
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Making Hay fromWheats: A Classsourcing Method to Identify Misconceptions

SIDDHARTHA PRASAD, Brown University, USA

BEN GREENMAN, Brown University, USA

TIM NELSON, Brown University, USA

JOHN WRENN, Brown University, USA

SHRIRAM KRISHNAMURTHI, Brown University, USA

Novice programmers often begin coding with a poor understanding of the task at hand and end up solving the wrong problem. A

promising way to put novices on the right track is to have them write examples first, before coding, and provide them with feedback

by evaluating the examples on a suite of chaff implementations that are flawed in subtle ways. This feedback, however, is only as good

as the chaffs themselves. Instructors must anticipate misconceptions and avoid expert blind spots to make a useful suite of chaffs.

This paper conjectures that novices’ incorrect examples are a rich source of insight and presents a classsourcing method for

identifying misconceptions. First off, we identify incorrect examples using known, correct wheat implementations. The method is to

manually cluster incorrect examples by semantic similarity, summarize each cluster with a potential misconception, and use the analysis

to generate chaffs—thereby deriving a useful by-product (hay) from examples that fail the wheats. Classsourced misconceptions have

revealed expert blind spots and drawn attention to chaffs that seldom arose in practice, one of which had an undiscovered bug.

CCS Concepts: • Social and professional topics → Computing education.

Additional Key Words and Phrases: problem understanding, examples-first, Examplar

ACM Reference Format:
Siddhartha Prasad, Ben Greenman, Tim Nelson, John Wrenn, and Shriram Krishnamurthi. 2022. Making Hay from Wheats: A

Classsourcing Method to Identify Misconceptions. In Koli Calling ’22: 22nd Koli Calling International Conference on Computing Education

Research (Koli 2022), November 17–20, 2022, Koli, Finland. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3564721.3564726

1 EXECUTABLE EXAMPLES, WHEATS, AND CHAFFS

Before novices begin coding the solution to a programming problem, it is important that they understand the problem to

avoid losing time and missing learning objectives. Unfortunately, misconceptions can hinder understanding [14, 16, 21].

A promising way to detect misconceptions and quickly provide feedback is via executable examples, as implemented

by tools such as CodeWrite [6] and Examplar [22, 23]. In Examplar, the method is to ask novices for examples and to

provide feedback on their example suites using hidden correct (wheat) and incorrect (chaff) solutions. Students are

given feedback on validity (did all examples pass the wheat?) and thoroughness (how many chaffs did they catch?).

Consider the task of computing the median of a list of numbers. Examples consist of input lists and output numbers.

The first column in table 1 presents three examples. The remaining columns are based on one wheat, which correctly

implements median, and two chaffs, which return the average (mean) and middle element (middle) of a list. These

chaffs are a good source of feedback because they agree with the wheat on some examples, but not all. The challenge

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

Manuscript submitted to ACM

1

HTTPS://ORCID.ORG/0000-0001-7936-8147
HTTPS://ORCID.ORG/0000-0001-7078-9287
HTTPS://ORCID.ORG/0000-0002-9377-9943
HTTPS://ORCID.ORG/0000-0002-0588-8649
HTTPS://ORCID.ORG/0000-0001-5184-1975
https://doi.org/10.1145/3564721.3564726

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

Koli 2022, November 17–20, 2022, Koli, Finland Siddhartha Prasad, Ben Greenman, Tim Nelson, John Wrenn, and Shriram Krishnamurthi

Table 1. Executable examples, a wheat, and two chaffs for a median function

Example Wheat: median Chaff 1: mean Chaff 2: middle

median([1, 2, 3]) is 2 ✓ ✓ ✓

median([1, 2, 6]) is 2 ✓ ✕ (mean is 3) ✓

median([2, 1, 3]) is 2 ✓ ✓ ✕ (middle is 1)

This is a good set of examples because:

• every example agrees (✓) with the wheat, and

• every chaff has at least one example that it disagrees with (✕).

for students is thus to write a set of examples that catches each of the chaffs (by causing them to fail) without failing the

wheat. Collectively, the examples in table 1 meet these requirements. Examplar would give this example suite positive

feedback about problem understanding: in particular, the student has not mistaken median for mean or assumed that

the input is sorted (as many math texts implicitly do!). In contrast, if a student writes only the first example, they may

have one of these two problem misunderstandings (the second of which, in particular, we have seen in practice!).

Of course, the quality of feedback provided by wheat and chaff solutions depends critically on the wheats and chaffs

themselves. Chaffs, in particular, are hard to design. On one hand, the set of chaffs should cover standard student

misconceptions. If table 1 had omitted the chaff for mean, then students who confused median with mean would get

no feedback to correct their understanding, and might implement a completely different (and quite wrong) function.

On the other hand, a large set of chaffs can frustrate students. Students have a tendency to want to catch all chaffs, so

the more there are, the longer they spend [22]. This distracts from function-writing, leads to diminishing returns, and

worse, may not even uncover real misconceptions. Thus, good chaff construction is critical.

Unfortunately, there are no concrete tools to help instructors design chaffs. There are several rules of thumb suggested

by the lead designer of Examplar, such as avoid difficult-to-catch chaffs and favor logical errors over programming

errors [24]. However, this leaves open how to find salient errors for a new problem. In particular, when chaffs are

designed by course staff, they can suffer from expert blind spots.

In this paper, we propose a lightweight method for identifying potential misconceptions that builds on wheats and

chaffs by analyzing an underused resource: examples that fail the wheats. Prior work by the Examplar team ignored

these examples because there are several uninteresting reasons for an example to fail a wheat (personal communication).

The example might have a typo in the input/output data; it might contain a basic logical error; and worst of all it might

be an attempt to game the system with a nonsense example that trivially catches all the chaffs. However, if there are

good-faith failures, then perhaps they can be mined to reveal patterns of mistakes for chaff construction.

This paper’s contributions are as follows:

• We find that numerous wheat failures (about 30%) appear to be good-faith efforts based on misunderstandings.

• We propose a method for identifying potential misconceptions from input/output examples (section 2): start with

wheat failures, group them using (manual) semantic clustering, and use the clusters to guide the design of chaffs.

• We validate the method by comparing our classsourced chaffs to expert-designed chaffs written by course

staff (section 4). Classsourcing reveals expert blind spots and provides support, or a lack thereof, for expert chaffs.

• We present evidence that classsourcing is useful for more than programming problems by applying the method

to a data structure specification problem in formal logic (section 5). Furthermore, we present a talk-aloud in

which peer students applied labels to incorrect data structure examples for clustering. The results of this study

suggest that students themselves can effectively contribute to the time-intensive labelling process.

2

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

Making Hay from Wheats Koli 2022, November 17–20, 2022, Koli, Finland

2 CLASSSOURCING FOR CHAFFS

Our proposal is to analyze students’ examples for evidence of misconceptions. Examples that fail the wheats are a

particularly rich source of insight because they are often based on a misunderstanding. For instance, the following two

examples for median fail the wheat:

median([1, 2, 6]) is 3 and median([9, 3, 3]) is 5

They agree with the behavior of mean, however, which suggests that the author of these examples has misunderstood

the definition of the median problem.

The key steps for classsourcing are logging, clustering, and generalizing:

(1) Log example suites whenever students request feedback. Pay close attention to examples that fail the wheats.

(Examples that fail some but not all wheats test unspecified behavior [23].)

(2) Separate typo-level errors and adversarial examples from non-trivial, good-faith errors. Cluster the latter into

semantically similar groups.

(3) Generalize each cluster into a chaff. The chaff should agree with every example in the cluster without overfitting.

Clustering and generalizing require significant insight. Given the two examples for median above, an expert would need

to group them into a cluster (along with other logged examples) and generalize the cluster with an implementation of

the mean function. However, the overall burden on experts is much lower than in the state of the art [6, 22], which is

entirely expert-driven, offering no guidance on what the misconceptions could even be.

3 STUDY CONTEXT, DATASETS, AND ANALYSIS METHOD

The primary validation for our classsourcing method is from two programming problems. Both problems were deployed

in Fall 2020 at a highly selective, private US university as part of an accelerated introductory computer science course.

• Nile is a collaborative filtering problem that takes place in the context of a hypothetical online bookstore. Given

a collection of recommended books, there are two tasks: compute top recommendations for a single book, and

compute popular pairs of books across the entire collection.

• DocDiff is a document-similarity problem. The task is to compute the overlap between two non-empty lists of

strings by reducing them to bags of words and comparing the vectors [18].

For these assignments, students were graded on both their implementation and a final test suite. Students were

encouraged, but not required, to start out by writing examples and using Examplar to check their understanding. These

early examples could be submitted as part of the final test suite, but were not otherwise graded. Examplar was available

as part of the standard Web-based ide for the course. This ide logged every feedback request to a database.

Dataset and Analysis Method. Figure 1a summarizes our datasets and analysis. Across the two assignments, we

collected 1,622 input/output examples that failed the wheats: 319 from Nile and 1,303 from DocDiff. Two coders analyzed

a sample of this data to determine why each example failed. Using techniques from grounded theory [8], they generated

a labelling rubric for each assignment. Some labels corresponded to assignment-specific misconceptions, while others

were generic, such as “typo” and “type error.” For both problems, the coders achieved a Cohen κ over 0.8 (fig. 1a).

Due to the large number of wheat failures, the coders reviewed a sample of the full dataset. Sampling for Nile was

done by first selecting a random student and then selecting a random (uncoded) example from the student. Sampling for

DocDiff was similar, but because of the many students with a huge number of wheat failures (fig. 1c) all students whose

total failures fell outside one standard deviation of the median were excluded. The Coder 1 column of fig. 1a shows how

3

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

Koli 2022, November 17–20, 2022, Koli, Finland Siddhartha Prasad, Ben Greenman, Tim Nelson, John Wrenn, and Shriram Krishnamurthi

Problem #Wheat Failures

Nile 319

DocDiff 1303

Coder 1 Coder 2 Cohen κ

149 (47%) 46 (31%) 0.85

88 (7%) 26 (30%) 0.83

(a) Number of wheat failures, number of coded failures, and Cohen kappa agreement score

000000000 101010101010101010 202020202020202020 303030303030303030

000000000

333333333

666666666

(b) Nile distribution of wheat failures

000000000 202020202020202020 404040404040404040 606060606060606060 808080808080808080

000000000

555555555

101010101010101010

(c) DocDiff distribution of wheat failures

A bar at (x ,y) means y students each submitted x wheat failures.

Fig. 1. Wheat failures dataset

many entries were in each sample and, in parentheses, the percent of the full dataset that this number represents. After

the first coder analyzed these samples, the second coder analyzed a subset of the coded entries drawn uniformly at

random. The Coder 2 column shows the number of entries in each subset. For Nile, Coder 1 analyzed 47% of the wheat

failures, Coder 2 analyzed 31% of these coded failures, and 53% of the failures were not reviewed by either coder.

Observe that sampling from the dataset is a reasonable method, if not optimal. Our goal is to find misconceptions

that students have. If even a subset of the data reveals a potential misconception, that is an improvement. Adding more

data cannot invalidate this newfound misconception, only reduce its relative frequency.

4 CLASSSOURCED CHAFFS VS. EXPERT-DESIGNED CHAFFS

Following the process in section 2, the two coders manually clustered wheat failures to identify misconceptions. None

of the wheat failures seemed adversarial, but many were based on typos, type errors, or hard-to-categorize mistakes

(27% in Nile and 54% in DocDiff). The rest of the wheat failures formed meaningful clusters with 1 to 13 failures each

(mean: 3). The payoff of this analysis is a lower bound on the number of latent issues:

expert chaffs did not anticipate 25 issues that appeared in the classsourced data.

The expert chaffs also predicted a number of issues that never arose in our sample. Figure 2 summarizes the evidence

Nile DocDiff

Classsourced Only 16 9

Both 1 2

Expert Only 6 3

Fig. 2. Classsourced Chaffs (based on actual errors)
vs. Expert Chaffs (based on predicted errors)

for these conclusions. Classsourcing identified 17 potential miscon-

ceptions in Nile and 11 in DocDiff. The experts (course staff) missed

most of these. In addition, the expert chaffs predicted several miscon-

ceptions that are not supported by the wheat failures: 6 in Nile and

3 in DocDiff. These chaffs might be supported by wheat failures we

did not sample, but they may also be unnecessary.

To illustrate, consider DocDiff. An input/output test for this prob-

lem consists of two input documents and a probability representing

their overlap. Figure 3 presents three errors/chaffs related to this

problem and the clusters of wheat failures (if any) that our two coders developed. One error revealed by classsourcing

was that a large document and a fragment of the same should be regarded identical (overlap = 1). This incorrect belief

was not anticipated by expert chaffs. In the other direction, one expert chaff rejected input documents with duplicate

4

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Making Hay from Wheats Koli 2022, November 17–20, 2022, Koli, Finland

Overlap is 1 for subsumed docs Classsourced Only

overlap(["oh"],
["oh", "oh", "oh"]) is 1

overlap(["oh", "OH"],
["oh", "Oh", "oh"]) is 1

overlap(["car", "cAr", "car"],
["CAR", "car", "cAr", "CAR"]) is 1

overlap(["many", "of", "a", "a", "a"],
["many", "of", "a"]) is 1

overlap(["yay", "no", "yay"],
["yay"]) is 1

Case sensitivity Both: Classsourced + Expert

overlap(["welcome", "to", "Walmart"],
["WELCOME", "To", "walmart"]) is 0

overlap(["a"], ["A"]) is 0

overlap(["A", "B", "C"],
["a", "b", "c"]) is 0

overlap(["a"], ["A"]) is 0

overlap(["1", "!", "A", "?", "a"],
["1", "A", "a"]) is-roughly 3/5

overlap(["alakazam", "abra"],
["abra", "kadabra", "aBRa",
"alakazam", "abra"]) is 3/7

Duplicate words not allowed Expert Only

N/A — no matching examples in sample

overlap(x, y) ∈ [0, 1], where 0 means no overlap

and 1 means the documents are identical

Fig. 3. Three preliminary misconceptions for DocDiff and the matching wheat failures

words; yet, no students made this error. Finally, an error that was both predicted by the experts and present in the data

was that the similarity metric should be case-sensitive. Note that although the case-sensitivity cluster has six examples,

one of them is duplicated. This is because we happened to sample two similar wheat failures from the same student.

Overall, the agreement between classsourced chaffs and expert chaffs is remarkably small. Given that the classsourced

chaffs are supported by actual errors rather than errors anticipated by the course staff (who had even refined their

chaffs over several years), classsourcing fills an important gap between actual learners and experts’ models of learners.

5 FOLLOWUP: CLASSSOURCING FOR SPECIFICATION PROBLEMS

As further validation of our classsourcing method, we applied it in a second domain: formal methods. The data

for this study originated in a Spring 2021 course on applied logic for programmers that was offered at the same

university (section 3). In this setting, an example is an instance or non-instance of a mathematical structure. Wheats

and chaffs are mathematical specifications of structures. Students wrote examples as relations using a pedagogic variant

of the Alloy modeling language [11, 12] called Forge [3, 19]. The specific problem we studied was the following:

• Undirected tree, or U-Tree, is a data structure specification problem. Given an English description of an undirected

tree, the task is to formalize the specification in Forge.

For this assignment, students were required to submit both a final specification and a suite of example instances. The

examples were graded on their performance against instructors’ wheat and chaff specifications. Before the deadline,

students could get feedback from either a command-line tool (similar to Examplar) or the course submission server.

Unfortunately, we do not have access to the Examplar-level errors that students made. Instead, we can see only the

wheat failures students uploaded to the submission server.

We found a total of 12 wheat failures among the submissions. In principle, there should be no such wheat failures,

because students would have caught them earlier with the command-line tool! However, there were a few incentives to

use the server for early attempts: (1) The command-line tool did not support machines with Apple M1 chips, forcing

some students to use the server for feedback. (2) The server gave more feedback than the command-line tool by running

5

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

Koli 2022, November 17–20, 2022, Koli, Finland Siddhartha Prasad, Ben Greenman, Tim Nelson, John Wrenn, and Shriram Krishnamurthi

example e is notSymmetric:
Node = Node0 + Node1
edges = Node0 -> Node1

Node0 Node1

(a) Asymmetric example; this is not a valid U-Tree

pred notSymmetric: -- Goal: asymmetry ok
Node->Node in *edges -- Connected
no iden & edges -- No self-loops
all n : Node | -- Minimally connected

all m : Node |
(n->m + m->n) in edges
implies
(n->m + m->n) not in ^(edges - (n->m + m->n))

(b) Chaff that unintentionally rejects the asymmetric tree

Fig. 4. Classsourcing revealed a buggy U-Tree chaff

a small test suite in addition to wheats and chaffs. (3) Submitting gave students a way to save their work; in case of

emergency, the latest submitted attempt would receive at least partial credit.

5.1 Analysis

Two coders analyzed the 12 U-Tree wheat failures. Due to the small number of examples, each coder analyzed every

failure. The coders achieved near-perfect agreement: they disagreed only on the specific label for one example that

used an undeclared variable (“typo” vs “other”), which is an uninteresting disagreement.

Classsourcing revealed one unanticipated issue: that edges in an undirected tree need not be symmetric. This error

was common because students wrote example trees as Forge relations and thus had to model each undirected edge with

two directed edges. We were therefore surprised that this issue was not anticipated. Curiously: it was! However, there

was a bug in the relevant chaff (fig. 4), which led to this problem not being caught. Thus, our process was able to find a

bug in a chaff, which was an unexpected benefit.

Classsourcing found no evidence for three anticipated chaffs, one of which is the buggy one:

(1) Connected asymmetry. As mentioned above, one chaff meant to allow asymmetric trees but included a minimal-

connectivity constraint that rejected basic asymmetric examples (fig. 4).

(2) Self-edges. None of the wheat failures used an edge to connects a node to itself.

(3) Double edges. None of the wheat failures used two paths to connect the same pair of nodes.

However, the very small number of wheat failures in the submission server does not by itself provide evidence that

these chaffs are worth revising or removing for the next offering of this problem. We would need the logs from the

command-line tool for that.

5.2 Can Non-Experts Apply Labels?

The most labor-intensive step in our process is labeling the wheat failures. Some of the work might be offloaded to

non-experts, however, if experts can supply a preliminary set of labels and a rubric to guide their application.
1

To test the feasibility of this idea, we conducted a talk-aloud study of twelve students using the U-Tree data to

seek out disagreements between students’ labels and our own expert-applied labels. Participants were U.S. citizens or

permanent residents who had taken the 2022 iteration of the logic course described above. They were compensated $50

for participating in a 25-minute study via Zoom. We were able to find 12 subjects;
2
the fact that we had 12 subjects and

1
How to compensate students for this work is left outside the scope of this paper.

2
The work is exempted from our Institutional Review process, but we took reasonable safeguards.

6

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

Making Hay from Wheats Koli 2022, November 17–20, 2022, Koli, Finland

12 wheat failures is a coincidence. The 2022 iteration did not assign the U-Tree problem; however, participants who had

previously enrolled in the 2020 course may have seen the problem.

The study had two parts: training and testing. First, participants read an English specification of undirected trees

and were asked to decide whether five proposed examples were valid or not. Participants received immediate feedback

from the study software that explained the correct choice. Second, participants were given a set of labels and asked to

categorize our 12 U-Tree wheat failures.

We recorded the training responses, but did not analyze them and did not exclude any participants based on their

performance on the training questions. As for the testing task, most of the wheat failures (7/12) gathered a strong

consensus among student labels that furthermore agreed with our label. For the other examples (5/12), student labels

were divided. In four of these, the most popular student label agreed with the expert label. In the fifth one, the results are

skewed by an issue among students: over 25% misunderstood the set multiplicity of Forge. (The talk-aloud interviews

provided crucial evidence for this misunderstanding.) This preliminary work suggests that at least where there is

consensus, student coders who have completed a related course can provide useful initial labeling.

6 THREATS TO VALIDITY

Internal Validity. Although our analysis suggests that some expert chaffs may be unnecessary (section 4), they could

very well correspond to real misconceptions that are present elsewhere: in the unsampled part of the data; in student

groups with different backgrounds; in similar students but under different instruction or even problem description;

and so on. However, we believe all these reasons only strengthen the need for the approach described in this paper.

A second threat is that our sampling did not account for duplicate wheat failures by the same student (mentioned

in section 4), which means that the size of a cluster may not match the number of students who had the misconception.

Our two-coder process is subject to internal threats to validity: e.g., the high agreement may be due to coders aligning

their biases rather than eliminating them. Finally, the talk-aloud interviews (section 5.2) suggest that some participants

misunderstood aspects of Forge and the U-Tree problem, which casts doubt on their choice of labels. It furthermore

raises questions about how to train participants and when to ignore a response, and suggests that more work is needed

in the design of languages like Forge and Alloy.

External Validity. Our datasets are relatively small. To generate truly robust chaffs, we would have to repeat this

study under varying conditions. For U-Tree in particular, we have only a tiny dataset of 12 wheat failures. Nevertheless,

the fact that this tiny dataset led us to discover a lurking error that was not found by other means—something the

process was not even intended to help with—shows further value to this approach.

7 RELATEDWORK

Problem understanding is a common issue among novice programmers. Both Whalley and Kasto [21] and Loksa and Ko

[14] observe that novices often began coding with an incorrect plan and seldom thought to critique their plan relative

to the problem statement. Prather et al. [16] report similar issues among programmers using an automated assessment

tool (AAT), and suggest that the “single greatest weakness” (§5) of contemporary AATs is their lack of support for

problem understanding.

Our method for discovering misconceptions is based on an examples-first style of programming, as supported by

Examplar [22] and CodeWrite [6, 16], rather than on evaluating test suites (e.g., [2, 7, 15]; refer to [22] for a detailed

comparison to testing). Examplar gives feedback on example suites using wheat and chaff solutions. CodeWrite asks

7

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

Koli 2022, November 17–20, 2022, Koli, Finland Siddhartha Prasad, Ben Greenman, Tim Nelson, John Wrenn, and Shriram Krishnamurthi

students to predict the output of specific test cases. Though we have applied our method only in the context of Examplar,

the analysis of incorrect predictions in Denny et al. [6] suggests that clustering would be effective in CodeWrite as well.

Techniques for finding misconceptions are part of concept inventory generation [1, 4, 9, 10, 20]. However, these

established techniques place a significant burden on experts and are therefore better-suited for general topics (such

as algorithms and data structures) than for niche assignments. By contrast, Quizius [17] and PeerWise [5] are two

lightweight tools for finding potential misconceptions without, e.g., conducting interviews. Like our method, both rely

on data from learners and offer learners some benefits in return. We have used the name “classsourcing” to describe

this virtuous relationship; an alternative name is learnersourcing [13].

8 DISCUSSION

When learners misunderstand a programming problem, instructors must determine what went wrong and provide

actionable feedback. This paper contributes a classsourcing method that addresses the first half of this challenge—

identifying and diagnosing misconceptions—by analyzing incorrect examples as part of a class-wide dataset. Our results

show that the method can be used to improve the quality of feedback between course offerings by revealing expert

blind spots. Across three assignments in two domains, programming and formal methods, we identified 26 potential

misconceptions by sampling student examples.

These findings are especially encouraging because, contrary to what the paper might suggest, the course staff did

not design chaffs in a vacuum, simply imagining what might go wrong. Rather, they used concrete input from students,

such as what they noticed when grading homework submissions and what students asked questions about during office

hours (personal communication). Despite this, classsourcing wheat failures still found notable improvements!

In addition, the method draws attention to “expert-only” chaffs that have no support from the dataset. Such chaffs

may fail to reflect common mistakes, as we saw in the buggy symmetry chaff for U-Tree (section 5.1), but they may also

be false alarms. A chaff may correspond to a real misconception that by chance did not show up in the data, and a chaff

may intentionally add constraints that go beyond what the wheats require. Manual review is categorize.

For future work, we plan to tighten the feedback loop. Instructors need to identify misconceptions as early as possible,

ideally during the term and before the assignment deadline. Automating some aspects of the method would help achieve

this goal. Furthermore, automation would enable tools for individualized feedback such as an ide plugin that synthesizes

chaffs in response to errors.

Another important future topic is clustering. Our work depends heavily on the ability to form clusters from wheat

failures: as we see, our total number of wheat failures can be quite large and hence, without clustering, overwhelming

or useless. Clustering is also very time-consuming. Therefore, ideally, we would want to automate this step. However, it

is unclear that standard clustering techniques would work: they are either for domains (such as images) that are very

different from input/output examples, or they use syntactic distance metrics. In contrast, we need semantic clustering:

e.g., median([2, 1, 3]) is 1 and median([5, 4, 6]) is 4 potentially have the same (middle) misconception,

but are syntactically unrelated. Furthermore, we will need different methods, and may have different tools, for each

language: e.g., we could potentially use tracing for programs, while we may be able to employ the tools of logic for

formal specifications.

We close with an interesting observation: although the method of this paper helps to avoid expert blind spots, we had

to overcome a blind spot of our own to create it! For eight years, the designers of Examplar never thought to examine

wheat failures. It took a fresh perspective from the first author to recognize their value. Blind spots are tough.

8

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

Making Hay from Wheats Koli 2022, November 17–20, 2022, Koli, Finland

ACKNOWLEDGMENTS

This work was partially supported by the US National Science Foundation grants DGE-2208731, SHF-2227863, and

2030859 to the CRA for the CIFellows project. This work was also partially supported by RelationalAI. Thanks to

Yanyan Ren, Kuang-Chen Lu, and Elijah Rivera for testing an early version of our talk-aloud study. Thanks to Shaun

Wallace for pointers to the literature on crowdsourcing. Last but not least, thanks to the students in our classes and the

participants in the talk-aloud.

REFERENCES
[1] Vicki L. Almstrum, Peter B. Henderson, Valerie J. Harvey, Cinda Heeren, William A. Marion, Charles Riedesel, Leen-Kiat Soh, and Allison Elliott

Tew. 2006. Concept Inventories in Computer Science for the Topic Discrete Mathematics. ACM SIGCSE Bulletin 38, 4 (2006), 132–145. https:

//doi.org/10.1145/1189136.1189182 7

[2] Michael K. Bradshaw. 2015. Ante Up: A Framework to Strengthen Student-Based Testing of Assignments. In SIGCSE. 488–493. https://doi.org/10.

1145/2676723.2677247 7

[3] Forge Contributors. 2022. Forge: A Tool and Language for Teaching Formal Methods. https://forge-fm.org Accessed 2022-09-21. 5

[4] Holger Danielsiek, Wolfgang Paul, and Jan Vahrenhold. 2012. Detecting and Understanding Students’ Misconceptions Related to Algorithms and

Data Structures. In SIGCSE. 21–26. https://doi.org/10.1145/2157136.2157148 7

[5] Paul Denny, John Hamer, Andrew Luxton-Reilly, and Helen C. Purchase. 2008. PeerWise: Students Sharing their Multiple Choice Questions. In ICER.
51–58. https://doi.org/10.1145/1404520.1404526 7

[6] Paul Denny, James Prather, Brett A. Becker, Zachary Albrecht, Dastyni Loksa, and Raymond Pettit. 2019. A Closer Look at Metacognitive Scaffolding:

Solving Test Cases Before Programming. In Koli Calling. 11:1–11:10. https://doi.org/10.1145/3364510.3366170 1, 2, 7

[7] Stephen H. Edwards. 2003. Improving Student Performance by Evaluating HowWell Students Test Their Own Programs. ACM Journal on Educational
Resources in Computing 3, 3 (2003), 1:1–1:24. https://doi.org/10.1145/1029994.1029995 7

[8] B. Glaser and A. Strauss. 1967. The Discovery of Grounded Theory: Strategies for Qualitative Research. Sociology Press. 3

[9] Kenneth J. Goldman, Paul Gross, Cinda Heeren, Geoffrey L. Herman, Lisa C. Kaczmarczyk, Michael C. Loui, and Craig B. Zilles. 2008. Identifying

Important and Difficult Concepts in Introductory Computing Courses using a Delphi Process. In SIGCSE. 256–260. https://doi.org/10.1145/1352135.

1352226 7

[10] Geoffrey L. Herman, Michael C. Loui, and Craig B. Zilles. 2010. Creating the Digital Logic Concept Inventory. In SIGCSE. 102–106. https:

//doi.org/10.1145/1734263.1734298 7

[11] Daniel Jackson. 2012. Software Abstractions: Logic, Language, and Analysis (2 ed.). MIT Press. 5

[12] Daniel Jackson. 2019. Alloy: a language and tool for exploring software designs. CACM 62, 9 (2019), 66–76. https://doi.org/10.1145/3338843 5

[13] Juho Kim. 2015. Improving Learning with Collective Learner Activity. Ph. D. Dissertation. Massachusetts Institute of Technology. https://hdl.handle.

net/1721.1/101464 7

[14] Dastyni Loksa and Amy J. Ko. 2016. The Role of Self-Regulation in Programming Problem Solving Process and Success. In ICER. 83–91. https:

//doi.org/10.1145/2960310.2960334 1, 7

[15] Will Marrero and Amber Settle. 2005. Testing First: Emphasizing Testing in Early Programming Courses. In SIGCSE. 4–8. https://doi.org/10.1145/

1067445.1067451 7

[16] James Prather, Raymond Pettit, Kayla Holcomb McMurry, Alani L. Peters, John Homer, and Maxine S. Cohen. 2018. Metacognitive Difficulties Faced

by Novice Programmers in Automated Assessment Tools. In ICER. 41–50. https://doi.org/10.1145/3230977.3230981 1, 7

[17] Sam Saarinen, Shriram Krishnamurthi, Kathi Fisler, and Preston Tunnell Wilson. 2019. Harnessing the Wisdom of the Classes: Classsourcing and

Machine Learning for Assessment Instrument Generation. In SIGCSE. 606–612. https://doi.org/10.1145/3287324.3287504 7

[18] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A Vector Space Model for Automatic Indexing. CACM 18, 11 (1975), 613–620. https:

//doi.org/10.1145/361219.361220 3

[19] Abigail Siegel, Mia Santomauro, Tristan Dyer, Tim Nelson, and Shriram Krishnamurthi. 2021. Prototyping Formal Methods Tools: A Protocol

Analysis Case Study. In Protocols, Strands, and Logic - Essays Dedicated to Joshua Guttman on the Occasion of his 66.66th Birthday. 394–413.
https://doi.org/10.1007/978-3-030-91631-2_22 5

[20] Allison Elliott Tew and Mark Guzdial. 2010. Developing a Validated Assessment of Fundamental CS1 Concepts. In SIGCSE. 97–101. https:

//doi.org/10.1145/1734263.1734297 7

[21] Jacqueline L. Whalley and Nadia Kasto. 2014. A Qualitative Think-Aloud Study of Novice Programmers’ Code Writing Strategies. In ITiCSE. 279–284.
https://doi.org/10.1145/2591708.2591762 1, 7

[22] John Wrenn and Shriram Krishnamurthi. 2019. Executable Examples for Programming Problem Comprehension. In ICER. 131–139. https:

//doi.org/10.1145/3291279.3339416 1, 1, 2, 7

[23] John Wrenn, Shriram Krishnamurthi, and Kathi Fisler. 2018. Who Tests the Testers?. In ICER. 51–59. https://doi.org/10.1145/3230977.3230999 1, 1

[24] John Sinclair Wrenn. 2022. Executable Examples: Empowering Students to Hone Their Problem Comprehension. Ph. D. Dissertation. Brown University.

https://repository.library.brown.edu/studio/item/bdr:wgtu3pq6/ 1

9

https://www.nsf.gov/awardsearch/showAward?AWD_ID=2208731&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2227863&HistoricalAwards=false
https://nsf.gov/awardsearch/showAward?AWD_ID=2030859&HistoricalAwards=false
https://cifellows2020.org
https://doi.org/10.1145/1189136.1189182
https://doi.org/10.1145/1189136.1189182
https://doi.org/10.1145/2676723.2677247
https://doi.org/10.1145/2676723.2677247
https://forge-fm.org
https://doi.org/10.1145/2157136.2157148
https://doi.org/10.1145/1404520.1404526
https://doi.org/10.1145/3364510.3366170
https://doi.org/10.1145/1029994.1029995
https://doi.org/10.1145/1352135.1352226
https://doi.org/10.1145/1352135.1352226
https://doi.org/10.1145/1734263.1734298
https://doi.org/10.1145/1734263.1734298
https://doi.org/10.1145/3338843
https://hdl.handle.net/1721.1/101464
https://hdl.handle.net/1721.1/101464
https://doi.org/10.1145/2960310.2960334
https://doi.org/10.1145/2960310.2960334
https://doi.org/10.1145/1067445.1067451
https://doi.org/10.1145/1067445.1067451
https://doi.org/10.1145/3230977.3230981
https://doi.org/10.1145/3287324.3287504
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220
https://doi.org/10.1007/978-3-030-91631-2_22
https://doi.org/10.1145/1734263.1734297
https://doi.org/10.1145/1734263.1734297
https://doi.org/10.1145/2591708.2591762
https://doi.org/10.1145/3291279.3339416
https://doi.org/10.1145/3291279.3339416
https://doi.org/10.1145/3230977.3230999
https://repository.library.brown.edu/studio/item/bdr:wgtu3pq6/

	Abstract
	1 Executable Examples, Wheats, and Chaffs
	2 Classsourcing for Chaffs
	3 Study Context, Datasets, and Analysis Method
	4 Classsourced Chaffs vs. Expert-Designed Chaffs
	5 Followup: Classsourcing for Specification Problems
	5.1 Analysis
	5.2 Can Non-Experts Apply Labels?

	6 Threats to Validity
	7 Related Work
	8 Discussion
	Acknowledgments
	References

