
PERFORMANCE EVALUATION FOR GRADUAL TYPING
GRADUAL TYPING

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, Matthias Felleisen

PERFORMANCE LATTICE L-N/M FIGURES

EVALUATION METHOD
Report the proportion of typed/untyped configurations: 
 - with "deliverable" overhead (at most Nx slowdown) 
 - with "usable" overhead (at most Mx slowdown) 
 - within L conversion steps from an Nx or Mx configuration

Report the relative performance of the untyped and fully-typed configurations
is for software maintenance

Soundness: type invariants are enforced at runtime . . .
Freedom to add types incrementally

PROMISES

Fact 1: developers use untyped languages
Fact 2: type annotations enable safety checks and serve as documentation
Thesis: stable untyped code + type annotations = happy future maintainers

Visualizing all possible gradually-typed configurations Summarizing performance lattices

SYNTH music maker 10 modules 263ms untyped 272ms typed

L = 0 L = 1 L = 2

GREGOR
L = 0 L = 1 L = 2

time & date library 13 modules 666ms untyped 815ms typed

FSM economy simulator

L = 0 L = 1 L = 2

4 modules 182ms untyped 85ms untyped

M = 10Legend: N = 3 Configs < Overhead# 60% of Configs

1.0x

A M P U

1.0x

8,513.7x

8,395.2x

1.5x

2,077.3x

3,111.2x

1.4x

2.6x

8,458.3x

8,432.5x

2.3x

0.5x

2,505.1x

2,066.7x

0.6x

A M P U

A M P U

A M P U

A M P U

A M P U

A M P U

A M P U

A M P U

A M P U

A M P U

A M P U

A M P U

A M P U

A M P U

A M P U

A. automata.rkt
 Interface & basic strategies
M. main.rkt
 Runs a simulation

P. population.rkt
 Models groups of automata
U. utilities.rkt
 Helper functions

Example: FSM benchmark
4 modules, 16 configurations

Untyped runtime: 182ms

+ Fully typed is 2x faster

+ 50% of all configurations have < 3x overhead

+ Can avoid > 2,000x overhead by typing both

How to help developers avoid performance
 valleys (without exploring the whole lattice)?

Yes

No
- Maximum overhead: 8,500x (26 minutes to run)

- Average overhead: 2,700x

- Median overhead: 470x

- No smooth migration paths:

Is this "good" performance?

Open Question

Impossible to convert module-by-module  
and avoid 2,000x overhead

main.rkt
require/typed "automata.rkt"
 [#:opaque Automaton automaton?]

require/typed "utilities.rkt"

define-type Population
 (Vectorof (Vectorof Automaton))

provide:
 step (-> Population Population)
 create (-> Natural Population)

require "automata.rkt"
require "population.rkt"
require "utilities.rkt"

define (evolve pop count)
 if (zero? count)
 null
 evolve (step pop)
 (count - 1)

evolve (create 100) 5

M

A

P

UConfiguration A M P U in depth

population.rkt

• Type boundaries are checked at runtime

• Key boundary: main.rkt and population.rkt

Each call to step wraps pop with a higher-order contract
After N calls, each vector operation suffers N indirections

What about performance?

main.rkt and population.rkt

