
Three Approaches to Gradual Typing

Ben Greenman, Justin Pombrio, Matthias
Felleisen, Preston Tunnell Wilson, Shriram
Krishnamurthi, and many others

1



Dynamic Typing

value-level abstractions,
enforced at run-time

Static Typing

type-level abstractions,
checked before run-time

Gradual Typing

mix of static & dynamic
typing ... somehow

2



Dynamic Typing

value-level abstractions,
enforced at run-time

Static Typing

type-level abstractions,
checked before run-time

Gradual Typing

mix of static & dynamic
typing ... somehow

3



Dynamic Typing

value-level abstractions,
enforced at run-time

Static Typing

type-level abstractions,
checked before run-time

Gradual Typing

mix of static & dynamic
typing ... somehow

4



Dynamic Typing

value-level abstractions,
enforced at run-time

Static Typing

type-level abstractions,
checked before run-time

Gradual Typing

mix of static & dynamic
typing ... somehow

5



Gradual Typing is growing ...

Over 80 publications

Over 20 implementations

6



Gradual Typing is growing ...

Over 80 publications

Over 20 implementations

But NO common definition of
gradual typing — due to

different goals and priorities

7



Gradual Typing is growing ...

Over 80 publications

Over 20 implementations

But NO common definition of
gradual typing — due to

different goals and priorities

Little acknowledgment (or analysis!)
of the differences

8



One kind of gradual typing:
Migratory Typing (SNAPL'17)

1. Begin with an existing,
dynamically-typed language

2. Design an idiomatic type
system

3. Allow interaction between
the two languages

9



a few Migratory Typing systems

Gradualtalk
 

Typed Racket
 

TPD
 

Pycket

Pallene
 

Grace
 

SafeTS
 

Reticulated

mypy
 

Flow
 

Hack
 

Pyre
 

Pytype
 

rtc
 

MACLISP

Common Lisp
 

Strongtalk
 

TypeScript

Typed Clojure
 

Typed Lua

1�



a few Migratory Typing systems

Deep
Gradualtalk

 

Typed Racket
 

TPD
 

Pycket

Shallow
Pallene

 

Grace
 

SafeTS
 

Reticulated

Erasure
mypy

 

Flow
 

Hack
 

Pyre
 

Pytype
 

rtc
 

MACLISP

Common Lisp
 

Strongtalk
 

TypeScript

Typed Clojure
 

Typed Lua

11



three approaches to Migratory Typing

Deep

Shallow

Erasure

12



three approaches to Migratory Typing

Deep
(behavioral)

Shallow
(transient)

Erasure
(optional)

13



three approaches to Migratory Typing

Deep
(behavioral)

Shallow
(transient)

Erasure
(optional)

Three strategies for enforcing
types at a boundary

14



three approaches to Migratory Typing

Deep

Shallow

Erasure

15



three approaches to Migratory Typing

Deep
types are sound/enforced

Shallow

Erasure

16



three approaches to Migratory Typing

Deep
types are sound/enforced

Shallow
typed code cannot get stuck

Erasure

17



three approaches to Migratory Typing

Deep
types are sound/enforced

Shallow
typed code cannot get stuck

Erasure
types do not affect behavior

18



Deep Shallow Erasure

19



Deep Shallow Erasure

Type Soundness (simplified):

 if ⊢e:t then either:

 - e ->* v and ⊢v:t

 - e diverges

 - e ->* Error

2�



Deep Shallow Erasure

Type Soundness (simplified):

 if ⊢e:t then either:

 - e ->* v and ⊢v:t

 - e diverges

 - e ->* Error

21



Deep Shallow Erasure

Type Soundness (simplified):

 if ⊢e:t then either:

 - e ->* v and ⊢v:t

 - e diverges

 - e ->* Error

22



Deep Shallow Erasure

Type Soundness (simplified):

 if ⊢e:t then either:

 - e ->* v and ⊢v:t

 - e diverges

 - e ->* Error

23



Deep Shallow Erasure

Deep

 if ⊢e:t then either:

 - e ->* v and ⊢v:t

 - e diverges

 - e ->* Error

24



Deep Shallow Erasure

Deep

 if ⊢e:t then either:

 - e ->* v and ⊢v:t

 - e diverges

 - e ->* Error

Shallow

 if ⊢e:t then either:

 - e ->* v and ⊢v:C(t)

 - e diverges

 - e ->* Error

25



Deep Shallow Erasure

Deep

 if ⊢e:t then either:

 - e ->* v and ⊢v:t

 - e diverges

 - e ->* Error

Shallow

 if ⊢e:t then either:

 - e ->* v and ⊢v:C(t)

 - e diverges

 - e ->* Error

Erasure

 if ⊢e:t then either:

 - e ->* v and ⊢v

 - e diverges

 - e ->* Error

26



Is type soundness all-or-nothing?

27



Is type soundness all-or-nothing?

No! (in a mixed-typed language)

28



Implementation

Deep Erasure

Shallow

Three compilers for the
Typed Racket surface
language

i.e. three ways of
running the same code

29



How to measure performance?

3�



31



548 ms

560 ms716,637 ms

721,454 ms

709,770 ms

711,000 ms963 ms

891 ms

592 ms

575 ms829,779 ms

821,285 ms829,048 ms602 ms

529 ms

32



1x

33



1x

1x1,307x1,294x

1,297x1x

1x

1x

1x1,513x

1,498x

1,527x

1,512x1x

0.97x

34



Experiment

Deep Erasure

Shallow

10 benchmark programs

2 to 10 modules each

4 to 1024 configurations
each

docs.racket-lang.org/gtp-benchmarks

35



Performance

Overhead vs.
Untyped

Num. Type Annotations

deep

shallow

erasure

36



37



Performance Implications

38



Performance Implications

add types to remove all
critical boundaries

add types sparingly

add types anywhere,
doesn’t matter

39



three approaches to Migratory Typing

Deep

Shallow

Erasure

Soundness

Performance

... Users?

4�



41



42



Developer Survey

Asked software engineers, students,
and MTurk workers to rate potential
different behaviors for programs

Results show a preference for Deep

More at DLS Tuesday 10:30am The Loft

cs.brown.edu/research/plt/dl/dls2018

43


