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GRADUAL TYPING IS GROWING

Over 80 publications

Over 20 implementations

But NO common definition of

gradual typing — due to

different goals and priorities

Little acknowledgment (or analysis!)
of the differences



ONE KIND OF GRADUAL TYPING:
MIGRATORY TYPING (SNAPL'17)

1. Begin with an existing,
dynamically-typed language

2. Design an idiomatic type
system

3. Allow interaction between
the two languages



A FEW MIGRATORY TYPING SYSTEMS

[Gradualtalk] [Typed Racket} [TPD] [Pycket}

[Pallene} [GraceJ [Reticulated]

mypy| (Flow| (Hack| (Pyre| [Pytype| (rtc| (MacLISP

iCommon Lisp] [Strongtalk} [TypeScript]

:Typed Clojure] [Typed Lua}
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THREE APPROACHES TO MIGRATORY TYPING

(behavioral)

0y

Three strategies for enforcing
types at a boundary

- (transient)

(optional)

14



THREE APPROACHES TO MIGRATORY TYPING

15



THREE APPROACHES TO MIGRATORY TYPING

types are sound/enforced

16



THREE APPROACHES TO MIGRATORY TYPING

types are sound/enforced

typed code cannot get stuck

17



THREE APPROACHES TO MIGRATORY TYPING

types are sound/enforced

typed code cannot get stuck

types do not affect behavior
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Type Soundness (simplified):

if Fe:t then either:
- e ->* v and +v:t
- e diverges

- e =->% Error
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Deep
if re:t then either:
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Deep

if re:t then either:

- e ->% v and +v:t

- e diverges

- e =>% Error

Shallow
if re:t then either:

- e ->*% v and +v:C(t)

- e diverges

- e ->% Error
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Deep

if re:t then either:

- e ->% v and +v:t

- e diverges

- e =>% Error

Shallow
if re:t then either:

- e ->*% v and +v:C(t)

- e diverges

- e ->% Error

Erasure
if re:t then either:

- e ->% v and +v

- e diverges

- e =->% Error
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Is type soundness all-or-nothing?
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Is type soundness all-or-nothing?

No! (in a mixed-typed language)

28



IMPLEMENTATION

Three compilers for the
Typed Racket surface
language

i.e. three ways of
running the same code
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EEEEH

HOwW TO MEASURE PERFORMANCE?
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EXPERIMENT

10 benchmark programs

2 to 10 modules each

4 to 1024 configurations

each

docs.racket-lang.org/gtp-benchmarks
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PERFORMANCE

Overhead vs.
Untyped

deep
shallow

erasure

Num. Type Annotations
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fsm 256 points morsecode 256 points
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zombie 256 points
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PERFORMANCE IMPLICATIONS

A
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PERFORMANCE IMPLICATIONS

| add types to remove all

critical boundaries

> add types sparingly

add types anywhere,
doesn’t matter
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THREE APPROACHES TO MIGRATORY TYPING

p
Soundness

Performance

Users?

J
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Question 1

1 |var t = 47;
2 |var x : Number = t;

3|x

Error: line 2 expected Number got [4, 4]
[4, 4]

LE LU DE DU

O O O O
O O O O
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Question 1

|var t = [4, 4];
2 |var X : Number

3|x e

Error: line 2 expecte
[4, 4]

-

Student MTurk

DEEP -

"LE LU DE
SHALLOW —* same as DEEP

l_’_—f—

LE LU DE
L =Like

*

Error: line 2 expected Number got [4, 4]
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D =Dislike

E =Expected U =Unexpected
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DEVELOPER SURVEY

Asked software engineers, students,
and MTurk workers to rate potential
different behaviors for programs

Results show a preference for Deep

More at DLS Tuesday 10:30am The Loft

cs.brown.edu/research/plt/d1l/d1s2018
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