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Toward a Corpus Study of the Dynamic Gradual Type
DIBRI NSOFOR, University of Utah, USA
BEN GREENMAN, University of Utah, USA

Gradually-typed languages feature a dynamic type that supports implicit coercions, greatly weakening the
type system but making types easier to adopt. Understanding how developers use this dynamic type is a
critical question for the design of useful and usable type systems. This paper reports on an in-progress corpus
study of the dynamic type in Python, targeting 221 GitHub projects that use the mypy type checker. The study
reveals eight patterns-of-use for the dynamic type, which have implications for future refinements of the
mypy type system and for tool support to encourage precise type annotations.
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1 INTRODUCTION
Programming languages have traditionally forced developers to choose between the “flexibility and
simplicity” of untyped code [32] and the maintenance benefits of static types (e.g. [31]). Gradual
typing offers a compromise through a flexible dynamic type that can be used in any context without
a type error [60, 61]. For example, a function that expects an argument of the dynamic type (named
Any in Python) can treat the argument as though it has any precise type; the code below assumes
its dynamic argument is a class, adds a method to it, and returns the updated class:

import types; from typing import Any # the dynamic type in Python

def addPrice(cls: Any) -> Any: # mixin, add method to class
cls.price = types.MethodType(lambda self: 99, cls)
return cls

A caller can send any value to the addPrice function without raising a compile time type error.
Incorrect calls, such as addPrice(11) result in a runtime error when executed.
The dynamic type adds a degree of optimism to the typechecker, fundamentally changing the

nature of type analysis. Without the dynamic type, a well-typed program is certifiably made of
parts that fit together (it cannot “go wrong” [46]). With the dynamic type, a well-typed program
is code that may fit together provided that every occurrence of the dynamic type receives well-
behaved values at runtime—which, as noted in work on static blame [63], may be impossible.
Moreover, the dynamic type renders type analysis unsound (unless coercions are backed by runtime
checks, see section 2): any value can inhabit any type after coercion. The dynamic type also
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2 Dibri Nsofor and Ben Greenman

pokes loopholes into other traditional properties. For example, the simply-typed lambda calculus is
strongly normalizing, but loses this property with the addition of a dynamic type [45].
Given the perils of the dynamic type, it ought to be used sparingly: either as a temporary

measure in prototype software, or as a last resort when precise types do not exist. And yet, its
use is widespread. In our collection of 221 projects that use the mypy typechecker (section 3),
there are 28,478 occurrences of the dynamic Any type. Understanding why these Anys appear
in widely-used code is a critical question for the adoption of types. If more-precise alternatives
exist, that motivates tool support for writing types. If the Any types cover up limitations of the
typechecker, that motivates research on type system design. If the rationale for certain Any types is
unclear, that motivates interviews and developer surveys.
This paper is a progress report of our journey to discover the precise reason behind Any types

across a large corpus of Python projects. Based on a combination of manual and script-driven
analysis on a small number of sample projects, it presents:

• the design of a corpus study to study use of the dynamic type (section 3),
• eight usage patterns (section 4) and discussions of how to identify the patterns automatically.

A major goal of this paper is to solicit early-stage feedback on the design of our corpus study
experiment. Automated software analysis is a powerful but dangerous tool, as flaws in the protocol
can lead to questionable conclusions [6, 7, 54, 55]. In particular, our methods for detecting usage
patterns must guard against false positives before we apply them at scale. The paper concludes
with future work (section 5), related work (section 6), and a discussion that positions this study in
the broader context of gradual languages (section 7).

2 BACKGROUND: OPTIONAL TYPING AND MYPY
Gradually-typed languages come in many varieties because the question of how to enforce static
types in the midst of untyped code exposes a complex design space. Full enforcement via behavioral
contracts is a compelling vision [21, 64], but leads to high run-time overhead [29] without custom
runtime support [3, 20, 39]. One alternative is to enforce only the top-level shape of types, but this
can still lead to overheads of 2x or more [25, 28, 72]. A second alternative is to forbid untyped data
structures from entering typed code [43, 48, 75]. A third alternative is to forgo enforcement (and
type soundness) altogether. This third option is the most popular choice [26], and is known as
optional typing [10].
Mypy is an optional typing system for Python [51]. It equips the PEP 484 syntax for types [69]

with static checks that detect inconsistencies between types and code. Mypy can efficiently analyze
millions of lines of code [40] and has been widely adopted. Mypy supports annotations on variable,
class, and function declarations. Developers can annotate as many or as few of these positions as
they choose. By default, unannotated positions receive the dynamic Any type, though developers can
change this default through configuration options that fine-tune mypy or by writing a comment of
the form #type:ignore[ERR] with ERR replaced by a specific mypy error code [50]. For programs
that depend on untyped libraries, developers can write interfaces, called type stubs, that declare
types for library exports. The (untyped) definitions of these exports are not typechecked, but their
uses (in typed code) are typechecked.
In summary, there are several ways that the Any type can enter a mypy codebase: explicitly

through developer-provided Any annotations, implicitly through configuration options, and ex-
plicitly through lines with #type:ignore comments. All three sources are important for a corpus
study. But whereas configuration options and comments come with metadata to describe how they
systematically incorporate an Any type, developer-provided annotations require manual analysis.
The main focus of this paper is on the manual analysis.
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Study PatternsFilter Analysis Engine

Pre-corpus Study

Corpus Study

Current Milestone

221
REPOS

79000
REPOS

𝝉++
Fig. 1. Project overview with a marker at the current milestone: Study Patterns

3 CORPUS STUDY DESIGN
Our goal is to learn why developers resort to the dynamic type by analyzing thousands of open-
source projects. Currently, we are in the midst of an initial, formative stage of the project (herein
called the pre-corpus study), in which we study instances of the dynamic type by hand. As patterns
emerge, the next step is to build automated tools and measure how common each pattern is across
our corpus of approximately 79,000 projects. Figure 1 sketches this overall pipeline and highlights
the current focus. This section describes our protocols for building a corpus (section 3.1), filtering
uninteresting instances of the Any type (section 3.2), and manually finding patterns (section 3.3).

3.1 Building the Corpus
We built a corpus by querying GitHub via Mozilla’s agithub utility [47] and filtering the results. The
query asked for Python projects with a modest number of GitHub stars (80 stars) and at least one of
the following configuration files, which may contain mypy options: mypy.ini, pyproject.toml,
setup.cfg, and config. This query resulted in over 79K projects. We chose a sample of 221 projects
that had at least 250 GitHub stars and that actually used mypy (confirmed manually) as a target for
the pre-corpus study.

3.2 Filtering Any Types
Mypy comes with a utility called stubgen that extracts the type annotations from a Python file into
a type stub interface (section 2). We use these stubs as the first step toward manual analysis. The
stubs from our 221 sample projects contain 318,564 lines of annotations that include the Any type.
Many of the annotations are of low priority for building formative hypotheses. First, method

annotations whose only Any is in the first argument position are common and often uninteresting;
these come about because mypy infers Any when a method argument lacks an annotation. Second,
a file may contain several duplicate signatures. After filtering both sorts of annotations, we arrived
at 41,447 distinct lines in which to search for patterns.
The majority of annotations in project files are for functions or methods. We further classified

these arrow types into three categories using a script: methods with Any for their first parameter
(i.e., self parameter), arrows with Any inside a callback argument (Callable[T1,T2]), and arrows
with Any inside a dictionary argument (Dict[T1,T2] or Mapping[T1,T2]). These categories helped
to guide our manual analysis.

3.3 Manually Studying Patterns
Both authors of this paper manually examined type annotations and code to identify patterns of
use for the Any type. One author studied every annotation in 10 large projects for a total of over
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4 Dibri Nsofor and Ben Greenman

5K annotations. The other author took an ad-hoc sample of 30 projects (spread throughout the
alphabet, from BentoML to wandb) and sampled types in those projects that used Any inside of a
Callable or Dict type, inspecting a total of 92 annotations. Whenever the authors found an Any
type that seemed likely to reveal typing challenges, they searched for its origin in the source code
to learn more.

4 PATTERNS OF DYNAMIC TYPE USE
Ourmanual study of types and code in a few dozen sample projects has revealed eight ways in which
developers appear to use the Any type in mypy (implicitly and explicitly). These eight categories
range from specific anti-patterns to vague cases where precise types exist but the code uses Any
nevertheless. Below, we present each pattern with a code example and discuss how source-code
analysis might identify the pattern at scale. For some patterns, we have implemented a related
analysis; where applicable, we report data based on our 221 sample projects.

4.1 Dynamic Instead of a Type Variable
Every occurrence of the Any type is a wildcard. By contrast, type variables can introduce a degree
of uniformity. Consider this equality function from our corpus:

def eq(a: Any, b: Any) -> bool:
return a == b

Every call of the form eq(x, y) is type correct, even though the function cannot return True
when its arguments have different types. If the type signature used a variable in place of the two
Anys, developers would know more about the function’s behavior (even though mypy cannot easily
report a type error, see section 4.2). If the intent is indeed to allow type-mismatched inputs, the
type could say so with distinct variables for its two parameters.
We do not have an automatic analysis for this pattern. It is unclear what to look for in a type

signature: although type variables would help this eq function, other functions that take two Anys
as input may not benefit. As another example, we have found reduce functions that return an Any
and therefore fail to describe type constraints between their inputs and outputs. But, not every
function with Any as its return type is parametrically polymorphic in the same way as a reducer.

4.2 Implicit Dynamic Due to Unconstrained Type Variables
Two occurrences of the same type variable must be instantiated with matching types. Mypy’s
default notion of matching is rather loose because of subtyping, and thus may lead to surprising
outcomes. In the following example, the call to count_cars instantiates the variable Car as
both a string and a number; this is not a type error because strings and numbers have a common
supertype in mypy:

Car = TypeVar('Car') # car is unconstrained / unbounded
Traffic = Union[Car, List['Traffic']]

def count_cars(x: Traffic, car: Car) -> int:
if isinstance(x, List):

x.append(car)
return len(x)

count_cars(["FJ40", "Baja Buggy"], 5) # NOT a type error
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Toward a Corpus Study of the Dynamic Gradual Type 5

To prevent such weakening, type variables must be declared with either a set of constraints or an
upper bound (e.g., TypeVar('Car', str, bytes) or TypeVar('Car', bound=AnyStr) ).

Unconstrained type variables are straightforward to detect: there are 471 of them across our 221
sample projects. Discovering where these variables lead to weak types is another matter, and this
calls for instrumentation within mypy to report variables that get instantiated with a top type.

4.3 Dynamic Instead of a Self Type
Some methods that return their receiver object use Any as the return type to allow for subclass
polymorphism. In the example below, the return type Shape would be too conservative (it would
prevent the use of subclass methods after Circle().move(...)) and the return type Circlewould
be unsound. Using Any gets rid of spurious errors by skipping type analysis altogether:

class Shape:
def move(self, dist: int) -> Any: # imprecise return type, Self is better
self.position += dist
return self

class Circle(Shape):
pass

Circle().move(4)

A precise alternative is Self as a return type, which propagates the type of the receiver to the
result. Mypy added support for Self in version 1.0 [49]; code in our corpus evidently needs an
upgrade, either because of a knowledge gap or because it was written before the mypy 1.0 release.
To flag this pattern, an analysis must find methods that return their first parameter and use Any as
the return type.

4.4 Dynamic for Dependent Dictionaries
The mypy type Dict[T1, T2] describes simple dictionaries with keys of type T1 and values of
type T2. This type cannot express dictionaries in which specific keys point to values of different
types. In the example below, for instance, the key "price" assumes float values:

def get_discount(item: Dict[str, Any]) -> int:
if "price" in item:
discount = item["price"] * 0.15
return item["price"] - discount

This is a modest form of dependent types that appears throughout our corpus. In the 221 sample
projects, there are 6,831 signatures that use Any for dictionary values (i.e., Dict, Dict[T1,Any],
or Mapping[T1,Any]). Row polymorphism using scoped labels [41] or singleton types (as in
Haskell [19], Typed Racket [65], or Elixir [14]) may suffice to improve mypy. Alternatives are
to adapt TypeScript’s indexed access types [68], introduce a metaprogramming layer for type
tailoring [74], or integrate an SMT solver [37, 70].

4.5 Dynamic for Method Overrides
TypeScript infamously allows covariant method overrides—even though they are unsound—because
developers apparently want to write subclass methods that assume a narrow set of inputs [8]. Mypy
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6 Dibri Nsofor and Ben Greenman

prevents covariant overrides by default, but developers can opt for unsound overrides by writing a
special comment after the subclass method signature. Such comments do not use Any directly, but
are nevertheless relevant to our study of how developers choose to weaken a type checker. The
following example is from the ivre [35] project:

class BinaryIO(IO[bytes]):
def write(self, s: Union[bytes, bytearray]) -> int:
pass

class FileOpener(BinaryIO):
def write(self, s: bytes) -> int: # type: ignore[override]
return self.fdesc.write(s)

We have written an analysis for this pattern that finds these special comments, looks for the
parent class (which may be in a different file, or inaccessible to us in another project), and examines
the relationship between the parent and child method types. There were 652 occurrences of this
special comment across our sample corpus. We found the parent class for 146 such comments, and
80.8 % (118 / 146) of these cases use different argument types for parent and child methods. These
may be covariant overrides, but further analysis is needed to confirm.

4.6 Dynamic for Wrapper Functions
A wrapper takes a function as input and returns a modified or enhanced version of the function.
The wrapper below, for instance, takes a function fn that expects a statistics object and returns a
function that expects a string; the wrapped function converts input strings to objects and calls the
original fn function:

def validate_stat(fn: Callable) -> Callable:
def string_fn(self, stat: str, *args, **kwargs) -> Callable:
stat = string_to_stat(stat)
return fn(self, stat, *args, **kwargs)

return string_fn

The type for this wrapper is merely Callable -> Callable, which says nothing about the
close relationship between the input and output functions. It may be possible to adapt types for
variable-arity polymorphism [62] to directly express the concept of wrappers.

We have written an analysis for this pattern. It examines functions that have a parameter with the
plain type Callable and reports a match if this parameter is called always with catch-all positional
and keyword arguments. There are 906 such functions across the sample projects.

4.7 Dynamic to Hide Unnecessary Details
When types require details that are unimportant to the code at hand, developers can use the Any
type to fill in the holes. For example, this function from the nanonote [52] project simply returns
the last value from a dictionary. Any dictionary is a valid input, so the signature asks for a value of
type Dict[Any, Any] (a type variable would be reasonable here):

def _get_dict_last_added_item(dct: Dict[Any, Any]) -> Any:
return list(dct.values())[-1]
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Similar examples come from parameterized types such as PathLike[T] or Callable[T1, T2].
Replacing the parameter with Any is a simple, valid choice. It might be more precise to ask for a
top parameterized type, but that requires thought about whether each parameter should use the
top type (object) or bottom type (Never) depending on whether it is co- or contra-variant.
We do not have an automatic analysis for this pattern. One idea is to collect all uses of a

parameter such as dct and see what constraints the uses impose on its type parameters. If there
are no constraints and the parameter type is Any, we have a match.

4.8 Uncategorized Dynamic Types
Many Any occurrences do not fit a clear pattern. Some could easily be replaced with precise
alternatives. For example, the wandb [73] project contains a function that always raises an exception
but gives Any rather than Never (or NoReturn) as its return type:

def __getattr__(self, key: str) -> Any:
if not key.startswith("_"):
raise wandb.Error(f"...")

else:
raise AttributeError

Refining such types may not be a priority for developers. Perhaps they would accept a patch
generated through the use of a typing tool, such as Scotty [33] or MonkeyType [34].

5 FUTUREWORK
Our work is the first step toward a large-scale corpus study to discover how the dynamic type
is used in practice. We have identified eight patterns and we have plans to implement analyses
for five of them (§§4.2, 4.3, 4.5, 4.6, 4.7). Next, we need to implement these analyses and develop
methods for the remaining patterns: type variables (§4.1), dependent dictionaries (§4.4), and some
uncategorized cases (§4.8). Along the way, we may of course discover additional patterns or refine
the current patterns into more-specific categories.
In parallel, we can work to improve mypy. Dependent dictionaries (§4.4) and wrapper func-

tions (§4.6) call for a more expressive typechecker. The patterns related to type variables (§§4.1,
4.2), self types (§4.3), and omitted details (§§4.7,4.8) would benefit from tools that suggest type
improvements. In fact, implementing a tool may be the most effective way to gain insight about
uncategorized Anys.

6 RELATEDWORK
There have been several corpus studies related to gradual types. Rak-amnouykit et al. [53] study
types in 2,678 Python projects from GitHub. Those projects contained thousands of instances of the
Any type, which reflects our experience. Their study focuses on which types get used and whether
the types actually typecheck, whereas our work investigates the reasoning behind the Any type to
suggest type system improvements. Jin et al. [36] study the use of non-Any types in Python projects
to uncover design patterns for complex types, providing insights to grow the type system in a way
that is complementary to our work. They find that Any is the second most common type, behind
Optional, with over 12K instances across the revision histories of 19 projects. Lin et al. [42] apply
multiple typecheckers to 13 Python projects to compare the defect reports; they do not study the
adoption of types. Corpus studies of types in R [23, 67] and Ruby [18] provided further inspiration
for our work.
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Other works have studied types and code quality. Bogner and Merkel [9] study the effect of
TypeScript types on quality metrics, such as the number of code smells and the bugfix-commit
ratio, with an eye toward the Any type. They find that Any correlates positively with code smells,
which suggests that removing Any is valuable, but they also find no correlation to bugfix commits,
which may mean that Any is not an impediment to maintenance. Khan et al. [38] examine 400 bugs
that had been committed to 210 Python repositories and attempt to catch these bugs by adding
mypy annotations. Gao et al. [22] perform a similar experiment with 400 bugs in 398 JavaScript
projects, adding TypeScript and Flow annotations. Both studies concluded that at least 15 % of the
bugs could have been caught with types. Xu et al. [76] conduct a similar study using 40 bugs across
10 Python projects and find that the use of three typecheckers can detect 35% of bugs with no
additional annotations. Adding types improves the detection rate to 72 %.
We remark that corpus studies alone cannot tell the whole story about the use of the dynamic

type. Code in public repositories says nothing about the trial-and-error development work that led
to the latest checkpoint. Our study is even more limited because it considers only one version of
each codebase, unlike some related works [9, 22, 38, 76]. Other types of studies are needed to capture
the bigger picture. Interviews and observations of developers at work (such as [2, 24]) would give
highly-detailed data on sample developers. Surveys are a lightweight alternative that can reach a
broader audience [1, 4, 5, 13, 44, 59, 66]. Developers might submit examples of how and why they
use the dynamic type to an online or IDE-integrated form. Telemetry that automatically detects and
reports usage of the dynamic type is a third option. Privacy is a concern with telemetry; by way of
mitigation, prior works have relied on summary statistics [17, 27] and differential privacy [30, 77].

A final point to consider is whether lab studies can effectively assess use of the dynamic type. Lab
studies are typically confined to small, self-contained tasks (as in [15, 16, 56–58]), but the benefits
and challenges of the dynamic type shine most in complex projects. With the dynamic type, code
has more flexibility in the face of evolution and offers less guidance to developers trying to learn
the codebase. How to effectively study these tradeoffs in a lab setting is an open challenge.

7 DISCUSSION
The dynamic type is widely used, and therefore appears crucial for gradual type adoption. It also
weakens type analysis, and is thus best as a temporary stop along the road to precise types. We
have identified eight patterns of dynamic type use in mypy through a combination of manual
(in dozens of projects) and automated analysis (in 221 projects). While it remains to be seen how
often the patterns arise in a wider sample and thus how critical each pattern is at large, the
results so far suggest improvements to mypy, such as modest dependent types for configuration
dictionaries (section 4.4), and to the mypy ecosystem, such as a tool to insert Self types (section 4.3).

Looking beyond mypy, the long-term goal of this work is to develop a method for gradual type
system design: start by extending a conventional type system with the dynamic type, observe
how developers use the dynamic type, and introduce precise types that meet developers where
they are. We expect that several patterns we have found, such as dynamic instead of a type
variable (section 4.1), will lead to useful observations in related languages including Luau [11, 12]
and TypeScript [8]. Such patterns belong in a toolkit that delivers insights from big code [71] to
find common friction points and thereby balance type system expressiveness with usability.
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