THREE APPROACHES TO GRADUAL TYPING

BEN GREENMAN, JUSTIN POMBRIO, MATTHIAS
FELLEISEN, PRESTON TUNNELL WILSON, SHRIRAM
KRISHNAMURTHI, AND MANY OTHERS

DYNAMIC TYPING

value-level abstractions,
enforced at run-time

STATIC TYPING

type-level abstractions, [THT]

checked before run-time

GRADUAL TYPING

mix of static & dynamic M

typing ... somehow

DYNAMIC TYPING

value-level abstractions,
enforced at run-time

STATIC TYPING

type-level abstractions, [QBH@]

checked before run-time

GRADUAL TYPING

mix of static & dynamic M

typing ... somehow

DYNAMIC TYPING

value-level abstractions,
enforced at run-time

STATIC TYPING

type-level abstractions, [QBH@]

checked before run-time

GRADUAL TYPING

mix of static & dynamic M

typing ... somehow

DYNAMIC TYPING

value-level abstractions,
enforced at run-time

STATIC TYPING

type-level abstractions, [QBH@]

checked before run-time

GRADUAL TYPING

mix of static & dynamic M

typing ... somehow

GRADUAL TYPING IS GROWING

Over 80 publications

Over 20 implementations

GRADUAL TYPING IS GROWING

Over 80 publications

Over 20 implementations

But NO common definition of

gradual typing — due to

different goals and priorities

GRADUAL TYPING IS GROWING

Over 80 publications

Over 20 implementations

But NO common definition of

gradual typing — due to

different goals and priorities

Little acknowledgment (or analysis!)
of the differences

ONE KIND OF GRADUAL TYPING:
MIGRATORY TYPING (SNAPL'17)

1. Begin with an existing,
dynamically-typed language

2. Design an idiomatic type
system

3. Allow interaction between
the two languages

A FEW MIGRATORY TYPING SYSTEMS

[Gradualtalk] [Typed Racket} [TPD] [Pycket}

[Pallene} [GraceJ [Reticulated]

mypy| (Flow| (Hack| (Pyre| [Pytype| (rtc| (MacLISP

iCommon Lisp] [Strongtalk} [TypeScript]

:Typed Clojure] [Typed Lua}

10

A FEW MIGRATORY TYPING SYSTEMS

[Gradualtalk] [Typed Racket} [TPD] [Pycket}

[Pallene] [Grace] [Reticulated]

mypy| (Flow| (Hack| (Pyre| [Pytype| (rtc| (MacLISP

ZCommon Lisp] [Strongtalk} [TypeScript}

:Typed Clojure] [Typed Lua]

11

THREE APPROACHES TO MIGRATORY TYPING

12

THREE APPROACHES TO MIGRATORY TYPING

(behavioral)

(transient)

(optional)

13

THREE APPROACHES TO MIGRATORY TYPING

(behavioral)

0y

Three strategies for enforcing
types at a boundary

- (transient)

(optional)

14

THREE APPROACHES TO MIGRATORY TYPING

15

THREE APPROACHES TO MIGRATORY TYPING

types are sound/enforced

16

THREE APPROACHES TO MIGRATORY TYPING

types are sound/enforced

typed code cannot get stuck

17

THREE APPROACHES TO MIGRATORY TYPING

types are sound/enforced

typed code cannot get stuck

types do not affect behavior

18

19

Type Soundness (simplified):

if Fe:t then either:
- e ->* v and +v:t
- e diverges

- e =->% Error

20

Type Soundness (simplified):

if re:t then either:

- e ->% v and +v:t

- e diverges

- e =->% Error

21

Type Soundness (simplified):

if re:t then either:
- e ->% v and +v:t

- e diverges

- e =->% Error

22

Type Soundness (simplified):

if Fe:t then either:
- e ->* v and +v:t
- e diverges

- e =->% Error

23

Deep
if re:t then either:

- e ->% v and +v:t

- e diverges

- e ->% Error

24

Deep

if re:t then either:

- e ->% v and +v:t

- e diverges

- e =>% Error

Shallow
if re:t then either:

- e ->*% v and +v:C(t)

- e diverges

- e ->% Error

25

Deep

if re:t then either:

- e ->% v and +v:t

- e diverges

- e =>% Error

Shallow
if re:t then either:

- e ->*% v and +v:C(t)

- e diverges

- e ->% Error

Erasure
if re:t then either:

- e ->% v and +v

- e diverges

- e =->% Error

26

Is type soundness all-or-nothing?

27

Is type soundness all-or-nothing?

No! (in a mixed-typed language)

28

IMPLEMENTATION

Three compilers for the
Typed Racket surface
language

i.e. three ways of
running the same code

29

EEEEH

HOwW TO MEASURE PERFORMANCE?

| Y By BY e[EY [E3EY v Y Y] |
A A A A A A A A A (A DA)
[AJAJA[A]

529 ms

EEEEH

602 ms 829,048 ms 821,285 ms 891 ms

A A i A [SR

829,779 ms 963 ms 575 ms /11,000 ms

W A A D ok A i~ ol e

592 ms /09,770 ms 716,637 m 560 ms
EYENEY EXVIENEY EMEN < EY ENEMEN

548 ms

[AJAJA[A]

| Y By BY e[EY [E3EY v Y Y] |
A A A A A A A A A (A DA)

1x 4=

[AJAJA[A]

0.97x

HEEEO

1x 1,512x 1,498x 1x

A A i A [SR

1,513x 1,297x

| KRR BT JI] {] B

1,294x 1,307x

[] EYCEIEY ENEYIEY []
[]

EXPERIMENT

10 benchmark programs

2 to 10 modules each

4 to 1024 configurations

each

docs.racket-lang.org/gtp-benchmarks

35

PERFORMANCE

Overhead vs.
Untyped

deep
shallow

erasure

Num. Type Annotations

36

fsm 256 points morsecode 256 points

DyeatnO SEEHg D05 ot FoE P e
i il & o
Sew v e Vs

oD

zombie 256 points

37

PERFORMANCE IMPLICATIONS

A

38

PERFORMANCE IMPLICATIONS

| add types to remove all

critical boundaries

> add types sparingly

add types anywhere,
doesn’t matter

39

THREE APPROACHES TO MIGRATORY TYPING

p
Soundness

Performance

Users?

J

40

Question 1

1 |var t = 47;
2 |var x : Number = t;

3|x

Error: line 2 expected Number got [4, 4]
[4, 4]

LE LU DE DU

O O O O
O O O O

41

Question 1

|var t = [4, 4];
2 |var X : Number

3|x e

Error: line 2 expecte
[4, 4]

-

Student MTurk

DEEP -

"LE LU DE
SHALLOW —* same as DEEP

l_’_—f—

LE LU DE
L =Like

*

Error: line 2 expected Number got [4, 4]

._+_*%‘ :';‘;

DU | LE LU DE DU LE LU DE DU
ERASURE —* [4, 4]

. ,,_,_-.‘ O e

DU LE LU DE DU LE LU DE DU

._{,_* 4) } [} ! } .

{ J
DU LE LU DE DU LE LU DE DU

D =Dislike

E =Expected U =Unexpected

42

DEVELOPER SURVEY

Asked software engineers, students,
and MTurk workers to rate potential
different behaviors for programs

Results show a preference for Deep

More at DLS Tuesday 10:30am The Loft

cs.brown.edu/research/plt/d1l/d1s2018

43

