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Dynamic Typing

value-level abstractions,
enforced at run-time

Static Typing

type-level abstractions,
checked before run-time

Gradual Typing

mix of static & dynamic
typing ... somehow
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Gradual Typing is growing ...

Over 80 publications

Over 20 implementations
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Gradual Typing is growing ...

Over 80 publications

Over 20 implementations

But NO common definition of
gradual typing — due to

different goals and priorities

Little acknowledgment (or analysis!)
of the differences
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One kind of gradual typing:
Migratory Typing (SNAPL'17)

1. Begin with an existing,
dynamically-typed language

2. Design an idiomatic type
system

3. Allow interaction between
the two languages
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a few Migratory Typing systems

Gradualtalk
 

Typed Racket
 

TPD
 

Pycket

Pallene
 

Grace
 

SafeTS
 

Reticulated

mypy
 

Flow
 

Hack
 

Pyre
 

Pytype
 

rtc
 

MACLISP

Common Lisp
 

Strongtalk
 

TypeScript

Typed Clojure
 

Typed Lua
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three approaches to Migratory Typing

Deep

Shallow

Erasure
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three approaches to Migratory Typing

Deep
(behavioral)

Shallow
(transient)

Erasure
(optional)

13



three approaches to Migratory Typing

Deep
(behavioral)

Shallow
(transient)

Erasure
(optional)

Three strategies for enforcing
types at a boundary
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three approaches to Migratory Typing

Deep
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three approaches to Migratory Typing

Deep
types are sound/enforced

Shallow
typed code cannot get stuck

Erasure
types do not affect behavior
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Deep Shallow Erasure
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Deep Shallow Erasure

Type Soundness (simplified):

 if ⊢e:t then either:

 - e ->* v and ⊢v:t

 - e diverges

 - e ->* Error
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Deep Shallow Erasure

Deep
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Deep Shallow Erasure

Deep

 if ⊢e:t then either:

 - e ->* v and ⊢v:t

 - e diverges

 - e ->* Error

Shallow

 if ⊢e:t then either:

 - e ->* v and ⊢v:C(t)

 - e diverges

 - e ->* Error
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Deep Shallow Erasure

Deep

 if ⊢e:t then either:

 - e ->* v and ⊢v:t

 - e diverges

 - e ->* Error

Shallow

 if ⊢e:t then either:

 - e ->* v and ⊢v:C(t)

 - e diverges

 - e ->* Error

Erasure

 if ⊢e:t then either:

 - e ->* v and ⊢v

 - e diverges

 - e ->* Error
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Is type soundness all-or-nothing?
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Is type soundness all-or-nothing?

No! (in a mixed-typed language)

28



Implementation

Deep Erasure

Shallow

Three compilers for the
Typed Racket surface
language

i.e. three ways of
running the same code
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How to measure performance?
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548 ms

560 ms716,637 ms

721,454 ms

709,770 ms

711,000 ms963 ms

891 ms

592 ms

575 ms829,779 ms

821,285 ms829,048 ms602 ms

529 ms
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1x
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1x

1x1,307x1,294x

1,297x1x

1x

1x

1x1,513x

1,498x

1,527x

1,512x1x

0.97x
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Experiment

Deep Erasure

Shallow

10 benchmark programs

2 to 10 modules each

4 to 1024 configurations
each

docs.racket-lang.org/gtp-benchmarks
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Performance

Overhead vs.
Untyped

Num. Type Annotations

deep

shallow

erasure
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Performance Implications
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Performance Implications

add types to remove all
critical boundaries

add types sparingly

add types anywhere,
doesn’t matter
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three approaches to Migratory Typing

Deep

Shallow

Erasure

Soundness

Performance

... Users?
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Developer Survey

Asked software engineers, students,
and MTurk workers to rate potential
different behaviors for programs

Results show a preference for Deep

More at DLS Tuesday 10:30am The Loft

cs.brown.edu/research/plt/dl/dls2018
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