
1

A Transient Semantics for Typed Racket

Ben Greenman
Lukas Lazarek

Christos Dimoulas
Matthias Felleisen

2022-04-12

<Programming> 6.2

2

Context = Gradual Typing
High-level goal: mix typed and untyped code

3

Context = Gradual Typing
High-level goal: mix typed and untyped code

Typed Function
function add1(n : Num)

 n + 1

Untyped Caller
add1("hola")

4

Context = Gradual Typing
High-level goal: mix typed and untyped code

Typed Function
function add1(n : Num)

 n + 1

Untyped Caller
add1("hola")

Central question: what should types mean at run-time?

5

What Should Types Mean?

Three leading strategies:

6

What Should Types Mean?

Three leading strategies:

Guarded

Types enforce
behaviors

Transient

Types enforce
top-level shapes

Optional

Types enforce
nothing

7

Example

Typed Function
function add1(n : Num)

 n + 1

Untyped Caller
add1("hola")

8

Example

Typed Function
function add1(n : Num)

 n + 1

Untyped Caller
add1("hola")

Guarded and Transient Error: expected Num

Optional "hola" + 1

9

Example 2

Untyped Array
arr = ["A", 3]

Typed Client
nums : Array(Num) = arr

nums[0]

1�

Example 2

Untyped Array
arr = ["A", 3]

Typed Client
nums : Array(Num) = arr

nums[0]

Guarded and Transient Error: expected Array(Num)

Optional "A"

Guarded and Transient agree, but for diferent reasons ...

11

Example 2+
Guarded and Transient agree, but for diferent reasons ...

 ... and they disagree for an untyped client

12

Example 2+
Guarded and Transient agree, but for diferent reasons ...

 ... and they disagree for an untyped client

Untyped Array
arr = ["A", 3]

Typed Interface
nums : Array(Num) = arr

Unyped Client
nums[0]

13

Example 2+
Guarded and Transient agree, but for diferent reasons ...

 ... and they disagree for an untyped client

Untyped Array
arr = ["A", 3]

Typed Interface
nums : Array(Num) = arr

Unyped Client
nums[0]

Guarded Error: expected Array(Num)

Transient and Optional "A"

14

Guarded

Types enforce
behaviors

Transient

Types enforce
top-level shapes

Optional

Types enforce
nothing

15

Guarded

Types enforce
behaviors

Transient

Types enforce
top-level shapes

Optional

Types enforce
nothing

Typed Racket has Guarded types ... and a big problem

16

Guarded Types are Expensive!

17

Guarded Types are Expensive!

Typed Racket

Strong types: Type soundness
+ Complete monitoring

High overheads are common
on the GTP Benchmarks

Worst cases: 25x, 1400x

18

Guarded Types are Expensive!

Typed Racket

Strong types: Type soundness
+ Complete monitoring

High overheads are common
on the GTP Benchmarks

Worst cases: 25x, 1400x

Q. Is Sound Gradual Typing Dead?

19

Guarded gradual types are too slow

What to do?

2�

Guarded gradual types are too slow

What to do?

1. Improve the compiler
Collapsible Contracts [OOPSLA'18]

21

Guarded gradual types are too slow

What to do?

1. Improve the compiler
Collapsible Contracts [OOPSLA'18]

2. Remove checks statically
Corpse Reviver [POPL'21]

22

Guarded gradual types are too slow

What to do?

1. Improve the compiler
Collapsible Contracts [OOPSLA'18]

2. Remove checks statically
Corpse Reviver [POPL'21]

3. Build a new compiler
Pycket [OOPSLA'17]

23

Guarded gradual types are too slow

What to do?

1. Improve the compiler
Collapsible Contracts [OOPSLA'18]

2. Remove checks statically
Corpse Reviver [POPL'21]

3. Build a new compiler
Pycket [OOPSLA'17]

4. Use weaker types
Today!

24

Hope to reduce costs across the board
without changing the surface language

Same code, types, and type checker
Diferent run-time behavior

4. Use weaker types
Today!

25

The Inspiration:
 Reticulated Python

Transient sematics ~ enforce types with tag checks
No contract wrappers

26

The Inspiration:
 Reticulated Python

Transient sematics ~ enforce types with tag checks
No contract wrappers

<6x overhead for Transient
<18x overhead for Transient with blame

Performance is not bad! [POPL'17]

27

Research Questions

RQ0. How to add transient types to Typed Racket?

28

Research Questions

RQ0. How to add transient types to Typed Racket?

RQ1. Can Transient scale to a rich type system?
RQ2. Can we adapt an existing complier to do so?

29

Research Questions

RQ0. How to add transient types to Typed Racket?

RQ1. Can Transient scale to a rich type system?
RQ2. Can we adapt an existing complier to do so?

Implications for other gradual languages,
especially Optional ones that wish to strengthen their types

3�

Two Type Systems

31

Two Type Systems

DynamicT :=
Int
Ref T
T -> T
Class { T ... }
.... a few more

T :=

32

Two Type Systems

DynamicT :=
Int
Ref T
T -> T
Class { T ... }
.... a few more

Any (the top type)T :=

33

Two Type Systems

DynamicT :=
Int
Ref T
T -> T
Class { T ... }
.... a few more

Any (the top type)T :=
Integer
Natural

34

Two Type Systems

DynamicT :=
Int
Ref T
T -> T
Class { T ... }
.... a few more

Any (the top type)T :=
Integer
Natural
(Vectorof T)
(Vector T ...)

35

Two Type Systems

DynamicT :=
Int
Ref T
T -> T
Class { T ... }
.... a few more

Any (the top type)T :=
Integer
Natural
(Vectorof T)
(Vector T ...)
(-> T ... (Values T ...))

36

Two Type Systems

DynamicT :=
Int
Ref T
T -> T
Class { T ... }
.... a few more

Any (the top type)T :=
Integer
Natural
(Vectorof T)
(Vector T ...)
(-> T ... (Values T ...))
(Class T ...)

37

Two Type Systems

DynamicT :=
Int
Ref T
T -> T
Class { T ... }
.... a few more

Any (the top type)T :=
Integer
Natural
(Vectorof T)
(Vector T ...)
(-> T ... (Values T ...))
(Class T ...)
(All X T)
(Union T ...)
(Rec X T)

38

Two Type Systems

DynamicT :=
Int
Ref T
T -> T
Class { T ... }
.... a few more

Any (the top type)T :=
Integer
Natural
(Vectorof T)
(Vector T ...)
(-> T ... (Values T ...))
(Class T ...)
(All X T)
(Union T ...)
(Rec X T)
.... many more

39

Two Compilers

4�

Two Compilers

Typecheck + Elaborate

Python

41

Two Compilers

Typecheck + Elaborate

Python

Expand

Typecheck

Guard Boundaries

Optimize

Racket

42

Two Compilers

Typecheck + Elaborate

Python

Expand

Typecheck

Guard Boundaries

Optimize

Racket

Insert Transient Checks(replace only the guard pass)

43

Challenges

44

Challenges

Enforcing types
All

Rec
Union

45

Challenges

Enforcing types
All

Rec
Union

+ Generalize tag checks to shape checks +

46

Challenges

Enforcing types
All

Rec
Union

+ Generalize tag checks to shape checks +

Optimizing typed code

47

Challenges

Enforcing types
All

Rec
Union

+ Generalize tag checks to shape checks +

Optimizing typed code

+ Trust only shapes +

48

Challenges

Enforcing types
All

Rec
Union

+ Generalize tag checks to shape checks +

Optimizing typed code

+ Trust only shapes +

Navigating expanded code

49

Challenges

Enforcing types
All

Rec
Union

+ Generalize tag checks to shape checks +

Optimizing typed code

+ Trust only shapes +

Navigating expanded code

+ Typechecker must leave evidence +

5�

Challenges

Enforcing types
All

Rec
Union

+ Generalize tag checks to shape checks +

Optimizing typed code

+ Trust only shapes +

Navigating expanded code

+ Typechecker must leave evidence +

Minimizing costs

51

Challenges

Enforcing types
All

Rec
Union

+ Generalize tag checks to shape checks +

Optimizing typed code

+ Trust only shapes +

Navigating expanded code

+ Typechecker must leave evidence +

Minimizing costs

+ E.g. reduce codegen +

52

Challenges

Enforcing types
All

Rec
Union

+ Generalize tag checks to shape checks +

Optimizing typed code

+ Trust only shapes +

Navigating expanded code

+ Typechecker must leave evidence +

Minimizing costs

+ E.g. reduce codegen +

53

Navigating expanded code

+ Typechecker must leave evidence +

54

Navigating expanded code

+ Typechecker must leave evidence +

(for/sum ([byte (open-input-file "my.txt")])

 byte)

55

Navigating expanded code

+ Typechecker must leave evidence +

(for/sum ([byte (open-input-file "my.txt")])

 byte)

(define seq (make-seq (open-input-file "my.txt")))

(define (for-loop result pos)

 (if (not (seq.use-pos? pos))

 result

 (let ([byte (seq.get-val pos)])

 (for-loop (if (or (not seq.use-val?)

 (seq.use-val? byte))

 (+ result byte)

 result)

 (seq.next-pos pos)))))

(for-loop 0 seq.init)

56

Navigating expanded code

+ Typechecker must leave evidence +

(for/sum ([byte (open-input-file "my.txt")])

 byte)

(define seq (make-seq (open-input-file "my.txt")))

(define (for-loop result pos)

 (if (not (seq.use-pos? pos))

 result

 (let ([byte (seq.get-val pos)])

 (for-loop (if (or (not seq.use-val?)

 (seq.use-val? byte))

 (+ result byte)

 result)

 (seq.next-pos pos)))))

(for-loop 0 seq.init)

Don't want to check every function call!

57

58

How's performance?

<6x overhead for Transient
<18x overhead for Transient with blame

Does it match the worst cases for Reticulated?

59

Worst Case Overhead vs. Untyped

6�

Worst Case Overhead vs. Untyped
Transient

kcfa 1x

morsecode 3x

sieve 4x

snake 8x

suffixtree 6x

tetris 10x

acquire 1x

dungeon 5x

forth 6x

fsm 2x

fsmoo 4x

Transient
gregor 2x

jpeg 2x

lnm 1x

mbta 2x

quadT 7x

quadU 8x

synth 4x

take5 3x

zombie 31x

zordoz 3x

61

Worst Case Overhead vs. Untyped
Transient T+Blame

kcfa 1x >540x

morsecode 3x >250x

sieve 4x >220x

snake 8x >1000x

suffixtree 6x >190x

tetris 10x >720x

acquire 1x 34x

dungeon 5x 75x

forth 6x 48x

fsm 2x 230x

fsmoo 4x 100x

Transient T+Blame
gregor 2x 23x

jpeg 2x 38x

lnm 1x 29x

mbta 2x 37x

quadT 7x 34x

quadU 8x 320x

synth 4x 220x

take5 3x 33x

zombie 31x 560x

zordoz 3x 220x

62

Worst Case Overhead vs. Untyped
Transient T+Blame

kcfa 1x >540x

morsecode 3x >250x

sieve 4x >220x

snake 8x >1000x

suffixtree 6x >190x

tetris 10x >720x

acquire 1x 34x

dungeon 5x 75x

forth 6x 48x

fsm 2x 230x

fsmoo 4x 100x

Transient T+Blame
gregor 2x 23x

jpeg 2x 38x

lnm 1x 29x

mbta 2x 37x

quadT 7x 34x

quadU 8x 320x

synth 4x 220x

take5 3x 33x

zombie 31x 560x

zordoz 3x 220x

Transient alone is not so bad

T+Blame gets expensive

63

Blame: The Idea

64

Blame: The Idea

λx. "B"

f : Num -> Num f(2)

65

Blame: The Idea

λx. "B"

f : Num -> Num f(2)

When a typed/untyped interaction goes wrong,
blame shows where to start debugging

66

Blame: The Idea

λx. "B"

f : Num -> Num f(2)

When a typed/untyped interaction goes wrong,
blame shows where to start debugging

Guarded wrappers can attach precise
blame info to values

67

Blame: The Idea

λx. "B"

f : Num -> Num f(2)

When a typed/untyped interaction goes wrong,
blame shows where to start debugging

Guarded wrappers can attach precise
blame info to values

Transient has no wrappers, but
keeps a global map on the side

68

Blame: The Idea

λx. "B"

f : Num -> Num f(2)

When a typed/untyped interaction goes wrong,
blame shows where to start debugging

Guarded wrappers can attach precise
blame info to values

Transient has no wrappers, but
keeps a global map on the side

... a large map gets expensive

69

Worst Case Overhead vs. Untyped
Transient T+Blame

kcfa 1x >540x

morsecode 3x >250x

sieve 4x >220x

snake 8x >1000x

suffixtree 6x >190x

tetris 10x >720x

acquire 1x 34x

dungeon 5x 75x

forth 6x 48x

fsm 2x 230x

fsmoo 4x 100x

Transient T+Blame
gregor 2x 23x

jpeg 2x 38x

lnm 1x 29x

mbta 2x 37x

quadT 7x 34x

quadU 8x 320x

synth 4x 220x

take5 3x 33x

zombie 31x 560x

zordoz 3x 220x

7�

Worst Case Overhead vs. Untyped
Transient T+Blame

kcfa 1x >540x

morsecode 3x >250x

sieve 4x >220x

snake 8x >1000x

suffixtree 6x >190x

tetris 10x >720x

acquire 1x 34x

dungeon 5x 75x

forth 6x 48x

fsm 2x 230x

fsmoo 4x 100x

Transient T+Blame
gregor 2x 23x

jpeg 2x 38x

lnm 1x 29x

mbta 2x 37x

quadT 7x 34x

quadU 8x 320x

synth 4x 220x

take5 3x 33x

zombie 31x 560x

zordoz 3x 220x

Why is T+Blame so much worse than Reticulated?

1. Larger, longer-running benchmarks
2. No dynamic type

71

Roadblock

T+Blame is too expensive!

Future: can run-time support reduce the cost?

72

Overall Performance

73

Overall Performance

Gradual types should support all mixed-typed confgurations

N components => 2^N confgurations

74

Overall Performance

Gradual types should support all mixed-typed confgurations

N components => 2^N confgurations

1x 20x2x 4x 10x

100%
synth

75

Overall Performance

Gradual types should support all mixed-typed confgurations

N components => 2^N confgurations

1x 20x2x 4x 10x

100%
synth

At x=10, count the % of confgurations
that run at most 10x slower than untyped

76

Overall Performance

77

Overall Performance
Guarded: % of fast-enough points

synth

1x 20x2x 4x 10x

take5

1x 20x2x 4x 10x

quadU

1x 20x2x 4x 10x

1x 20x2x 4x 10x

jpeg

1x 20x2x 4x 10x

suffixtree

1x 20x2x 4x 10x

dungeon

x axis = [1x, 20x] (sets a limit for "fast enough") y axis = % of all gradually-typed points

78

Overall Performance
Guarded vs Transient: % of fast-enough points

synth

1x 20x2x 4x 10x

take5

1x 20x2x 4x 10x

quadU

1x 20x2x 4x 10x

1x 20x2x 4x 10x

jpeg

1x 20x2x 4x 10x

suffixtree

1x 20x2x 4x 10x

dungeon

x axis = [1x, 20x] (sets a limit for "fast enough") y axis = % of all gradually-typed points

79

Overall Performance
Guarded vs Transient: % of fast-enough points

synth

1x 20x2x 4x 10x

take5

1x 20x2x 4x 10x

quadU

1x 20x2x 4x 10x

1x 20x2x 4x 10x

jpeg

1x 20x2x 4x 10x

suffixtree

1x 20x2x 4x 10x

dungeon

x axis = [1x, 20x] (sets a limit for "fast enough") y axis = % of all gradually-typed points

8�

Overall Performance
Guarded vs Transient: % of fast-enough points

synth

1x 20x2x 4x 10x

take5

1x 20x2x 4x 10x

quadU

1x 20x2x 4x 10x

1x 20x2x 4x 10x

jpeg

1x 20x2x 4x 10x

suffixtree

1x 20x2x 4x 10x

dungeon

x axis = [1x, 20x] (sets a limit for "fast enough") y axis = % of all gradually-typed points

Transient ~ low costs in general

Guarded ~ high cost, but only for interactions

Future: systematically explore combinations

81

In Conclusion

RQ. Can transient types:
 - scale to a rich type system
 - in the context of an existing compiler?

82

In Conclusion

RQ. Can transient types:
 - scale to a rich type system
 - in the context of an existing compiler?

 Yes! ... without blame

83

In Conclusion

RQ. Can transient types:
 - scale to a rich type system
 - in the context of an existing compiler?

 Yes! ... without blame

... and with some tailoring

Overall performance is much improved

84

Reminder: Transient is a promising way to strengthen unsound Optional types

Guarded > Transient < Optional

Lots of potential clients!

85

The End

86

87

Worst Case Overhead vs. Untyped
Transient T+Blame Guarded

kcfa 1x >540x 4x

morsecode 3x >250x 2x

sieve 4x >220x 15x

snake 8x >1000x 12x

suffixtree 6x >190x 31x

tetris 10x >720x 12x

acquire 1x 34x 4x

dungeon 5x 75x 15000x

forth 6x 48x 5800x

fsm 2x 230x 2x

fsmoo 4x 100x 420x

Transient T+Blame Guarded
gregor 2x 23x 2x

jpeg 2x 38x 23x

lnm 1x 29x 1x

mbta 2x 37x 2x

quadT 7x 34x 25x

quadU 8x 320x 55x

synth 4x 220x 47x

take5 3x 33x 44x

zombie 31x 560x 46x

zordoz 3x 220x 3x

88

Optimizations

Topic Ok for Transient?
apply y
box y
dead-code N
extflonum y
fixnum y
float-complex y
float y

Topic Ok?
list y
number y
pair N
sequence y
string y
struct y
vector y

https://prl.ccs.neu.edu/blog/2020/01/15/the-typed-racket-optimizer-vs-transient

89

Example: Retic. and Dyn
Most of the local variables get the Dynamic type and skip blame-map updates

def permutations(iterable:List(int))->List(List(int)):

 pool = tuple(iterable)

 n = len(pool)

 r = n

 indices = list(range(n))

 cycles = list(range(n-r+1, n+1))[::-1]

 result = [[pool[i] for i in indices[:r]]]

 while n:

 for i in reversed(range(r)):

 cycles[i] -= 1

 if cycles[i] == 0:

 indices[i:] = indices[i+1:] + indices[i:i+1]

 cycles[i] = n - i

 else:

9�

No Wrappers = Simpler

(define b : (Boxof Char)

 (box #\X))

(define any : Any b)

(set-box! any #\Y)

Guarded Error

Transient OK

91

Limitation

Neither Guarded nor Transient TR allows occurrence types at a boundary

(require/typed racket/function

 (identity (-> Any Boolean : String)))

;; ^ Not permitted!

(define x : Any 0)

(define fake-str : String

 (if (identity x)

 (ann x String)

 (error 'unreachable)))

(string-length fake-str)

92

93

