September 2024.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Dibri Nsofor and Ben Greenman

prevents covariant overrides by default, but developers can opt for unsound overrides by writing a
special comment after the subclass method signature. Such comments do not use Any directly, but
are nevertheless relevant to our study of how developers choose to weaken a type checker. The
following example is from the ivre [35] project:

class BinaryIO(IO[bytes]):
def write(self, s: Union[bytes, bytearray]) -> int:
pass

class FileOpener(BinaryIO):
def write(self, s: bytes) -> int: # type: ignore[override]
return self.fdesc.write(s)

We have written an analysis for this pattern that finds these special comments, looks for the
parent class (which may be in a different file, or inaccessible to us in another project), and examines
the relationship between the parent and child method types. There were 652 occurrences of this
special comment across our sample corpus. We found the parent class for 146 such comments, and
80.8 % (118 / 146) of these cases use different argument types for parent and child methods. These
may be covariant overrides, but further analysis is needed to confirm.

4.6 Dynamic for Wrapper Functions
A wrapper takes a function as input and returns a modified or enhanced version of the function.
The wrapper below, for instance, takes a function fn that expects a statistics object and returns a
function that expects a string; the wrapped function converts input strings to objects and calls the
original fn function:

def validate_stat(fn: Callable) -> Callable:
def string_fn(self, stat: str, *args, **kwargs) -> Callable:
stat = string_to_stat(stat)
return fn(self, stat, *args, **kwargs)

return string_fn

The type for this wrapper is merely Callable -> Callable, which says nothing about the
close relationship between the input and output functions. It may be possible to adapt types for
variable-arity polymorphism [62] to directly express the concept of wrappers.

We have written an analysis for this pattern. It examines functions that have a parameter with the
plain type Callable and reports a match if this parameter is called always with catch-all positional
and keyword arguments. There are 906 such functions across the sample projects.

4.7 Dynamic to Hide Unnecessary Details
When types require details that are unimportant to the code at hand, developers can use the Any
type to fill in the holes. For example, this function from the nanonote [52] project simply returns
the last value from a dictionary. Any dictionary is a valid input, so the signature asks for a value of
type Dict[Any, Any] (a type variable would be reasonable here):

def _get_dict_last_added_item(dct: Dict[Any, Any]) -> Any:
return list(dct.values())[-1]

, Vol. 1, No. 1, Article . Publication date: September 2024.

https://github.com/ivre/ivre
https://github.com/agateau/nanonote

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Toward a Corpus Study of the Dynamic Gradual Type 7

Similar examples come from parameterized types such as PathLike[T] or Callable[T1, T2].
Replacing the parameter with Any is a simple, valid choice. It might be more precise to ask for a
top parameterized type, but that requires thought about whether each parameter should use the
top type (object) or bottom type (Never) depending on whether it is co- or contra-variant.
We do not have an automatic analysis for this pattern. One idea is to collect all uses of a

parameter such as dct and see what constraints the uses impose on its type parameters. If there
are no constraints and the parameter type is Any, we have a match.

4.8 Uncategorized Dynamic Types
Many Any occurrences do not fit a clear pattern. Some could easily be replaced with precise
alternatives. For example, the wandb [73] project contains a function that always raises an exception
but gives Any rather than Never (or NoReturn) as its return type:

def __getattr__(self, key: str) -> Any:
if not key.startswith("_"):
raise wandb.Error(f"...")

else:
raise AttributeError

Refining such types may not be a priority for developers. Perhaps they would accept a patch
generated through the use of a typing tool, such as Scotty [33] or MonkeyType [34].

5 FUTUREWORK
Our work is the first step toward a large-scale corpus study to discover how the dynamic type
is used in practice. We have identified eight patterns and we have plans to implement analyses
for five of them (§§4.2, 4.3, 4.5, 4.6, 4.7). Next, we need to implement these analyses and develop
methods for the remaining patterns: type variables (§4.1), dependent dictionaries (§4.4), and some
uncategorized cases (§4.8). Along the way, we may of course discover additional patterns or refine
the current patterns into more-specific categories.
In parallel, we can work to improve mypy. Dependent dictionaries (§4.4) and wrapper func-

tions (§4.6) call for a more expressive typechecker. The patterns related to type variables (§§4.1,
4.2), self types (§4.3), and omitted details (§§4.7,4.8) would benefit from tools that suggest type
improvements. In fact, implementing a tool may be the most effective way to gain insight about
uncategorized Anys.

6 RELATEDWORK
There have been several corpus studies related to gradual types. Rak-amnouykit et al. [53] study
types in 2,678 Python projects from GitHub. Those projects contained thousands of instances of the
Any type, which reflects our experience. Their study focuses on which types get used and whether
the types actually typecheck, whereas our work investigates the reasoning behind the Any type to
suggest type system improvements. Jin et al. [36] study the use of non-Any types in Python projects
to uncover design patterns for complex types, providing insights to grow the type system in a way
that is complementary to our work. They find that Any is the second most common type, behind
Optional, with over 12K instances across the revision histories of 19 projects. Lin et al. [42] apply
multiple typecheckers to 13 Python projects to compare the defect reports; they do not study the
adoption of types. Corpus studies of types in R [23, 67] and Ruby [18] provided further inspiration
for our work.

, Vol. 1, No. 1, Article . Publication date: September 2024.

https://github.com/wandb/wandb

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Dibri Nsofor and Ben Greenman

Other works have studied types and code quality. Bogner and Merkel [9] study the effect of
TypeScript types on quality metrics, such as the number of code smells and the bugfix-commit
ratio, with an eye toward the Any type. They find that Any correlates positively with code smells,
which suggests that removing Any is valuable, but they also find no correlation to bugfix commits,
which may mean that Any is not an impediment to maintenance. Khan et al. [38] examine 400 bugs
that had been committed to 210 Python repositories and attempt to catch these bugs by adding
mypy annotations. Gao et al. [22] perform a similar experiment with 400 bugs in 398 JavaScript
projects, adding TypeScript and Flow annotations. Both studies concluded that at least 15 % of the
bugs could have been caught with types. Xu et al. [76] conduct a similar study using 40 bugs across
10 Python projects and find that the use of three typecheckers can detect 35% of bugs with no
additional annotations. Adding types improves the detection rate to 72 %.
We remark that corpus studies alone cannot tell the whole story about the use of the dynamic

type. Code in public repositories says nothing about the trial-and-error development work that led
to the latest checkpoint. Our study is even more limited because it considers only one version of
each codebase, unlike some related works [9, 22, 38, 76]. Other types of studies are needed to capture
the bigger picture. Interviews and observations of developers at work (such as [2, 24]) would give
highly-detailed data on sample developers. Surveys are a lightweight alternative that can reach a
broader audience [1, 4, 5, 13, 44, 59, 66]. Developers might submit examples of how and why they
use the dynamic type to an online or IDE-integrated form. Telemetry that automatically detects and
reports usage of the dynamic type is a third option. Privacy is a concern with telemetry; by way of
mitigation, prior works have relied on summary statistics [17, 27] and differential privacy [30, 77].

A final point to consider is whether lab studies can effectively assess use of the dynamic type. Lab
studies are typically confined to small, self-contained tasks (as in [15, 16, 56–58]), but the benefits
and challenges of the dynamic type shine most in complex projects. With the dynamic type, code
has more flexibility in the face of evolution and offers less guidance to developers trying to learn
the codebase. How to effectively study these tradeoffs in a lab setting is an open challenge.

7 DISCUSSION
The dynamic type is widely used, and therefore appears crucial for gradual type adoption. It also
weakens type analysis, and is thus best as a temporary stop along the road to precise types. We
have identified eight patterns of dynamic type use in mypy through a combination of manual
(in dozens of projects) and automated analysis (in 221 projects). While it remains to be seen how
often the patterns arise in a wider sample and thus how critical each pattern is at large, the
results so far suggest improvements to mypy, such as modest dependent types for configuration
dictionaries (section 4.4), and to the mypy ecosystem, such as a tool to insert Self types (section 4.3).

Looking beyond mypy, the long-term goal of this work is to develop a method for gradual type
system design: start by extending a conventional type system with the dynamic type, observe
how developers use the dynamic type, and introduce precise types that meet developers where
they are. We expect that several patterns we have found, such as dynamic instead of a type
variable (section 4.1), will lead to useful observations in related languages including Luau [11, 12]
and TypeScript [8]. Such patterns belong in a toolkit that delivers insights from big code [71] to
find common friction points and thereby balance type system expressiveness with usability.

, Vol. 1, No. 1, Article . Publication date: September 2024.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Toward a Corpus Study of the Dynamic Gradual Type 9

REFERENCES
[1] Amjad AlTadmri and Neil C. C. Brown. 2015. 37 Million Compilations: Investigating Novice Programming Mistakes in

Large-Scale Student Data. In SIGCSE. ACM, 522–527. https://doi.org/10.1145/2676723.2677258
[2] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded Copilot: How Programmers Interact with

Code-Generating Models. PACMPL 7, OOPSLA (2023), 85–111. https://doi.org/10.1145/3586030
[3] Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam Tobin-Hochstadt. 2017. Sound Gradual Typing:

only Mostly Dead. PACMPL 1, OOPSLA (2017), 54:1–54:24. https://doi.org/10.1145/3133878
[4] Brett A. Becker, Graham Glanville, Ricardo Iwashima, Claire McDonnell, Kyle Goslin, and Catherine Mooney. 2016.

Effective Compiler Error Message Enhancement for Novice Programming Students. Computer Science Education 26,
2-3 (2016), 148–175. https://doi.org/10.1080/08993408.2016.1225464

[5] Moritz Beller, Igor Levaja, Annibale Panichella, Georgios Gousios, and Andy Zaidman. 2016. How to Catch ’Em All:
WatchDog, a Family of IDE Plug-Ins to Assess Testing. In ICSE. ACM, 53–56. https://doi.org/10.1145/2897022.2897027

[6] Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek. 2019. On the Impact of Programming
Languages on Code Quality: A Reproduction Study. Transactions on Programming Languages and Systems 41, 4, Article
21 (2019), 24 pages. https://doi.org/10.1145/3340571

[7] Emery D. Berger, Petr Maj, Olga Vitek, and Jan Vitek. 2019. FSE/CACM Rebuttal2: Correcting A Large-Scale Study of
Programming Languages and Code Quality in GitHub. CoRR abs/1911.11894 (2019), 18 pages. arXiv:1911.11894

[8] Gavin Bierman, Martin Abadi, and Mads Torgersen. 2014. Understanding TypeScript. In ECOOP. ACM, 257–281.
https://doi.org/10.1007/978-3-662-44202-9_11

[9] Justus Bogner and Manuel Merkel. 2022. To Type or Not to Type? A Systematic Comparison of the Software Quality of
JavaScript and TypeScript Applications on GitHub. In MSR. ACM, 658–669. https://doi.org/10.1145/3524842.3528454

[10] Gilad Bracha. 2004. Pluggable Type Systems. https://www.bracha.org/pluggableTypesPosition.pdf Accessed
2024-07-01.

[11] Lily Brown, Andy Friesen, and Alan Jeffrey. 2021. Position Paper: Goals of the Luau Type System. In HATRA. 7 pages.
arXiv:2109.11397

[12] Lily Brown, Andy Friesen, and Alan Jeffrey. 2023. Goals of the Luau Type System, Two Years On. In HATRA. 2 pages.
https://asaj.org/papers/hatra23.pdf Accessed 2024-08-27.

[13] Neil C. C. Brown, Amjad AlTadmri, Sue Sentance, and Michael Kölling. 2018. Blackbox, Five Years On: An Evaluation of
a Large-scale Programming Data Collection Project. In ICER. ACM, 196–204. https://doi.org/10.1145/3230977.3230991

[14] Giuseppe Castagna, Guillaume Duboc, and José Valim. 2024. The Design Principles of the Elixir Type System.
Programming 8, 2 (2024), 4:1–4:39. https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2024/8/4

[15] Michael Coblenz, Michelle L. Mazurek, and Michael Hicks. 2022. Garbage Collection Makes Rust Easier to Use: A
Randomized Controlled Trial of the Bronze Garbage Collector. In ICSE. ACM, 1021–1032. https://doi.org/10.1145/
3510003.3510107

[16] Michael J. Coblenz, Jonathan Aldrich, Brad A. Myers, and Joshua Sunshine. 2020. Can Advanced Type Systems be
Usable? An Empirical Study of Ownership, Assets, and Typestate in Obsidian. PACMPL 4, OOPSLA (2020), 132:1–132:28.
https://doi.org/10.1145/3428200

[17] Russ Cox. 2023. Transparent Telemetry, Part 1. https://research.swtch.com/telemetry-intro Accessed 2024-07-01.
[18] Mark T. Daly, Vibha Sazawal, and Jeffrey S. Foster. 2009. Work In Progress: an Empirical Study of Static Typing in

Ruby. In PLATEAU. 6 pages. https://www.cs.tufts.edu/~jfoster/papers/plateau09-ruby.pdf Accessed 2024-07-07.
[19] Richard A. Eisenberg and Stephanie Weirich. 2012. Dependently Typed Programming with Singletons. In Haskell.

ACM, 117–130. https://doi.org/10.1145/2364506.2364522
[20] Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce Findler, and Vincent St-Amour. 2018. Collapsible

Contracts: Fixing a Pathology of Gradual Typing. PACMPL 2, OOPSLA (2018), 133:1–133:27. https://doi.org/10.1145/
3276503

[21] Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for Higher-Order Functions. In ICFP. 48–59. https:
//doi.org/10.1145/581478.581484

[22] Zheng Gao, Christian Bird, and Earl T. Barr. 2017. To Type or Not to Type: Quantifying Detectable Bugs in JavaScript.
In ICSE. IEEE, 758–769. https://doi.org/10.1109/ICSE.2017.75

[23] Aviral Goel and Jan Vitek. 2019. On the Design, Implementation, and Use of Laziness in R. PACMPL 3, OOPSLA (2019),
153:1–153:27.

[24] Harrison Goldstein, Joseph W. Cutler, Daniel Dickstein, Benjamin C. Pierce, and Andrew Head. 2024. Property-Based
Testing in Practice. In ICSE. ACM, Article 187, 13 pages. https://doi.org/10.1145/3597503.3639581

[25] Ben Greenman. 2022. Deep and Shallow Types for Gradual Languages. In PLDI. ACM, 580–593. https://doi.org/10.
1145/3519939.3523430

[26] Ben Greenman, Christos Dimoulas, and Matthias Felleisen. 2023. Typed–Untyped Interactions: A Comparative
Analysis. TOPLAS 45, 4 (2023), 1–54. Issue 1. https://doi.org/10.1145/3579833

, Vol. 1, No. 1, Article . Publication date: September 2024.

https://doi.org/10.1145/2676723.2677258
https://doi.org/10.1145/3586030
https://doi.org/10.1145/3133878
https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1145/2897022.2897027
https://doi.org/10.1145/3340571
https://arxiv.org/abs/1911.11894
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1145/3524842.3528454
https://www.bracha.org/pluggableTypesPosition.pdf
https://arxiv.org/abs/2109.11397
https://asaj.org/papers/hatra23.pdf
https://doi.org/10.1145/3230977.3230991
https://doi.org/10.22152/PROGRAMMING-JOURNAL.ORG/2024/8/4
https://doi.org/10.1145/3510003.3510107
https://doi.org/10.1145/3510003.3510107
https://doi.org/10.1145/3428200
https://research.swtch.com/telemetry-intro
https://www.cs.tufts.edu/~jfoster/papers/plateau09-ruby.pdf
https://doi.org/10.1145/2364506.2364522
https://doi.org/10.1145/3276503
https://doi.org/10.1145/3276503
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/581478.581484
https://doi.org/10.1109/ICSE.2017.75
https://doi.org/10.1145/3597503.3639581
https://doi.org/10.1145/3519939.3523430
https://doi.org/10.1145/3519939.3523430
https://doi.org/10.1145/3579833

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Dibri Nsofor and Ben Greenman

[27] Ben Greenman, Alan Jeffrey, Shriram Krishnamurthi, and Mitesh Shah. 2024. Privacy-Respecting Type Error Telemetry
at Scale. Programming 8, 3 (2024), 12:1–12:30. https://doi.org/10.22152/programming-journal.org/2024/8/12

[28] Ben Greenman and Zeina Migeed. 2018. On the Cost of Type-Tag Soundness. In PEPM. ACM, 30–39. https:
//doi.org/10.1145/3162066

[29] Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey, Robert Bruce Findler, Jan Vitek, and Matthias Felleisen.
2019. How to Evaluate the Performance of Gradual Type Systems. Journal of Functional Programming 29, e4 (2019),
1–45. https://doi.org/10.1145/3473573

[30] Yu Hao, Sufian Latif, Hailong Zhang, Raef Bassily, and Atanas Rountev. 2021. Differential Privacy for Coverage Analysis
of Software Traces. In ECOOP, Vol. 194. Schloss Dagstuhl, 8:1–8:25. https://doi.org/10.4230/LIPIcs.ECOOP.2021.8

[31] Anders Hejlsberg. 2023. TypeScript: Static Types for JavaScript. https://icfp23.sigplan.org/details/icfp-2023-icfp-
keynotes/52/TypeScript-Static-types-for-JavaScript

[32] Charles A. Hoare. 1989. Hints on Programming-Language Design. Prentice-Hall, 193–216.
[33] Joshua Hoeflich, Robert Bruce Findler, and Manuel Serrano. 2022. Highly illogical, Kirk: spotting type mismatches

in the large despite broken contracts, unsound types, and too many linters. PACMPL 6, OOPSLA2 (2022), 479–504.
https://doi.org/10.1145/3563305

[34] Instagram. 2024. MonkeyType. https://github.com/Instagram/MonkeyType Accessed 2024-07-01.
[35] IVRE Team. 2024. ivre. https://github.com/ivre/ivre Accessed 2024-08-09.
[36] Wuxia Jin, Dinghong Zhong, Zifan Ding, Ming Fan, and Ting Liu. 2021. Where to Start: Studying Type Annotation

Practices in Python. In ASE. IEEE, 529–541. https://doi.org/10.1109/ASE51524.2021.9678947
[37] Andrew M. Kent, David Kempe, and Sam Tobin-Hochstadt. 2016. Occurrence Typing Modulo Theories. In PLDI. ACM,

296–309. https://doi.org/10.1145/2908080.2908091
[38] Faizan Khan, Boqi Chen, Daniel Varro, and ShaneMcIntosh. 2022. An Empirical Study of Type-Related Defects in Python

Projects. IEEE Transactions on Software Engineering 48, 8 (2022), 3145–3158. https://doi.org/10.1109/TSE.2021.3082068
[39] Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek. 2019. Toward Efficient Gradual Typing for

Structural Types via Coercions. In PLDI. ACM, 517–532. https://doi.org/10.1145/3314221.3314627
[40] Jukka Lehtosalo. 2019. Our Journey to Checking 4 Million Lines of Python. https://dropbox.tech/application/our-

journey-to-type-checking-4-million-lines-of-python
[41] Daan Leijen. 2005. Extensible Records with Scoped Labels. In TFP. 179–194. https://www.microsoft.com/en-us/

research/publication/extensible-records-with-scoped-labels/
[42] Xinrong Lin, Baojian Hua, Yang Wang, and Zhizhong Pan. 2023. Towards a Large-Scale Empirical Study of Python

Static Type Annotations. In SANER. IEEE, 414–425. https://doi.org/10.1109/SANER56733.2023.00046
[43] Kuang-Chen Lu, Ben Greenman, Carl Meyer, Dino Viehland, Aniket Panse, and Shriram Krishnamurthi. 2023. Gradual

Soundness: Lessons from Static Python. Programming 7, 1 (2023), 2:1–2:40.
[44] Kuang-Chen Lu, Shriram Krishnamurthi, Kathi Fisler, and Ethel Tshukudu. 2023. What Happens When Students

Switch (Functional) Languages (Experience Report). PACMPL 7, ICFP, Article 215 (2023), 17 pages. https://doi.org/10.
1145/3607857

[45] Jacob Matthews and Robert Bruce Findler. 2009. Operational Semantics for Multi-Language Programs. Transactions on
Programming Languages and Systems 31, 3 (2009), 1–44. https://doi.org/10.1145/1498926.1498930

[46] Robin Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput. System Sci. 17, 3 (1978), 348–375.
[47] Mozilla. 2022. The Agnostic GitHub API. https://github.com/mozilla/agithub
[48] Fabian Muehlboeck and Ross Tate. 2017. Sound Gradual Typing is Nominally Alive and Well. PACMPL 1, OOPSLA

(2017), 56:1–56:30. https://doi.org/10.1145/3133880
[49] Mypy Team. 2023. Mypy 1.0 Released. https://mypy-lang.blogspot.com/2023/02/mypy-10-released.html
[50] Mypy Team. 2024. Error Codes. https://mypy.readthedocs.io/en/stable/error_codes.html
[51] Mypy Team. 2024. Mypy Language. http://www.mypy-lang.org
[52] Nanonote Team. 2024. nanonote. https://github.com/agateau/nanonote Accessed 2024-08-09.
[53] Ingkarat Rak-amnouykit, Daniel McCrevan, Ana L. Milanova, Martin Hirzel, and Julian Dolby. 2020. Python 3 types in

the wild: a tale of two type systems. In DLS. ACM, 57–70. https://doi.org/10.1145/3426422.3426981
[54] Baishakhi Ray, Prem Devanbu, and Vladimir Filkov. 2019. Rebuttal to Berger et al., TOPLAS 2019. CoRR abs/1911.07393

(2019), 12 pages. arXiv:1911.07393
[55] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014. A Large Scale Study of Programming

Languages and Code Quality in GitHub. In FSE. ACM, 155–165. https://doi.org/10.1145/2635868.2635922
[56] Jan Reichl, Stefan Hanenberg, and Volker Gruhn. 2023. Does the Stream API Benefit from Special Debugging

Facilities? A Controlled Experiment on Loops and Streams with Specific Debuggers. In ICSE. IEEE, 576–588. https:
//doi.org/10.1109/ICSE48619.2023.00058

[57] Phyllis Reisner. 1981. Human Factors Studies of Database Query Languages: A Survey and Assessment. Comput.
Surveys 13, 1 (1981), 13–31. https://doi.org/10.1145/356835.356837

, Vol. 1, No. 1, Article . Publication date: September 2024.

https://doi.org/10.22152/programming-journal.org/2024/8/12
https://doi.org/10.1145/3162066
https://doi.org/10.1145/3162066
https://doi.org/10.1145/3473573
https://doi.org/10.4230/LIPIcs.ECOOP.2021.8
https://icfp23.sigplan.org/details/icfp-2023-icfp-keynotes/52/TypeScript-Static-types-for-JavaScript
https://icfp23.sigplan.org/details/icfp-2023-icfp-keynotes/52/TypeScript-Static-types-for-JavaScript
https://doi.org/10.1145/3563305
https://github.com/Instagram/MonkeyType
https://github.com/ivre/ivre
https://doi.org/10.1109/ASE51524.2021.9678947
https://doi.org/10.1145/2908080.2908091
https://doi.org/10.1109/TSE.2021.3082068
https://doi.org/10.1145/3314221.3314627
https://dropbox.tech/application/our-journey-to-type-checking-4-million-lines-of-python
https://dropbox.tech/application/our-journey-to-type-checking-4-million-lines-of-python
https://www.microsoft.com/en-us/research/publication/extensible-records-with-scoped-labels/
https://www.microsoft.com/en-us/research/publication/extensible-records-with-scoped-labels/
https://doi.org/10.1109/SANER56733.2023.00046
https://doi.org/10.1145/3607857
https://doi.org/10.1145/3607857
https://doi.org/10.1145/1498926.1498930
https://github.com/mozilla/agithub
https://doi.org/10.1145/3133880
https://mypy-lang.blogspot.com/2023/02/mypy-10-released.html
https://mypy.readthedocs.io/en/stable/error_codes.html
http://www.mypy-lang.org
https://github.com/agateau/nanonote
https://doi.org/10.1145/3426422.3426981
https://arxiv.org/abs/1911.07393
https://doi.org/10.1145/2635868.2635922
https://doi.org/10.1109/ICSE48619.2023.00058
https://doi.org/10.1109/ICSE48619.2023.00058
https://doi.org/10.1145/356835.356837

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Toward a Corpus Study of the Dynamic Gradual Type 11

[58] Nico Ritschel, Anand Ashok Sawant, David Weintrop, Reid Holmes, Alberto Bacchelli, Ronald Garcia, Chandrika K.
R., Avijit Mandal, Patrick Francis, and David C. Shepherd. 2023. Training Industrial End-User Programmers with
Interactive Tutorials. Software: Practice and Experience 53, 3 (2023), 729–747. https://doi.org/10.1002/SPE.3167

[59] Eric L. Seidel, Ranjit Jhala, andWestleyWeimer. 2018. DynamicWitnesses for Static Type Errors (or, Ill-Typed Programs
Usually Go Wrong). Journal of Functional Programming 28 (2018), e13. https://doi.org/10.1017/S0956796818000126

[60] Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In SFP. University of Chicago,
TR-2006-06. 81–92. http://scheme2006.cs.uchicago.edu/scheme2006.pdf

[61] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015. Refined Criteria for Gradual
Typing. In SNAPL. Schloss Dagstuhl, 274–293. https://doi.org/10.4230/LIPIcs.SNAPL.2015.274

[62] T. Stephen Strickland, Sam Tobin-Hochstadt, and Matthias Felleisen. 2009. Practical Variable-Arity Polymorphism. In
ESOP. Springer, 32–46. https://doi.org/10.1007/978-3-642-00590-9_3

[63] Chenghao Su, Lin Chen, Yanhui Li, and Yuming Zhou. 2024. Static Blame for Gradual Typing. Journal of Functional
Programming 34, e4 (2024), 44 pages. https://doi.org/10.1017/S0956796824000029

[64] Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage Migration: from Scripts to Programs. In DLS.
964–974. https://doi.org/10.1145/1176617.1176755

[65] Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and Implementation of Typed Scheme. In POPL. ACM,
395–406. https://doi.org/10.1145/1328438.1328486

[66] Preston Tunnell Wilson, Ben Greenman, Justin Pombrio, and Shriram Krishnamurthi. 2018. The Behavior of Gradual
Types: a User Study. In DLS. ACM, 1–12. https://doi.org/10.1145/3276945.3276947

[67] Alexi Turcotte, Aviral Goel, Filip Krikava, and Jan Vitek. 2020. Designing types for R, empirically. PACMPL 4, OOPSLA
(2020), 181:1–181:25. https://doi.org/10.1145/3428249

[68] TypeScript Developers. 2024. Keyof Type Operator. https://www.typescriptlang.org/docs/handbook/2/keyof-
types.html Accessed 2024-07-01.

[69] Guido van Rossum, Jukka Lehtosalo, and Łukasz Langa. 2024. PEP 484 Type Hints. https://www.python.org/dev/
peps/pep-0484

[70] Niki Vazou. 2016. Liquid Haskell: Haskell as a Theorem Prover. Ph. D. Dissertation. University of California, San Diego,
USA. http://www.escholarship.org/uc/item/8dm057ws

[71] Martin Vechev and Eran Yahav. 2016. Programming with “Big Code”. Foundations and Trends in Programming
Languages 3, 4 (2016), 231–284. https://doi.org/10.1561/2500000028

[72] Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. 2017. Big Types in Little Runtime: Open-World Soundness
and Collaborative Blame for Gradual Type Systems. In POPL. ACM, 762–774. https://doi.org/10.1145/3009837.3009849

[73] WANDB Team. 2024. wandb. https://github.com/wandb/wandb Accessed 2024-08-09.
[74] Ashton Wiersdorf, Stephen Chang, Matthias Felleisen, and Ben Greenman. 2024. Type Tailoring. In ECOOP. Schloss

Dagstuhl, (to appear).
[75] Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Östlund, and Jan Vitek. 2010. Integrating Typed

and Untyped Code in a Scripting Language. In POPL. ACM, 377–388. https://doi.org/10.1145/1706299.1706343
[76] Wenjie Xu, Lin Chen, Chenghao Su, Yimeng Guo, Yanhui Li, Yuming Zhou, and Baowen Xu. 2023. How Well Static

Type Checkers Work with Gradual Typing? A Case Study on Python. In ICPC. IEEE, 242–253. https://doi.org/10.1109/
ICPC58990.2023.00039

[77] Hailong Zhang, Yu Hao, Sufian Latif, Raef Bassily, and Atanas Rountev. 2020. Differentially-Private Software Frequency
Profiling Under Linear Constraints. PACMPL 4, OOPSLA (2020), 203:1–203:24. https://doi.org/10.1145/3428271

, Vol. 1, No. 1, Article . Publication date: September 2024.

https://doi.org/10.1002/SPE.3167
https://doi.org/10.1017/S0956796818000126
http://scheme2006.cs.uchicago.edu/scheme2006.pdf
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.1007/978-3-642-00590-9_3
https://doi.org/10.1017/S0956796824000029
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/3276945.3276947
https://doi.org/10.1145/3428249
https://www.typescriptlang.org/docs/handbook/2/keyof-types.html
https://www.typescriptlang.org/docs/handbook/2/keyof-types.html
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484
http://www.escholarship.org/uc/item/8dm057ws
https://doi.org/10.1561/2500000028
https://doi.org/10.1145/3009837.3009849
https://github.com/wandb/wandb
https://doi.org/10.1145/1706299.1706343
https://doi.org/10.1109/ICPC58990.2023.00039
https://doi.org/10.1109/ICPC58990.2023.00039
https://doi.org/10.1145/3428271

	Abstract
	1 Introduction
	2 Background: Optional Typing and Mypy
	3 Corpus Study Design
	3.1 Building the Corpus
	3.2 Filtering Any Types
	3.3 Manually Studying Patterns

	4 Patterns of Dynamic Type Use
	4.1 Dynamic Instead of a Type Variable
	4.2 Implicit Dynamic Due to Unconstrained Type Variables
	4.3 Dynamic Instead of a Self Type
	4.4 Dynamic for Dependent Dictionaries
	4.5 Dynamic for Method Overrides
	4.6 Dynamic for Wrapper Functions
	4.7 Dynamic to Hide Unnecessary Details
	4.8 Uncategorized Dynamic Types

	5 Future Work
	6 Related Work
	7 Discussion
	References

