
122

Complete Monitors for Gradual Types

BEN GREENMAN, PLT @ Northeastern University, USA

MATTHIAS FELLEISEN, PLT @ Northeastern University, USA

CHRISTOS DIMOULAS, PLT @ Northwestern University, USA

In the context of gradual typing, type soundness guarantees the safety of typed code. When untyped code

fails to respect types, a runtime check finds the discrepancy. As for untyped code, type soundness makes no

promises; it does not protect untyped code from mistakes in type specifications and unwarranted blame.

To address the asymmetry, this paper adapts complete monitoring from the contract world to gradual typing.

Complete monitoring strengthens plain soundness into a guarantee that catches problems with faulty type

specifications. Furthermore, a semantics that satisfies complete monitoring can easily pinpoint the conflict

between a type specification and a value. For gradual typing systems that fail complete monitoring, the

technical framework provides a source-of-truth to assess the quality of blame.

CCS Concepts: • Software and its engineering→ Semantics; Constraints; Functional languages.

Additional Key Words and Phrases: complete monitoring, blame soundness, blame completeness

ACM Reference Format:
Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2019. Complete Monitors for Gradual Types. Proc.
ACM Program. Lang. 3, OOPSLA, Article 122 (October 2019), 29 pages. https://doi.org/10.1145/3360548

1 TYPE SOUNDNESS IS NOT ENOUGH
In a mixed-typed language,

1
type soundness guarantees that the runtime system protects typed code

from bad interactions with untyped code. Different languages realize this protection in different

ways. Some use higher-order contract wrappers [Tobin-Hochstadt and Felleisen 2008]. Others

employ first-order checks in typed code [Roberts et al. 2019; Vitousek 2019; Vitousek et al. 2017].

In both cases, the runtime protections discover when typed code has to deal with untyped values

that do not match certain type specifications, and with varying degrees of accuracy, the runtime

system can assign blame to the broken components.

The question is what protects untyped code from mistakes in types in this setting. After all, a

mixed-typed language allows, and indeed encourages, programmers to write untyped code that

relies on type specifications describing other untyped libraries. For example, when designers build

a statically-typed extension of a dynamically typed language, they often supply a type assignment

for the (untyped) base environment by wrapping thin layers around existing untyped code, just as

originally proposed [Tobin-Hochstadt and Felleisen 2006]. New untyped code may rely on these

types; but, unsurprisingly, these type assignments come with mistakes [Feldthaus and Møller 2014;

1
A mixed-typed language combines static and dynamic typing. Section 3 explains the relation to gradual typing.

Authors’ addresses: Ben Greenman, PLT @ Northeastern University, Boston, Massachusetts, USA, benjaminlgreenman@

gmail.com; Matthias Felleisen, PLT@Northeastern University, Boston, Massachusetts, USA, matthias@ccs.neu.edu; Christos

Dimoulas, PLT @ Northwestern University, Evanston, Illinois, USA, chrdimo@northwestern.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2475-1421/2019/10-ART122

https://doi.org/10.1145/3360548

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

https://doi.org/10.1145/3360548
https://doi.org/10.1145/3360548

122:2 Ben Greenman, Matthias Felleisen, and Christos Dimoulas

St-Amour and Toronto 2013]. Programmers may wish to have some assurance that these mistakes

are discovered before they affect the result of a computation.

Consider an untyped library UT that exports the function д(x) = "42". The library TforUT
imports UT and exports д at type Int⇒ Int. Now imagine a developer who prototypes a new

module M in the untyped fragment of the language and relies on TforUT’s type specification for д.
The untyped code may apply д in a context that expects an integer (д(42)+42) or one that uses a tag
check (if is-zero(д(42)) then _ else _). What happens next is up to the semantics of the underlying

language: it may discover the faulty type specification; it may trigger a runtime check that blames

the untyped code; or it may silently compute a flawed result.

In general, the wrapper and the first-order checking approach implement different guarantees,

even though both satisfy type soundness theorems. A wrapper approach protects untyped code

from incorrect types, and a first-order approach does not. While Greenman and Felleisen [2018]

point out this difference with examples, they do not characterize it. This paper offers an explanation

in terms of complete monitoring [Dimoulas et al. 2012]. Our adaptation of this property to a mixed-

typed language demands two qualities beyond soundness. First, a language must enforce types with

runtime checks for every channel of communication between typed and untyped code fragments.

Second, these checks must enforce the behaviors allowed by the types. The implementation of

complete monitoring demands a mechanism for tracking types, something that is occasionally

impossible [Vitousek et al. 2017] and always expensive [Allende et al. 2013; Greenman et al.

2019b; Takikawa et al. 2015]. Studying typed-untyped interaction from the perspective of complete

monitoring, though, suggests weaker properties and a compromise.

The paper makes three contributions. First, it adapts the notion of complete monitoring to wrapper-
based and first-order mixed-typed languages. Second, it uses the technical framework to assess the
quality of blame assignments in systems that fail to satisfy complete monitoring. Third, it presents

an approach to runtime checking, dubbed Amnesic, that satisfies the same type soundness as the

wrapper approach and discovers the same errors as the first-order approach. This compromise

semantics fails complete monitoring but satisfies our blame requirements, and thus demonstrates

how this investigation opens a new way of exploring the design space of mixed-typed guarantees.

2 MOTIVATIONAL EXAMPLES, THE BASIC INSIGHTS
Our work focuses on the theories underlying two practical gradual/migratory typing systems:

Typed Racket [Tobin-Hochstadt and Felleisen 2008; Tobin-Hochstadt et al. 2017] and Transient

Reticulated Python [Vitousek 2019; Vitousek et al. 2017]. Each adds a type system to an existing

untyped language, satisfies a non-trivial type soundness theorem, and satisfies graduality [New

and Ahmed 2018; Siek et al. 2015b] for simply-typed programs.

Figure 1 displays a Typed Racket program that consists of three modules. The module on the

left represents an untyped library. The module in the middle is a typed adapter module; it imports

identifiers from the library, specifies their types, and immediately re-exports them. Adapters make

libraries accessible to typed code, but untyped clients such as the module on the right can also

use them. The creators of such modules are likely to rely on the type specifications; the types in

this adaptor, however, are faulty. The purpose of this example is to illustrate how Typed Racket

protects untyped code from incorrect type annotations (section 2.1).

Figure 2 is a three-module Reticulated program that uses types in the samemanner as the example

in figure 1. The purpose of this example is to show how a type-sound first-order approach to runtime

checking can yield misleading error messages even when the types are correct (section 2.2).

Complete monitoring explains the difference between the two approaches. Based on this insight,

section 2.3 surveys our contributions and section 2.4 motivates the Amnesic semantics.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

Complete Monitors for Gradual Types 122:3

2.1 What Protects the Untyped Code
Figure 1 represents a highly simplified real-world scenario. The module on the left, net/url, is an

excerpt from an untyped library that has been part of Racket for two decades. The typed module

in the middle defines type annotations for the untyped library. Lastly, the module on the right

represents the untyped prototype of a client application. It imports the typed library, possibly

because the developer intends to switch to Typed Racket eventually.

net/url

#lang racket

_ _ _ 600 lines of code _ _ _
_ _ _ plus dependencies _ _ _

(define (call/input-url url c h)
;; connect to the url via c
;; process the data via h
_ _ _)

typed/net/url

#lang typed/racket

(define-type URL _ _ _)

(require/typed/provide
;; from this library
net/url
;; import the following:

[string->url
(-> String URL)]

[call/input-url
(∀ (A)
(-> URL

(-> String Input-Port)
(-> Input-Port A)
A))])

client

#lang racket

(require html typed/net/url)

;; connect to url, read html
(define (main)

(call/input-url
URL
(λ (str) _ _ _)
read-html))

;; constants:
(define URL-str

"https://sr.ht")

(define URL
(string->url URL-str))

Fig. 1. Using Typed Racket to define an API

The main function on the right calls the typed function to open a network connection and read

HTML. Semantically, the function call/input-url flows from net/url to the typed module and then

to client; the call itself sends main’s arguments to the untyped library code via the typed module.

The application of call/input-url clearly relies on the type specification from typed/net/url: the

first argument is a URL structure, the second a function that accepts a string, and the third a

function that maps an input port to an HTML representation. The type declaration in figure 1 is

buggy, however; the first callback of call/input-url demands a URL, not a string.

Fortunately for the developer, Typed Racket compiles types to contracts and thereby catches

the mismatch. Here, the compilation of typed/net/url generates a higher-order function contract

for call/input-url. The generated contract ensures that the untyped client provides three type-

matching argument values and that the library applies the callback to a string. When the net/url

library eventually applies the callback function to a URL structure, the function contract for the

callback discovers the mismatch and blames the boundary between client and typed/net/url. The

blame message says that net/url broke the contract on the back-channel from it to client, but

warns the developer on the last line with “assuming the contract is correct.” A quick look confirms

that the contract—that is, the type from which the contract is derived—is wrong. Typed Racket is

unusual in this regard; other mixed-typed languages assume that “well-typed programs can’t be

blamed” [Wadler and Findler 2009].

One such language is Transient Reticulated. Its compiler inserts runtime checks to protect typed

code against ill-shaped values from untyped code. Technically, these checks compare the constructor

of a value to the constructor of the expected type at every typed elimination form. Although this

strategy guarantees that typed operations always receive inputs within their domains, it may not

discover when untyped code and type annotations clash.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

122:4 Ben Greenman, Matthias Felleisen, and Christos Dimoulas

2.2 How Precise Can Blame Be When Gradual Typing Fails to Monitor All Channels
Figure 2 presents an arrangement of three Transient Reticulated modules, similar to the code in

figure 1. The module on the left exports a function that retrieves data from a URL; this function

accepts several optional and keyword arguments. The typed adapter module in the middle formu-

lates types for one valid use of the function; a client may supply a URL as a string and a timeout as

a pair of floats. These types are correct. The rest of this subsection explains via the code on the

right what happens when a client module supplies a tuple that contains an integer and a string.

requests

_ _ _ +2,000 lines of code _ _

def get(url, *args, **kwargs):
Sends a GET request.
_ _ _

typed_requests

import requests as r

def get(url:Str,
to:Tuple(float, float)):

return r.get(url, to)

client

from typed_requests import get

wait_times = (2, "zero")
get("https://sr.ht",

wait_times)

Fig. 2. Using Reticulated to define an API

Reticulated’s runtime checks ensure that the typed get receives a string and a tuple, but do not
validate the tuple’s contents. Next, these same arguments pass to the untyped get function in the

requests module. When the untyped get eventually uses the string "zero" as a float, Python’s

runtime system raises an exception that originates from the requests module.

In this example, the programmer is lucky. The call to the typed version of get is still visible in

the stack trace because Python fails to implement tail calls properly. The presence of typed get

provides a hint that it might be at fault. If the maintainers of Python ever changed their mind about

tail calls, this hint would disappear. Even worse, if the code implemented the channel from client

to requests via typed_requests with OO callbacks instead of pairs, the intermediate typed call may

not be on the stack no matter how the compiler handles tail calls.

In sum, types in Transient Reticulated do not monitor all channels of communication among

modules. Consequently, errors within one module might be due to false type assumptions. Reticu-

lated attempts to address this problem with a global map from heap addresses to type obligations.

Based on the complete-monitor analysis framework, the technical part of the paper demonstrates,

however, that even this map may provide misleading blame assignments.

2.3 Informal Overview of Results
Our first contribution is the introduction of complete monitors for gradual types. The starting
point is the notion of complete monitoring for contract systems. Roughly speaking, a contract

system is complete if (1) it is possible to attach a contract to every channel of communication

between program components and (2) the discovery of a contract violation points to a mismatch

between the obligations on a channel between components and a value that passes through this

channel. A mixed-typed language satisfies complete monitoring if the translation of types into

runtime checks monitors every channel of communication between components.

The first-order approach of Transient Reticulated fails to protect all channels. As the example in

the preceding section illustrates, it does not protect channels of communication through a pair.

A precise statement of complete monitoring depends on a notion of ownership of a value by a

component. The notion of ownership in this paper is standard [Dimoulas et al. 2011, 2012]. Techni-

cally, a semantics (of a mixed-typed language) satisfies complete monitoring if every reduction step

yields a consistent ownership assignment in which every expression has a unique owner. When a

value traverses a communication channel, the obligations are checked. If all of them can be checked

off, ownership is transferred; otherwise the receiving component must share ownership with

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

Complete Monitors for Gradual Types 122:5

the sending one. Only a wrapping semantics, such as Typed Racket’s, implements the ownership

consistency requirement of complete monitoring.

Our second contribution is a technique to assess the quality of blame assignments in systems

that fail complete monitoring. If a value may have multiple owners and a blame assignment may

point to multiple components, there are two possibilities:

• A mixed-typed language’s blame system is sound if all reported blame labels are a subset of
the ownership labels of the witness value.

• It is complete if all reported blame labels are a superset of the ownership labels of this value.

Our third contribution is a semantics that satisfies the same type soundness property as Typed

Racket but checks the same first-order properties as Transient. This proof-of-concept semantics is

dubbed Amnesic; it is inspired by forgetful and heedful contracts [Greenberg 2015].

In sum, our formal results justify the entries in table 1. The rows align with the four identified

properties: type soundness, complete monitoring, blame soundness, and blame completeness.

Table 1. Informal summary

N T A E
type sound 1 ⌊ ·⌋ 1 0
complete monitor ✓ ✕ ✕ ✕

sound blame ✓ ✕ ✓ ✕

complete blame ✓ ✕ ✓ ✕

The columns represent four semantics: N (Natural) for the Typed
Racket approach; T for Transient Reticulated; A for Amnesic; and

E for Erasure, the semantics of optional type systems. As the first

row shows, Natural and Amnesic satisfy the same type soundness
property, while the properties for Transient and Erasure differ

from those and each other. (The notation is explained in section 5;

suffice it to say that 1 promises the strongest guarantees for types and 0 the weakest.) Otherwise,
only Typed Racket satisfies all properties while Amnesic is blame-sound and blame-complete.

2.4 Informal Overview of the Amnesic Semantics
Our three semantics are based on different strategies for mixing typed and untyped program

components at runtime. The Natural semantics strictly enforces the boundaries between typed

and untyped code. A value may cross a boundary if all properties can be checked. If not, a monitor
wrapper provides controlled access to the value. A client may send input to the monitor, which:

checks the input, forwards input to the value, and checks the result before returning to the client.

This well-known wrapping strategy thus guarantees the required ownership consistency guarantee.

The Transient semantics enforces the outermost constructor of types with shallow tag checks

in statically-typed code. These checks guard every untyped-to-typed boundary and every typed

elimination form (function application, pair projection). If a check succeeds, Transient records the
fact in a global blame map from heap addresses to sets of boundaries. If a later check fails, the map

provides some information about what may have caused the failure.

The contrast between Natural and Transient is striking. While the former may wrap a value in

an unbounded number of proxy layers,
2
the latter uses no wrappers and still protects typed code.

The only significant drawback to Transient appears to be the imprecise blame map.

The Amnesic semantics is a compromise between these two extremes. Amnesic performs the

same tag checks as Transient. Instead of a global map, though, it attaches blame metadata to values.

In our model, a trace wrapper records the boundaries that a value has previously crossed. If an

untyped function enters a typed component, Amnesic wraps the function in a monitor. If the

function travels back to untyped code, Amnesic replaces the monitor with a trace wrapper that

records two boundaries. Future round-trips extend the trace. Conversely, a typed function that

flows to untyped code and back N+1 times gets three wrappers: an outer monitor to protect its

current typed client, a middle trace to record its last N trips, and an inner monitor to protect its

body. Thus Amnesic limits the depth of wrappers and tracks relevant blame information.

2
Proxies may be encoded to save space [Greenberg 2015; Herman et al. 2010; Siek et al. 2015a].

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

122:6 Ben Greenman, Matthias Felleisen, and Christos Dimoulas

Surface Language

e = x | n | i | λx . e | λ(x :τ). e | ⟨e, e⟩ |
app{τ ?} e e | unop{τ ?} e | binop{τ ?} e e |
dyn b e | stat b e

τ = Nat | Int | τ×τ | τ⇒τ
τ ? = τ | U
b = (ℓ◀τ◀ ℓ)
ℓ = countable set of names

unop = fst | snd
binop = sum | quotient
Γ = · | (x :τ ?), Γ
L = · | (x :ℓ),L
n = N
i = Z
b∗ = P(b)
ℓ∗ = P(ℓ)

e :τ ? wf
e0 :τ0 wf iff ∃ ℓ0. ℓ0 ⊩ e0 and ⊢ e0 : τ0
e0 :U wf iff ∃ ℓ0. ℓ0 ⊩ e0 and ⊢ e0 : U

L; ℓ ⊩ e (selected rules)

(x0 :ℓ0) ∈ L0

L0; ℓ0 ⊩ x0

(x0 :ℓ0),L0; ℓ0 ⊩ e0

L0; ℓ0 ⊩ λx0. e0

(x0 :ℓ0),L0; ℓ0 ⊩ e0

L0; ℓ0 ⊩ λ(x0 :τ0). e0

L0; ℓ1 ⊩ e0

L0; ℓ0 ⊩ dyn (ℓ0◀τ0◀ ℓ1) e0

Γ ⊢ e : τ (selected rules)

(x0 :τ0), Γ0 ⊢ e0 : τ1

Γ0 ⊢ λ(x0 :τ0). e0 : τ0⇒τ1

Γ0 ⊢ e0 : τ0 τ0 ⩽: τ1

Γ0 ⊢ e0 : τ1

Γ0 ⊢ e0 : U

Γ0 ⊢ dyn (ℓ0◀τ0◀ ℓ1) e0 : τ0

Γ ⊢ e : U (selected rules)

(x0 :U), Γ0 ⊢ e0 : U

Γ0 ⊢ λx0. e0 : U

Γ0 ⊢ e0 : U Γ0 ⊢ e1 : U

Γ0 ⊢ app{U} e0 e1 : U

Γ0 ⊢ e0 : τ0

Γ0 ⊢ stat (ℓ0◀τ0◀ ℓ1) e0 : U

τ ⩽: τ

Nat ⩽: Int

τ0 ⩽: τ2 τ1 ⩽: τ3

τ0×τ1 ⩽: τ2×τ3

τ2 ⩽: τ0 τ1 ⩽: τ3

τ0⇒τ1 ⩽: τ2⇒τ3 τ0 ⩽: τ0

Fig. 3. Surface Language

3 THE MODEL: SYNTAX AND TYPES
Our model builds on the previous work of Greenman and Felleisen [2018] who, in turn, employ

Matthews and Findler [2009]’s multi-language framework for modeling the syntax, types, and

semantics of a mixed-typed language. In particular, we interpret one “surface” syntax and mixed

type system (figure 3) in three different ways. This section presents the common basis. The set of

surface expressions e includes numbers, tuples, and anonymous functions, illustrative of the atomic

values, data structures, and higher-order values. Expressions may be combined through function

application (app), operator application (unop and binop), and boundary terms (dyn and stat).
Boundary terms divide a program into named components. Each component is either statically or

dynamically typed. A boundary term combines a boundary specification (b, for instance (ℓ0◀τ0◀ ℓ1))
and a sender expression. For example, the boundary term (dyn (ℓ0◀Nat◀ ℓ1) (λx0. x0)) embeds a

dynamically-typed sender component named ℓ1, consisting of the function (λx0. x0), into a statically-
typed context named ℓ0. While Nat seems to disagree with the enclosed function value, the term is

grammatically correct and well-typed.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

Complete Monitors for Gradual Types 122:7

Every function application and operator application comes with the type τ ? of its expected
result.

3
In a statically-typed component, any type τ may be acceptable. Within a dynamically-typed

component, the markU of a un(i)typed value is the only appropriate declaration.

Note thatU is not a dynamic type [Thatte 1990]. Our model is thus directly representative of

languages such as Dart 2 (dart.dev/dart-2) and Typed Racket, and of the cast calculi employed by

many true gradual languages [Cimini and Siek 2017; Siek et al. 2015b].

An expression is well-formed if it uses component names correctly and is well-typed. Figure 3

defines the relevant judgments. The first judgment, ⊩, checks that components are named con-

sistently and that the variables defined in one component are never directly accessed by another

component. This judgment applies to both static and dynamic code. Type-correctness uses two

judgments: one for static typing (Γ ⊢ e : τ) and one for dynamic typing (Γ ⊢ e : U). These judgments

depend on one another to handle boundary terms. For example, a stat boundary has typeU if its

subexpression has the type in the boundary specification. The static typing judgment depends on a

notion of subtyping (⩽:)—based on a subset relationship between theNat and Int types—because we
firmly embrace the idea that a type system for untyped code must have true union types [Castagna

and Lanvin 2017; Tobin-Hochstadt and Felleisen 2010; Tobin-Hochstadt et al. 2017]. Subtyping is

incorporated to the typing judgment via a subsumption rule to keep the presentation brief.

4 THE MODEL: THREE SEMANTICS
The three interpretations of the surface syntax, dubbedNatural, Transient, andAmnesic, are defined
via three reduction semantics. The first three subsections introduce the notions of reduction; the
last one generates the compatible closure with respect to evaluation contexts of these relations in a

reasonably standard fashion [Barendregt 1981; Felleisen et al. 2009].

The three semantics utilize some common extensions to the surface syntax and common meta

functions; see figures 4, 5,
4
and 6. In particular, each recognizes the same errors (Err), uses the same

type constructors (K) for tag checks, and assigns the same meaning (δ) to primitive operations.

A program evaluationmay signal four kinds of errors, defined in figure 4. First, a dynamic tag error

(TagErr •) is the outcome of an evaluation that applies an elimination form to a misshaped argument.

For example, the first projection of an integer signals such an error. A static tag error (TagErr ◦)
results from similar applications in typed code, and from any other redex that contradicts the static

typing judgment. Intuitively, type soundness eliminates the possibility of such contradictions. Third,

a division-by-zero error (DivErr) may be raised by an application of the quotient primitive; quotient
is one representative example of the partial primitives in a full language. Lastly, a boundary error

(BndryErr (b∗,v)) indicates a type mismatch between two components and comes with both a set

of boundaries and a witness value.
5
The error BndryErr ({(ℓ0◀τ0◀ ℓ1)},v0), for example, says that

a mismatch between value v0 and type τ0 prevented the value sent by the ℓ1 component from

entering the ℓ0 component.

3
These annotations serve two purposes: one essential, one convenient. On elimination forms (app, fst, and snd) they are

essential for the first-order interpretations, because those must check the output of certain elimination forms in typed

components and thus enforce the type required by the context. Binary operations have annotations to conveniently

disambiguate statically-typed and dynamically-typed redexes. All these annotations could be inferred from the type

derivation of an unannotated surface program.

4
The judgment v0 ∈ n holds when the value v0 is a member of the set of natural numbers, and similarly for other objects

and sets. By convention: a variable without a subscript typically refers to a set, and a term containing a set describes a

comprehension. For example, (λx .v) = {(λxi .vj) | xi ∈ x and vj ∈ v }.
5
A boundary error is comparable to a blame error [Wadler and Findler 2009]; however, a boundary error emphasizes that

either an untyped component or a type specification may be at fault. Type specifications—whether written by a programmer

or inferred [Chen and Campora 2019]—can have bugs.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

https://dart.dev/dart-2

122:8 Ben Greenman, Matthias Felleisen, and Christos Dimoulas

Evaluation Language

Err = TagErr • | TagErr ◦ | DivErr | BndryErr (b∗,v)
e = . . . | Err
K = Nat | Int | Pair | Fun

Γ ⊢ e : τ (selected rules)

Γ0 ⊢ Err : τ0

Γ ⊢ e : U (selected rules)

Γ0 ⊢ Err : U

Fig. 4. Syntax for basic errors and type constuctors, common typing judgments

tag-match (K0,v0) =

True
if K0 = Nat and v0 ∈ n
or K0 = Int and v0 ∈ i
or K0 = Pair and

v0 ∈ ⟨v,v⟩ ∪
(mon (ℓ◀ (τ×τ)◀ ℓ) v)

or K0 = Fun and

v0 ∈ (λx . e) ∪ (λ(x :τ). e) ∪
(mon (ℓ◀ (τ⇒τ)◀ ℓ) v)

tag-match (K0,v1)
if v0 = tracev b

∗
0
v1

False
otherwise

⌊τ0⌋ =

Nat if τ0 = Nat
Int if τ0 = Int
Pair if τ0 ∈ τ×τ
Fun if τ0 ∈ τ⇒τ

rev (b∗
0
) = {(ℓ1◀τ0◀ ℓ0)
| (ℓ0◀τ0◀ ℓ1) ∈ b

∗
0
}

Fig. 5. Common metafunctions

δ (unop, ⟨v0,v1⟩) =

v0
if unop = fst{τ ?}

v1
if unop = snd{τ ?}

δ (binop, i0, i1) =

i0 + i1
if binop = sum{τ ?}
DivErr
if binop = quotient{τ ?}
and i1 = 0

⌊i0/i1⌋
if binop = quotient{τ ?}
and i1 , 0

Fig. 6. Specification for primitive operations

4.1 Natural Notions of Reduction
Figure 7 extends the base grammar of evaluation expressions with monitor wrappers. While the

grammar is somewhat liberal, Natural only ever pairs a function-type boundary with a (possibly-

monitored) function value in a monitor. Thus the monitors that arise during evaluation are members

of the following two mutually-recursive sets:

stat-mon = mon (ℓ◀ (τ⇒τ)◀ ℓ) λx . e
| mon (ℓ◀ (τ⇒τ)◀ ℓ) dyn-mon

dyn-mon = mon (ℓ◀ (τ⇒τ)◀ ℓ) λ(x :τ). e
| mon (ℓ◀ (τ⇒τ)◀ ℓ) stat-mon

If any other monitor arises, the notions of reduction raise a static tag error. These rules appear in

the technical report along with a proof that well-typed expressions never raise static tag errors.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

Complete Monitors for Gradual Types 122:9

Natural Evaluation Language

v = n | i | ⟨v,v⟩ | λx . e | λ(x :τ). e | mon b v
e = . . . | mon b v

Γ ⊢N e : τ (selected rules)

Γ0 ⊢N v0 : U

Γ0 ⊢N mon (ℓ0◀ (τ0⇒τ1)◀ ℓ1) v0 : τ0⇒τ1

Γ ⊢N e : U (selected rules)

Γ0 ⊢N v0 : τ0⇒τ1

Γ0 ⊢N mon (ℓ0◀ (τ0⇒τ1)◀ ℓ1) v0 : U

Fig. 7. Natural language extensions

4.1.1 Natural, Statically-Typed. The δ metafunction (figure 6) defines the semantics of the unary

and binary operators. If δ is undefined for the argument values, a tag error results:

e ▷N eunop{τ0}v0 ▷N TagErr ◦
if δ (unop,v0) is undefined

unop{τ0}v0 ▷N δ (unop,v0)
if δ (unop,v0) is defined

binop{τ0}v0v1 ▷N TagErr ◦
if δ (binop,v0,v1) is undefined

binop{τ0}v0v1 ▷N δ (binop,v0,v1)
if δ (binop,v0,v1) is defined

Only a typed function or monitor may be applied to an argument in a statically-typed context.

Any other application is a tag error:

app{τ0}v0 v1 ▷N TagErr ◦
if v0 < (λ(x :τ). e) ∪ (mon b v)

The application of a typed lambda to an argument is standard:

app{τ0} (λ(x0 :τ1). e0) v0 ▷N e0[x0←v0]

The application of a monitored, untyped function unfolds the monitor proxy into two new boundary

terms. One stat boundary protects the typed argument from improper use by the body of the

dynamically-typed function; one dyn boundary checks the result:

app{τ0} (mon (ℓ0◀ (τ1⇒τ2)◀ ℓ1) v0) v1 ▷N dyn b0 (app{U}v0 (stat b1 v1))
where b0 = (ℓ0◀τ2◀ ℓ1) and b1 = (ℓ1◀τ1◀ ℓ0)

Both boundaries use the type (τ1⇒τ2) from the monitored function and ignore the annotation τ0
that decorates the application. The annotations are relevant only for Transient and Amnesic.
The remaining four rules define the behavior of dyn boundaries. These rules initially check a

dynamically-typed value against a static type using the tag-match metafunction. For functions, a

successful check entails the creation of a new monitor:

dyn (ℓ0◀ (τ0⇒τ1)◀ ℓ1) v0 ▷N mon (ℓ0◀ (τ0⇒τ1)◀ ℓ1) v0
if tag-match (⌊τ0⇒τ1⌋,v0)

For pairs, Natural creates a new typed pair containing new dyn boundaries. The evaluation of

these boundaries validates the elements of the original, untyped pair:

dyn (ℓ0◀ (τ0×τ1)◀ ℓ1) ⟨v0,v1⟩ ▷N ⟨dyn (ℓ0◀τ0◀ ℓ1) v0, dyn (ℓ0◀τ1◀ ℓ1) v1⟩

For base types, a successful check is a complete proof that the value matches the type:

dyn (ℓ0◀τ0◀ ℓ1) i0 ▷N i0
if tag-match (⌊τ0⌋, i0)

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

122:10 Ben Greenman, Matthias Felleisen, and Christos Dimoulas

Otherwise, if the tag-match check fails, the reduction ends in a type mismatch. The error message

reports the current boundary and the incompatible value:

dyn (ℓ0◀τ0◀ ℓ1) v0 ▷N BndryErr ({(ℓ0◀τ0◀ ℓ1)},v0)
if ¬tag-match (⌊τ0⌋,v0)

4.1.2 Natural, Dynamically-Typed. Applications of primitives end in a dynamic tag error if δ is

undefined for the given values:

e ▶N eunop{U}v0 ▶N TagErr •
if δ (unop,v0) is undefined

unop{U}v0 ▶N δ (unop,v0)
if δ (unop,v0) is defined

binop{U}v0v1 ▶N TagErr •
if δ (binop,v0,v1) is undefined

binop{U}v0v1 ▶N δ (binop,v0,v1)
if δ (binop,v0,v1) is defined

Function application follows the tag of the operator: substitution for an untyped function,

decomposition for a monitor, and a tag error for anything else:

app{U}v0 v1 ▶N TagErr •
if v0 < (λx . e) ∪ (mon b v)

app{U} (λx0. e0) v0 ▶N e0[x0←v0]

app{U} (mon (ℓ0◀ (τ0⇒τ1)◀ ℓ1) v0) v1 ▶N stat b0 (app{τ1}v0 (dyn b1 v1))
where b0 = (ℓ0◀τ1◀ ℓ1) and b1 = (ℓ1◀τ0◀ ℓ0)

In the monitor case, a dyn boundary checks the argument and a stat boundary protects the result.

The rules for stat boundaries protect typed values from untyped contexts. Protection is crucial

for typed functions because an untyped context may supply type-incorrect arguments:

stat (ℓ0◀ (τ0⇒τ1)◀ ℓ1) v0 ▶N mon (ℓ0◀ (τ0⇒τ1)◀ ℓ1) v0
if tag-match (⌊τ0⇒τ1⌋,v0)

For typed pairs, a traversal protects higher-order members:

stat (ℓ0◀ (τ0×τ1)◀ ℓ1) ⟨v0,v1⟩ ▶N ⟨stat (ℓ0◀τ0◀ ℓ1) v0, stat (ℓ0◀τ1◀ ℓ1) v1⟩

Base values do not require protection:

stat (ℓ0◀τ0◀ ℓ1) i0 ▶N i0
if tag-match (⌊τ0⌋, i0)

Any other combination of type and value indicates a type mismatch within a statically-typed

component, and results in a static tag error:

stat (ℓ0◀τ0◀ ℓ1) v0 ▶N TagErr ◦
if ¬tag-match (⌊τ0⌋,v0)

The stat rules do not output a boundary error because a type mismatch in typed code contradicts

the static typing judgment, which is meant to be an invariant.

4.2 Transient Notion of Reduction
Figure 8 extends the base evaluation language with pre-values, heaps, and tag-check expressions.

The goal is to allocate one instance of every function and pair on a value heap. Technically, a value

heapH maps addresses (p) to pre-values (w). A blame heap B maps addresses to sets of boundaries

according to the blame strategy of Transient Reticulated [Vitousek 2019; Vitousek et al. 2017].

A check expression (checkτ ? e p) validates the result of an elimination form: τ ? is the expected

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

Complete Monitors for Gradual Types 122:11

Transient Evaluation Language

p = countable set of heap locations

v = i | n | p
w = λx . e | λ(x :τ). e | ⟨v,v⟩
e = . . . | p | checkτ ? e p
H = P((p 7→ w))
B = P((p 7→ b∗))
T = · | (p :τ ?),T

H0(v0) =

{
w0 if v0 ∈ p and (v0 7→ w0) ∈ H0

v0 if v0 < p

B0(v0) =

{
b∗
0

if v0 ∈ p and (v0 7→ b∗
0
) ∈ B0

∅ otherwise

B0[v0 7→ b∗
0
] =

{v0 7→ b∗

0
} ∪ (B0 \ (v0 7→ b∗

1
))

if v0 ∈ p and (v0 7→ b∗
1
) ∈ B0

B0 otherwise

B0[v0 ∪ b
∗
0
] = B0[v0 7→ b∗

0
∪ B0(v0)]

T ; Γ ⊢T e : K (selected rules)

T0; (x0 :U), Γ0 ⊢T e0 : U

T0; Γ0 ⊢T λx0. e0 : Fun

T0; Γ0 ⊢T e0 : K0

T0; Γ0 ⊢T checkτ0 e0 p0 : ⌊τ0⌋

T0; Γ0 ⊢T e0 : U

T0; Γ0 ⊢T checkτ0 e0 p0 : ⌊τ0⌋

T ; Γ ⊢T e : U (selected rules)

T0; (x0 :U), Γ0 ⊢T e0 : U

T0; Γ0 ⊢T λx0. e0 : U

T0; (x0 :τ0), Γ0 ⊢T e0 : K0

T0; Γ0 ⊢T λ(x0 :τ0). e0 : U

(p0 :U) ∈ T0
T0; Γ0 ⊢T p0 : U

Fig. 8. Transient language extensions and metafunctions

type, e is the result, and p is the address of the previously-eliminated value. The typing judgments

T ; Γ ⊢T e : K and T ; Γ ⊢T e : U validate type-tags. Both judgments accept all kinds of values and

have analogous rules; refer to the technical report for details.

The figure also defines three meta-functions: ·(·), ·[· 7→ ·], and ·[· ∪ ·]. The first gets an item from

a finite map, the second replaces a blame heap entry, and the third extends a blame heap entry.

Because maps are sets, set union suffices to add new entries.

4.2.1 Transient. The first rule allocates a new heap address for a pre-value:

e;H ;B ▶▷T e;H ;Bw0;H0;B0 ▶▷T p0; ({p0 7→ w0} ∪ H0); ({p0 7→ ∅} ∪ B0)
where p0 fresh inH0 and B0

A pair projection extracts a component from a (heap allocated) value. Because projection is an

elimination form, the next step is to tag-check the result against the expected type:

(unop{τ0}v0);H0;B0 ▶▷T TagErr ◦;H0;B0
if δ (unop,H0(v0)) is undefined
(unop{U}v0);H0;B0 ▶▷T TagErr •;H0;B0
if δ (unop,H0(v0)) is undefined
(unop{τ ?} p0);H0;B0 ▶▷T (checkτ ?δ (unop,H0(p0)) p0);H0;B0
if δ (unop,H0(p0)) is defined

Binary operations yield new integers, and therefore do not require result checks:

(binop{τ0}v0v1);H0;B0 ▶▷T TagErr ◦;H0;B0
if δ (binop,v0,v1) is undefined
(binop{U}v0v1);H0;B0 ▶▷T TagErr •;H0;B0
if δ (binop,v0,v1) is undefined
(binop{τ ?} i0 i1);H0;B0 ▶▷T δ (binop, i0, i1);H0;B0
if δ (binop, i0, i1) is defined

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

122:12 Ben Greenman, Matthias Felleisen, and Christos Dimoulas

The application of a typed function first confirms the tag of the argument value against the

domain of the function. If they match, the rule: (1) extends the blame for the argument with reversed

boundaries, to record the flow into the function; (2) substitutes the argument into the function

body; and (3) guards the result expression with a codomain check for the expected type:

(app{τ ?} p0 v0);H0;B0 ▶▷T (checkτ ? e0[x0←v0] p0);H0;B0[v0 ∪ rev (B0(p0))]
ifH0(p0) = λ(x0 :τ0). e0 and tag-match (⌊τ0⌋,H0(v0))

If the domain check fails, then Transient reports a boundary error containingv0 and the boundaries
associated with the procedureH0(p0):
(app{τ ?} p0 v0);H0;B0 ▶▷T BndryErr (B0(p0),v0);H0;B0
ifH0(p0) = λ(x0 :τ0). e0 and ¬tag-match (⌊τ0⌋,H0(v0))

The application of an untyped function in a typed context inserts a check that the function

computes a value matching the expected type. In anticipation of a possible check error, the rule

updates the blame map:

(app{τ0} p0 v0);H0;B0 ▶▷T (checkτ0 e0[x0←v0] p0);H0;B0[v0 ∪ rev (B0(p0))]
ifH0(p0) = λx0. e0

In an untyped context, the reduction merely performs the required substitution:

(app{U} p0 v0);H0;B0 ▶▷T (e0[x0←v0]);H0;B0
ifH0(p0) = λx0. e0

Invalid applications signal a static or dynamic tag error, depending on the context:

(app{τ0}v0 v1);H0;B0 ▶▷T TagErr ◦;H0;B0
ifH0(v0) < (λx . e) ∪ (λ(x :τ). e)
(app{U}v0 v1);H0;B0 ▶▷T TagErr •;H0;B0
ifH0(v0) < (λx . e) ∪ (λ(x :τ). e)

A dyn boundary checks the tag of a value. If successful, the value crosses the boundary and the

blame map records the event. Otherwise, the rule reports the current boundary:

(dyn (ℓ0◀τ0◀ ℓ1) v0);H0;B0 ▶▷T v0;H0; (B0[v0 ∪ {(ℓ0◀τ0◀ ℓ1)}])
if tag-match (⌊τ0⌋,H0(v0))
(dyn (ℓ0◀τ0◀ ℓ1) v0);H0;B0 ▶▷T BndryErr ({(ℓ0◀τ0◀ ℓ1)},v0);H0;B0
if ¬tag-match (⌊τ0⌋,H0(v0))

A stat boundary must check the tag of a value to guard against incorrect types. If the type is

incorrect, evaluation ends in a static tag error.

(stat (ℓ0◀τ0◀ ℓ1) v0);H0;B0 ▶▷T v0;H0; (B0[v0 ∪ {(ℓ0◀τ0◀ ℓ1)}])
if tag-match (⌊τ0⌋,H0(v0))
(stat (ℓ0◀τ0◀ ℓ1) v0);H0;B0 ▶▷T TagErr ◦;H0;B0
if ¬tag-match (⌊τ0⌋,H0(v0))

The rules for check expressions are similar to those for dyn boundaries, but have additional

information about the source of the target value. A check for the dynamic typeU is a no-op:

(checkUv0 p0);H0;B0 ▶▷T v0;H0;B0

Any other check expression matches the value against the type. If the check fails, the error reports

the boundary information for both the value and the p0 address because either set may contain the

boundary at the root of the issue:

(checkτ0v0 p0);H0;B0 ▶▷T v0;H0; (B0[v0 ∪ B0(p0)])
if tag-match (⌊τ0⌋,H0(v0))
(checkτ0v0 p0);H0;B0 ▶▷T BndryErr (B0(v0) ∪ B0(p0),v0);H0;B0
if ¬tag-match (⌊τ0⌋,H0(v0))

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

Complete Monitors for Gradual Types 122:13

Amnesic Evaluation Language

v = n | i | ⟨v,v⟩ | λx . e | λ(x :τ). e |
mon b v | tracev b

∗v | u
e = . . . | mon b v | tracev b

∗v |
traceb∗ e

Γ ⊢A e : τ (selected rules)

Γ0 ⊢A v0 : U

Γ0 ⊢A mon (ℓ0◀τ0◀ ℓ1) v0 : τ0

add-trace (b∗
0
,v0) =

v0
if b∗

0
= ∅

tracev (b
∗
0
∪ b∗

1
) v1

if v0 = tracev b
∗
1
v1

tracev b
∗
0
v0

if v0 < tracev b
∗v and b∗

0
, ∅

get-trace (v0) =

{
b∗
0

if v0 = tracev b
∗
0
v1

∅ if v0 < tracev b
∗v

rem-trace (v0) =

{
v1 if v0 = tracev b

∗
0
v1

v0 if v0 < tracev b
∗v

Γ ⊢A e : U (selected rules)

Γ0 ⊢A v0 : τ0

Γ0 ⊢A mon (ℓ0◀τ0◀ ℓ1) v0 : U

Γ0 ⊢A v0 : U

Γ0 ⊢A tracev b
∗
0
v0 : U

Γ0 ⊢A e0 : U

Γ0 ⊢A traceb∗
0
e0 : U

(trace?v b
∗
0
v1) = v0 ⇐⇒ rem-trace (v0) = v1 and get-trace (v0) = b∗0

Fig. 9. Amnesic language extensions, metafunctions, and trace?v abbreviation

4.3 Amnesic Notions of Reduction
Figure 9 adds monitors and trace wrappers to the base evaluation language, along with metafunc-

tions to extend, inspect, and remove the trace history associated with a value. During evaluation,

Amnesic limits the number of wrappers on a value by removing monitors when the value flows to

an untyped component. An originally-untyped value gets at most one trace and one temporary

“outer” monitor. An originally-typed value gets at most two monitors—one permanent “inner” and

one temporary “outer”—and one trace. Using the abbreviation (trace?v b
∗v) for an optionally-traced

value (bottom of figure 9), these wrapped values match the following grammars during evaluation:

stat-wrap = mon b (trace?v b
∗ ⟨v,v⟩)

| mon b (trace?v b
∗ λx . e)

| mon b (trace?v b
∗ (mon b ⟨v,v⟩))

| mon b (trace?v b
∗ (mon b λ(x :τ). e))

dyn-wrap = tracev b
∗ i

| tracev b
∗ ⟨v,v⟩

| tracev b
∗ λx . e

| trace?v b
∗ (mon b ⟨v,v⟩)

| trace?v b
∗ (mon b λ(x :τ). e)

The number of boundaries in a trace may grow without bound.

4.3.1 Amnesic, Statically-Typed. Two groups of rules handle primitive operations. One group

applies the δ metafunction:

e ▷A eunop{τ0}v0 ▷A TagErr ◦
if v0 < (mon (ℓ◀ (τ×τ)◀ ℓ) v) and δ (unop,v0) is undefined

unop{τ0}v0 ▷A δ (unop,v0)
if δ (unop,v0) is defined

binop{τ0}v0v1 ▷A TagErr ◦
if δ (binop,v0,v1) is undefined

binop{τ0}v0v1 ▷A δ (binop,v0,v1)
if δ (binop,v0,v1) is defined

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

122:14 Ben Greenman, Matthias Felleisen, and Christos Dimoulas

The other group handles monitored pair values:

fst{τ0} (mon (ℓ0◀ (τ1×τ2)◀ ℓ1) v0) ▷A dyn (ℓ0◀τ0◀ ℓ1) (fst{U}v0)
snd{τ0} (mon (ℓ0◀ (τ1×τ2)◀ ℓ1) v0) ▷A dyn (ℓ0◀τ0◀ ℓ1) (snd{U}v0)

The projection of an element from a monitored pair creates a boundary term to check the untyped

value. The new boundary uses the annotation τ0 from the operator, exactly like Transient. Type τ0
may be weaker than the corresponding type in the monitor, but this weaker guarantee is all that

the context explicitly relies on.

An invalid application in typed code yields a tag error:

app{τ0}v0 v1 ▷A TagErr ◦
if v0 < (λ(x :τ). e) ∪ (mon b v)

The application of an un-monitored function proceeds by substitution:

app{τ0} (λ(x0 :τ1). e0) v0 ▷A e0[x0←v0]

The application of a monitored function unfolds into two boundaries:

app{τ0} (mon (ℓ0◀ (τ1⇒τ2)◀ ℓ1) (v0)) v1 ▷A dyn b0 (app{U}v0 (stat b1 v1))
where b0 = (ℓ0◀τ0◀ ℓ1) and b1 = (ℓ1◀τ1◀ ℓ0)

One boundary protects the argument using the domain type τ1 from the monitor, and the other

validates the result using the type annotation τ0 from the application. As with monitored pairs, the

annotation τ0 may be weaker than the monitor’s type τ2 but suffices for the context.

Lastly, the rules for dyn boundaries demonstrate Amnesic’s first-order type-enforcement strategy.

If an untyped function or pair reaches a matching boundary, the following rule creates a new

monitor without checking the elements of a pair:

dyn (ℓ0◀τ0◀ ℓ1) v0 ▷A mon (ℓ0◀τ0◀ ℓ1) v0
if tag-match (⌊τ0⌋,v0) and rem-trace (v0) ∈ (λx . e) ∪ ⟨v,v⟩ ∪ (mon b v)

Base values are permitted to flow to the client context if they match the boundary type. The rule

removes any trace wrapper because the match fully checks the type:

dyn (ℓ0◀τ0◀ ℓ1) (trace?v b
∗
0
i0) ▷A i0

if tag-match (⌊τ0⌋, i0)
If a value reaches an incompatible boundary, then Amnesic reports both the current boundary and

any boundaries in the value’s trace:

dyn (ℓ0◀τ0◀ ℓ1) v0 ▷A BndryErr ({(ℓ0◀τ0◀ ℓ1)} ∪ b
∗
0
, rem-trace (v0))

if ¬tag-match (⌊τ0⌋,v0) and b∗0 = get-trace (v0)

4.3.2 Amnesic, Dynamically-Typed. Trace-wrapped expressions and values can appear (only) in

dynamically-typed contexts; thus every rule needs to handle possibly-traced values.

The first rule merges a trace expression onto a value:

e ▶A etraceb∗
0
v0 ▶A add-trace (b∗

0
,v0)

For un-monitored pairs, Amnesic applies δ to project an element and propagates the trace

boundaries from the pair onto the element:

unop{U}v0 ▶A TagErr •
where v1 = rem-trace (v0) and v1 < (mon (ℓ◀τ×τ◀ ℓ) v) and δ (unop,v1) is undefined

unop{U}v0 ▶A add-trace (get-trace (v0),δ (unop,v1))
where v1 = rem-trace (v0) and δ (unop,v1) is defined

Binary operations compute a new value, so traces on the inputs are irrelevant to the result:

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

Complete Monitors for Gradual Types 122:15

binop{U}v0v1 ▶A TagErr •
if δ (binop, rem-trace (v0), rem-trace (v1)) is undefined

binop{U}v0v1 ▶A δ (binop,v2,v3)
where v2 = rem-trace (v0) and v3 = rem-trace (v1) and δ (binop,v2,v3) is defined

The projection of an element from a monitored pair creates a new boundary that protects the

element using the type from the monitor. The trace of the element is extended with the trace (if

any) from the pair:

fst{U} (trace?v b
∗
0
(mon (ℓ0◀ (τ0×τ1)◀ ℓ1) v0)) ▶A traceb∗

0
(stat (ℓ0◀τ0◀ ℓ1) (fst{τ0}v0))

snd{U} (trace?v b
∗
0
(mon (ℓ0◀ (τ0×τ1)◀ ℓ1) v0)) ▶A traceb∗

0
(stat (ℓ0◀τ1◀ ℓ1) (snd{τ1}v0))

For un-monitored functions, Amnesic propagates the function’s trace to both the result and the

argument value. The boundaries around the latter are reversed because the argument flows into

the function body:

app{U} (trace?v b
∗
0
(λx0. e0)) v0 ▶A traceb∗

0
(e0[x0←v1])

where v1 = add-trace (rev (b∗
0
),v0)

For monitored functions, the argument aquires the monitor’s reversed trace information and is

validated against the domain of the monitor’s type. The result of a monitored application is protected

using the monitor’s codomain and its trace is extended.

app{U} (trace?v b
∗
0
(mon (ℓ0◀τ0◀ ℓ1) v0)) v1 ▶A traceb∗

0
(stat b0 (app{τ2}v0 (dyn b1 v2)))

where τ0 = τ1⇒τ2 and b0 = (ℓ0◀τ2◀ ℓ1) and b1 = (ℓ1◀τ1◀ ℓ0)
and v2 = add-trace (rev (b∗

0
),v1)

Applying any other kind of value to an argument results in a tag error:

app{U}v0 v1 ▶A TagErr •
if v0 < (λx . e) ∪ (mon (ℓ◀ (τ⇒τ)◀ ℓ) v)

When a statically-typed function or pair flows to an untyped context for the first time, Amnesic
creates a new monitor (to protect either the function, or functions within the pair):

stat (ℓ0◀τ0◀ ℓ1) v0 ▶A mon (ℓ0◀τ0◀ ℓ1) v0
if tag-match (⌊τ0⌋,v0) and v0 ∈ (λ(x :τ). e) ∪ ⟨v,v⟩

When a monitored value flows to an untyped component, Amnesic replaces the monitor wrapper

with a trace wrapper. If the monitored value is an untyped function or pair, then it flows un-

monitored back to the untyped client. If the value is a monitored-and-typed function or pair, then

it retains its inner monitor:

stat (ℓ0◀τ0◀ ℓ1) (mon b1 v0) ▶A trace {(ℓ0◀τ0◀ ℓ1),b1}v0
if tag-match (⌊τ0⌋, (mon b1 v0))

Typed base values may flow to untyped clients. Any other stat boundary contradicts static typing:

stat (ℓ0◀τ0◀ ℓ1) i0 ▶A i0
if tag-match (⌊τ0⌋, i0)

stat (ℓ0◀τ0◀ ℓ1) v0 ▶A TagErr ◦
if ¬tag-match (⌊τ0⌋,v0)

4.4 From Notions of Reduction to Semantics
Aside from the global heaps in Transient, the standard operations of compatible closure (→X) and

reflexive-transitive closure (→∗
X
) suffice to define three reduction relations; refer to a standard text

for background or the technical report for details:

→∗
N
=→∗

(▷N∪▶N)
→∗

T
=→∗▶▷T

→∗
A
=→∗

(▷A∪▶A)

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

122:16 Ben Greenman, Matthias Felleisen, and Christos Dimoulas

To enable uniform statements about the reduction relations, let X range over the set {N,T,A} and

let e0 →
∗

T
e1 iff there exists maps H1 and B1 such that e0; ∅; ∅ →

∗

T
e1;H1;B1 is defined. In this

manner, the term e0 →
∗

X
e1 has meaning for each of the three reduction relations. Similarly, we

write Γ0 ⊢T e0 : K0 rather than T0; Γ0 ⊢T e0 : K0 when the heap typing is clear from context.

A reduction relation diverges on an expression, written “e0 →
∗

X
diverges,” if there is an infinite

chain e0 →X e1 →X · · · of reductions starting from e0 (or e0; ∅; ∅ for Transient).

5 TYPE SOUNDNESS
A type soundness theorem relates the type τ0 of a well-formed expression e0 to the possible outcomes

of evaluation.
6
In particular, if the evaluation of e0 results in a value v0, then the surface type τ0

predicts some properties ofv0 in the evaluation language. For each combination of surface typing (⊢)

and evaluation typing (⊢X for X ∈{N ,T ,A}) judgments, the predictive aspect of a type soundness

theorem may be expressed as a function F on types.

Definition 5.1 (type soundness). Let F be a function from surface types to evaluation types. A

reduction relation→∗
X
satisfies TS(⊢X, F) iff for all e0 :τ0 wf one of the following holds:

• e0 →
∗

X
v0 and ⊢X v0 : F (τ0)

• e0 →
∗

X
e1 and e1 ∈ {TagErr •,DivErr} ∪ BndryErr (b∗,v)

• e0 →
∗

X
diverges

By implication, type soundness states evaluation does not reach certain “wrong” states [Milner

1978]: static tag errors (TagErr ◦) and irreducible expressions.

To formulate the type soundness theorem for the three semantics, we require two functions

on types. The first, ⌊·⌋ from figure 5, maps a surface type to its constructor. The second, 1, is the
identity function on types.

Theorem 5.2 (type soundness).

(1) →∗
N
satisfies TS(⊢A, 1)

(2) →∗
T
satisfies TS(⊢T, ⌊·⌋)

(3) →∗
A
satisfies TS(⊢A, 1)

Proof Sketch. By three lemmas per semantics: progress, preservation, and that surface typing

implies evaluation typing. The key for the first bullet is that the evaluation syntax of Amnesic
extends the one of Natural and the type judgment ⊢A extends ⊢N; hence the proof can verify the

theorem for the same type judgment. See the technical report for full proofs. □

6 TYPE SOUNDNESS IS REALLY NOT ENOUGH
Theorem 5.2 states that Natural and Amnesic satisfy the same type soundness property. This may

falsely suggest that Natural and Amnesic produce the same results (values, errors) for all programs.

But type soundness merely says that a reduction relation maps well-typed programs to well-typed

results according to some typing judgment, and nothing more.

Recall that Amnesic uses lazy monitors to protect pairs of values while Natural eagerly checks

pairs, so it is straightforward to construct an example that highlights the differences:

6
The definition considers closed e0 without loss of generality; to study an open expression, wrap it in a closing context

or lambda. By contrast, prior works that employ an “open-world” soundness theorem restrict the syntax of mixed-typed

programs [Tobin-Hochstadt and Felleisen 2006; Vitousek et al. 2017].

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

Complete Monitors for Gradual Types 122:17

define e0 = quotient{Nat} (fst{Nat} (dyn (ℓ0◀Nat×Nat◀ ℓ1) ⟨1,−1⟩)) 0

e0 →
∗

N
BndryErr ({(ℓ0◀Nat◀ ℓ1)},−1)

e0 →
∗

A
DivErr

Generally speaking, Amnesic is closer to Transient in the sense that both recognize the same set of

erroneous expressions. Natural identifies strictly more.

Theorem 6.1. The following statements hold for all well-formed expressions:
(1) If e0 →∗A Err then e0 →∗N Err,
(2) e0 →

∗

A
Err if and only if e0 →∗T Err

Proof Sketch. By two stuttering simulations. Natural and Amnesic stutter when: Natural tra-
verses a pair, Natural applies a monitored function, or Amnesic projects an element of a monitored

pair. Amnesic and Transient may stutter when Amnesic eliminates a monitor or Transient reaches
a check expression. The technical report works through the details. □

Even this theorem does not capture the complete differences between the semantics. Subtle

differences show up when a value crosses multiple boundaries. Suppose, as in figure 1, an untyped

function flows into a typed component and out again to an untyped client. The client can trust the

types in Natural, but not in Amnesic:

define e1 = app{U} stat (ℓ0◀Nat⇒Nat◀ ℓ1) (dyn (ℓ1◀Nat⇒Nat◀ ℓ2) (λx0. λx1. x0)) 8

e1 →
∗

N
BndryErr ({(ℓ0◀Nat◀ ℓ1)}, (λx1. 8))

e1 →
∗

A
λx1. 8

Clearly, Amnesic is missing some essential runtime checks that prevent the discovery of problematic

value flows. And type soundness—the idea that typed operations manipulate only values of the

correct shape—cannot explain this difference.

The remainder of this paper presents a novel framework for characterizing the differences

between two mixed-typed semantics that satisfy the same type soundness property but implement

different guarantees for different parts of the code. There are two key insights:

(1) The first is to recognize that channels of communication between typed and untyped code

dynamically appear and disappear.

(2) The second is that type specifications impose obligations on these channels, and therefore all

channels deserve observation.

The key technique is a tracking device for values, dubbed ownership. Intuitively, a component

in a program owns the values that it contains. A reduction semantics “moves” values from one

component to another across channels with obligations. If the obligations can be discharged, the

transfer is complete and the receiving component takes on full responsibility—or ownership. If not,

both components co-own. Hence checking for ownership properties becomes a way to state and

check for meta-properties of mixed-typed languages.

7 OWNERSHIP: LABELS AND REDUCTIONS
Ownership labels decorate an expression with the names of the currently-responsible components.

In the original program, each component owns all of its subexpressions. An expression reduces

to a value; if a value crosses a boundary, it gains a label. A value loses a label only when it fully

matches a boundary type. This section provides a formal language of ownership and explains:

• how to lift an expression into an ownership-labeled syntax, and

• how to lift a reduction relation to propagate ownership labels in a path-based sense.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

122:18 Ben Greenman, Matthias Felleisen, and Christos Dimoulas

Ownership Language

e = . . . | (e)ℓ | dyn b (e)ℓ |
stat b (e)ℓ | mon b (e)ℓ

v = . . . | (v)ℓ

ℓ = countable set

ℓ∗ = P(ℓ)

ℓ = | ℓℓ

owners (v0) =

{ℓ0} ∪ owners (v1) if v0 = (v1)

ℓ0

owners (v1) if v0 = tracev b
∗
0
v1

{} otherwise

rev (ℓ0 . . . ℓn) = ℓn . . . ℓ0

e0 = ((e1))
ℓ0 ⇐⇒ e0 = (· · · (e1)

ℓn · · ·)
ℓ1

e :τ ? wf
(e0)

ℓ0
:τ0 wf iff ℓ0 ⊩ (e0)

ℓ0
and ⊢ (e0)

ℓ0
: τ0

(e0)
ℓ0
:U wf iff ℓ0 ⊩ (e0)ℓ0 and ⊢ (e0)ℓ0 : U

Γ ⊢e :τ (selected rules)

Γ0 ⊢ e0 : τ0

Γ0 ⊢ (e0)
ℓ0
: τ0

Γ ⊢e : U (selected rules)

Γ0 ⊢ e0 : U

Γ0 ⊢ (e0)
ℓ0
: U

L; ℓ ⊩ e (selected rules)

L0; ℓ0 ⊩ e0

L0; ℓ0 ⊩ (e0)
ℓ0

(x0 :ℓ0) ∈ L0

L0; ℓ0 ⊩ x0

(x0 :ℓ0),L0; ℓ0 ⊩ e0

L0; ℓ0 ⊩ λx0. e0

(x0 :ℓ0),L0; ℓ0 ⊩ e0

L0; ℓ0 ⊩ λ(x0 :τ0). e0

L0; ℓ0 ⊩ e0 L0; ℓ0 ⊩ e1

L0; ℓ0 ⊩ app{τ ?} e0 e1

L0; ℓ1 ⊩ e0

L0; ℓ0 ⊩ dyn (ℓ0◀τ0◀ ℓ1) (e0)
ℓ1

L0; ℓ1 ⊩ e0

L0; ℓ0 ⊩ stat (ℓ0◀τ0◀ ℓ1) (e0)
ℓ1

L0; ℓ1 ⊩v0

L0; ℓ0 ⊩mon (ℓ0◀τ0◀ ℓ1) (v0)
ℓ1

L0; ℓ0 ⊩v0

L0; ℓ0 ⊩ tracev b
∗
0
v0

Fig. 10. Ownership language extensions

7.1 Ownership-labeled Syntax
The addition of ownership labels adds new syntax and one requirement to an evaluation language.

Ownership labels ℓ form a new syntactic category, but correspond to component names. Labels

annotate expressions as superscripts: (e)ℓ . The new requirement is that in each boundary term the

enclosed expression comes with a label that matches the sender name, e.g., the unlabeled term

(stat (ℓ0◀τ0◀ ℓ1) e0) must add the label ℓ1 to the inner expression.

Initially, only the immediate subexpressions of boundary terms have an explicit label. All other

expressions implicitly have the same owner as the context they appear in. Contracting a redex

may combine labels from different subexpressions onto the same term. Hence expressions and

values may become nested under a sequence of labels. A value that occurs under several distinct

ownership labels (including the label of its context) has multiple owners.

Figure 10 defines an extended grammar, metafunctions, and judgments for an ownership-labeled

language. The main judgment, e :τ ? wf, states that a well-formed expression has a top-most owner,

contains names and labels that satisfy the ⊩ judgment, and is well-typed. The ⊩ judgment formalizes

an ownership consistency relation with respect to a name ℓ for the enclosing component and a map

L from variables to component names.
7
Within one component, consistency requires that every

labeled expression (e0)
ℓ0
matches the enclosing component and that every variable is bound by a

function defined in a matching component. Other values and non-boundary expressions satisfy

7Transient additionally requires a heap labeling. The details are standard and appear in the technical report.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

Complete Monitors for Gradual Types 122:19

consistency if their subexpressions do. At the boundaries between components, the client side of

the boundary specification must match the enclosing component and the sender-side name must

match the required label on the subexpression.

The metafunction owners formally defines the owners of a value as the set of labels around

an unlabeled value stripped of any trace-wrapper metadata. Monitor wrappers are not stripped

because they represent boundaries. Figure 10 lastly overloads the rev metafunction to reverse a

sequence of labels, and defines the abbreviation ((e))ℓ to capture labels around an expression. For

example, ((4))ℓ0ℓ1 is short for ((4)ℓ0)
ℓ1
and ((5))ℓ0 matches 5 with ℓ0 bound to the empty sequence.

7.2 Ownership-labeled Reduction
A notion of reduction for an evaluation language may be systematically lifted to a labeled language

in two steps. Each lifted rule must first handle terms with an arbitrary number of ownership labels

per expression and must second propagate labels to reflect changes in the expression.

The following laws explain how to propagate labels. Each handles one scenario in which labels

may be transferred or dropped and comes with an example reduction rule. No new labels may be

created during a reduction:

(1) Every newly-created value is owned by the enclosing context.

(sum{Nat} (2)ℓ0 (2)ℓ1)
ℓ2
→ (4)ℓ2

The result 4 is a new value introduced by the runtime system via the δ metafunction.

(2) Every value that flows out of a value v0 acquires the labels of v0 and the context.

(snd{U} ((⟨(1)ℓ0 , (2)ℓ0⟩))
ℓ1ℓ2
)
ℓ3
→ ((2))ℓ0ℓ1ℓ2ℓ3

The value 2 flows out of the pair ⟨1, 2⟩ and thereby acquires the labels on the pair.

(3) Every value that flows into v0 acquires the label of the context and the reversed labels of v0.

(app{U} ((λx0. fst{U} x0))ℓ0ℓ1 (⟨8, 6⟩)ℓ2)
ℓ3
→ (((fst{U} ((⟨8, 6⟩))ℓ2ℓ3ℓ1ℓ0))

ℓ0ℓ1
)
ℓ3

The argument value ⟨8, 6⟩ is input to the function. The substituted body (fst{U} ⟨8, 6⟩)
flows out of the function, and by law 2 acquires the function’s labels.

(4) If a base value reaches a boundary with a matching base type, then the value may drop its

current labels and cross the boundary as a new value in the new context.

(stat (ℓ0◀Nat◀ ℓ1) (0)ℓ2ℓ1)
ℓ0
→ (0)ℓ0

The value 0 fully matches the type Nat (⌊Nat⌋ = Nat ∧ tag-match (⌊Nat⌋, 0)).

(5) Any other value that crosses a boundary must acquire the label of the new context.

(stat (ℓ0◀Nat◀ ℓ1) (⟨−2, 1⟩)ℓ1)
ℓ0
→ ((⟨−2, 1⟩))ℓ1ℓ0

The pair ⟨−2, 1⟩ does not match the type Nat and therefore keeps its old label.

(6) Consecutive equal labels may be dropped.

((0))ℓ0ℓ0ℓ1ℓ0 = (0)ℓ0ℓ1ℓ0

(7) Labels on an error term may be dropped.

E[(DivErr)ℓ0] → DivErr

All told, the laws reflect an algebraic intuition about how values travel across a program. The

same intuition is implicit in section 2 and further motivated in prior work on higher-order con-

tracts [Dimoulas et al. 2012]. Note that function application is the only “input” operation in our

models; the addition of mutable cells would add another kind of input.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

122:20 Ben Greenman, Matthias Felleisen, and Christos Dimoulas

Lifting does not otherwise change a reduction relation, meaning the behavior of any expression

remains the same. After all, the purpose of lifting a base semantics to a labeled language is to prove

properties (that can be stated in terms of ownership labels) about the base semantics.

7.3 Lifting by Example
As a first application of the laws, let us modify the Natural rule that creates a new monitor for an

untyped function that reaches a boundary. The unlabeled rule follows:

dyn (ℓ0◀ (τ0⇒τ1)◀ ℓ1) v0 ▷N mon (ℓ0◀ (τ0⇒τ1)◀ ℓ1) v0
if tag-match (⌊τ0⇒τ1⌋,v0)

Lifting the left-hand side of the rule introduces a label ℓ3 for the owner of the context and a

sequence of owners ℓ2 around the untyped function:

(dyn (ℓ0◀ (τ0⇒τ1)◀ ℓ1) ((v0))
ℓ2)

ℓ3
▷
N
. . .

if tag-match (⌊τ0⇒τ1⌋,v0)

The lifted rule does not require that the names in the boundary specification match the ownership

labels. In particular, both ℓ0 , ℓ3 and ℓ1 , ℓ2 may hold of a labeled redex.

The propagation laws assign the label of the context to the newly-created monitor (law 1):

(dyn (ℓ0◀ (τ0⇒τ1)◀ ℓ1) ((v0))
ℓ2)

ℓ3
▷
N
(mon (ℓ0◀ (τ0⇒τ1)◀ ℓ1) ((v0))

ℓ2)
ℓ3

if tag-match (⌊τ0⇒τ1⌋,v0)

No other laws apply. Laws 2 and 3 do not apply because only one value is involved and nothing

flows out of it. Laws 4 and 5 do not apply because v0 does not cross a boundary; rather, the monitor

preserves the ℓ0– ℓ1 boundary. Law 6 does not apply because the rule does not create or extend a

sequence of labels, and law 7 does not apply because there are no errors.

For a second example, the following lifted Amnesic rule projects the first element of a traced

and monitored pair in a dynamically-typed context. The left side of the rule introduces one list of

owners around the trace wrapper (ℓ4), another list around the monitor (ℓ3), one label for the context
within the monitor (ℓ2), and one label for the outer context (ℓ5). The rule creates a fst application
inside the monitor boundary:

(fst{U} ((trace?v b
∗
0
((mon (ℓ0◀ (τ0×τ1)◀ ℓ1) (v0)ℓ2))

ℓ3
))
ℓ4

)

ℓ5

▶
A
(traceb∗

0
((stat (ℓ0◀τ0◀ ℓ1) (fst{τ1}v0)ℓ2))

ℓ3ℓ4
)
ℓ5

The new stat boundary mediates between the same two components as the monitor, and therefore

has the same ℓ2 label. Law 1 applies this label to the fst application. Law 2 determines the labels

outside the stat expression because this expression is the result of eliminating two wrappers. The

other laws do not apply.

Lifted variants of the semantics from section 4 appear in the technical report. Henceforth, the

symbol −→∗
X
refers to the lifted variant of the→∗

X
reduction relation.

8 COMPLETE MONITORING
A semantics is a complete monitor if it enforces every boundary between two components with a

“Well-monitored types cannot lie”

suitable runtime check [Dimoulas et al. 2012]. Ownership and ownership consistency (⊩, figure 10)
are tools to translate this informal idea into a technical one. First, the ownership laws guarantee that

a value loses a label only by satisfying an appropriate boundary-type test. Second, the consistency

relationship fails to hold for any program execution during which a value acquires more than one

owner. If a lifted semantics preserves the ownership consistency relation, it prevents unchecked

values from crossing a boundary.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

Complete Monitors for Gradual Types 122:21

Definition 8.1 (complete monitor). A reduction relation→∗
X
satisfies CM iff for all well-formed

expressions (e0)
ℓ0
and expressions e1, a reduction (e0)

ℓ0 −→∗
X
e1 implies ℓ0 ⊩ e1.

Theorem 8.2.

(1) →∗
N
satisfies CM

(2) →∗
T
does not satisfy CM

(3) →∗
A
does not satisfy CM

Of our three semantics, onlyNatural is a complete monitor. The proof follows from a preservation

lemma for the ownership consistency relation.

Lemma 8.3. If Γ0 ⊢N e0 : τ ? and L0; ℓ0 ⊩ e0 and e0 −→N
e1 then L0; ℓ0 ⊩ e1.

Proof Sketch. For atomic and compound values, checks are complete and ownership transfer

is too. Higher-order values are wrapped with monitors and, by law 1, the reduction propagates the

context label to the monitor. In the higher-order stat rule, for example, consistency guarantees that

the owners inside the boundary match the sender name (ℓ2 = ℓ1 . . . ℓ1):

(stat (ℓ0◀ (τ0⇒τ1)◀ ℓ1) ((v0))
ℓ2)

ℓ3
▶
N
(mon (ℓ0◀ (τ0⇒τ1)◀ ℓ1) ((v0))

ℓ2)
ℓ3

if tag-match (⌊τ0⇒τ1⌋,v0)
Since no other laws apply, the creation of this wrapper clearly preserves ownership consistency.

The technical report contains a full proof. □

Transient and Amnesic are not complete monitors because there exist well-formed expressions

that lead to violations of the ownership consistency relation. One way to reach a violation is to

send a typed, higher-order value to an untyped client. To see why, let us examine the implications

of the label-propagation laws on a few higher-order stat rules.
Unlike Natural, the Transient stat rule lets a higher-order value into untyped code without a

monitor wrapper. By law 5, the value must acquire another owner; no other laws apply:

(stat (ℓ0◀ (τ0⇒τ1)◀ ℓ1) ((v0))
ℓ2)

ℓ3
;H0;B0 ▶▷T

((v0))
ℓ2ℓ3

;H0; (B0[v0 ∪ {(ℓ0◀ (τ0⇒τ1)◀ ℓ1)}])

if tag-match (⌊τ0⇒τ1⌋,H0(v0))

Unless ℓ2 equals ℓ3 (which, in a well-formed program, only happens when ℓ0 = ℓ1), this rule outputs
a value with two owners.

The Amnesic semantics includes a stat rule that replaces a monitor wrapper with a trace wrapper.

In the lifted version, law 1 assigns the context label to the new trace wrapper. Law 2 propagates

the monitor’s labels onto v0 because this value flows out of the monitor:

(stat (ℓ0◀τ0◀ ℓ1) ((mon b1 v0))ℓ2)
ℓ3
▶
A
(trace {(ℓ0◀τ0◀ ℓ1),b1} ((v0))

ℓ2)
ℓ3

if tag-match (⌊τ0⌋, (mon b1 v0))

The owners of a trace-wrapped value include the labels on both the wrapper and the value because

a trace represents metadata. This rule may therefore create a value with an inconsistent ownership.

From here, we just need to develop this line of thought into a full example.

Lemma 8.4. Let e0 = stat (ℓ0◀ (Int⇒Int)◀ ℓ1) (dyn (ℓ1◀ (Int⇒Int)◀ ℓ2) (λx0. (sum{U} x0 1))ℓ2)
ℓ1

and e1 = (app{U} e0 (λx1. 0))ℓ0 . Then e1 :U wf and the following statements hold:

• e1; ∅; ∅ −→
∗

T
e2;H0;B0 and ℓ0 ̸⊩ e2

• e1 −→
∗

A
e3 and ℓ0 ̸⊩ e3

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

122:22 Ben Greenman, Matthias Felleisen, and Christos Dimoulas

Proof. The Transient semantics allocates an address, which then crosses two boundaries. By

law 5, the address ends up with three owners:

e1; ∅; ∅ −→
∗

T
(app{U} ((p0))ℓ2ℓ1ℓ0 (λx1. 0))

ℓ0
;H0;B0

where H0 = {p0 7→ λx0. (sum{U} x0 1)}

and B0 = {p0 7→ {(ℓ0◀ (Int⇒ Int)◀ ℓ1), (ℓ1◀ (Int⇒ Int)◀ ℓ2)}}
The Amnesic semantics first reduces e0 to a trace-wrapped value with three owners:

(e0)
ℓ0 −→∗

A
(stat (ℓ0◀ (Int⇒ Int)◀ ℓ1) (mon (ℓ1◀ (Int⇒ Int)◀ ℓ2) (λx0. (sum{U} x0 1))ℓ2)

ℓ1
)
ℓ0

−→∗
A
(tracev {(ℓ0◀ (Int⇒ Int)◀ ℓ1), (ℓ1◀ (Int⇒ Int)◀ ℓ2)} ((λx0. (sum{U} x0 1)))ℓ2ℓ1)

ℓ0

= v0

Therefore e1 reduces to an application of the same value; this term does not satisfy ownership

consistency because owners (v0) = {ℓ0, ℓ1, ℓ2}:

e1 −→
∗

A
(app{U}v0 (λx1. 0))ℓ0 □

The formal property of complete monitoring has concrete implications for a developer. Take the

examples from the above proof. Once we reduce the expression to canonical form in Transient and
Amnesic, the result is a tag error (not a boundary error), meaning the developer receives no hint

that the domain of the function type was not checked.

9 IMPLICATIONS FOR BLAME
In addition to the difference between Natural on one hand and Transient and Amnesic on the

other, ownership also explains the difference between Transient and Amnesic. While Transient
reduces a program to an error if and only if Amnesic does, the two errors may contain completely

different blame information. Consider the example of a function f that is defined in component

ℓ0 and exported to two unrelated components: ℓ1 and ℓ2. Now, suppose that applications of f
in ℓ1 all return well-typed results, but an application in ℓ2 ends in a type mismatch (figure 11).

ℓ1 ℓ0 ℓ2

f✓ !

Fig. 11. Function f flows to ℓ1 and ℓ2,
only ℓ2 reports a type mismatch

Amnesic blames the boundary between ℓ0 and ℓ2, which is

precisely where the miscommunication occurred. Transient
blames both boundaries, even though component ℓ1 had
nothing to do with the mismatch.

Abstractly, this difference in blame comes about because

Amnesic associates boundaries to values using wrappers

and Transient combines boundaries in a global map. The

question is whether one strategy is better than the other.

To decide this question, we need a way to determine which

components are responsible for a value.

The concept of ownership provides the ground truth that we need. Let us start from what a

boundary error is about. Roughly, a boundary error blames a set of boundaries b∗
0
and a value v0 for

a type mismatch. Each boundary specification (ℓ0◀τ0◀ ℓ1) in the set is a claim that one component

(ℓ1) sent the value to another component (ℓ0). If these claims are correct, then a programmer can

modify ℓ1, the boundary type, and/or ℓ0 to resolve the issue.

Based on this explanation, we can see that blame information can be incorrect in two basic

ways. First, the set may contain a boundary that the reported value did not actually cross during

evaluation. A blamed set is unsound if it includes any such false positives. Second, the set may omit

a boundary that the value did in fact cross. A blamed set is incomplete if it lacks any part of the

value’s path through the program.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

Complete Monitors for Gradual Types 122:23

Using our notion of ownership, we can translate this informal description into a formal one. To

do so, we introduce the metafunction senders, which returns the component names on the right

side of a boundary specifications in a blame set:

senders (b∗
0
) = {ℓ1 | (ℓ0◀τ0◀ ℓ1) ∈ b

∗
0
}.

Now, given a boundary error with its blame set and value, blame soundness and blame completeness

compare the senders in the set with the owners of the value.
8

Definition 9.1 (blame soundness, blame completeness). For all well-formed e0 such that e0 →
∗

X

BndryErr (b∗
0
,v0) and, consequently, (e0)

ℓ0 −→∗
X
BndryErr (b∗

0
, ((v0))

ℓ0):

• →∗
X
satisfies blame soundness (BS) iff senders (b∗

0
) ⊆ owners (((v0))ℓ0)

• →∗
X
satisfies blame completeness (BC) iff senders (b∗

0
) ⊇ owners (((v0))ℓ0)

Our three semantics relate to blame soundness and completeness in three different ways.

Theorem 9.2.

(1) →∗
N
satisfies BS and BC, and furthermore blames exactly one boundary

(2) →∗
T
satisfies neither BS nor BC

(3) →∗
A
satisfies BS and BC

Complete monitoring has major implications for blame soundness and completeness. If a seman-

tics is a complete monitor, then there exists a single-boundary explanation for every type mismatch;

namely, the boundary at which the mismatch occurred.

Lemma 9.3. If (e0)ℓ0 is well-formed and (e0)ℓ0 −→∗
N
BndryErr (b∗

0
,v0), senders (b∗0) = owners (v0)

and furthermore b∗
0
contains one boundary specification.

Proof. By inspection, the only Natural rule that outputs a boundary error blames a single

boundary: (e0)
ℓ0 −→∗

N
E[dyn (ℓ1◀τ0◀ ℓ2) (v1)

ℓ2] −→∗
N
BndryErr ({(ℓ1◀τ0◀ ℓ2)}, (v1)

ℓ2). Thus b∗
0
=

{(ℓ1◀τ0◀ ℓ2)} and senders (b∗
0
) = {ℓ2}.

Lemma 8.3 implies ℓ0 ⊩ E[dyn (ℓ1◀τ0◀ ℓ2) (v1)
ℓ2], and therefore owners ((v1)ℓ2) = {ℓ2}. □

The Transient semantics is neither blame-sound nor blame-complete.
9
Blame soundness fails

because the global map conflates information when multiple clients reference the same value.

Lemma 9.4. There exists a well-formed expression (e0)ℓ0 such that (e0)ℓ0 −→∗
T
BndryErr (b∗

0
,v0)

and senders (b∗
0
) ⊈ owners (v0).

Proof. The following example formalizes the illustration in figure 11. Function f0 enters two
unrelated components, causes a type mismatch in one of them, and yet both get blamed.

8
The properties must consider senders because an error occurs before a value is able to cross an incompatible boundary.

9
The upcoming Transient counterexamples use let expressions to abbreviate untyped function applications.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

122:24 Ben Greenman, Matthias Felleisen, and Christos Dimoulas

(let f0 = (λx0. ⟨x0,x0⟩) in

let f1 = (stat (ℓ0◀ (Int⇒ Int)◀ ℓ1) (dyn (ℓ1◀ (Int⇒ Int)◀ ℓ0) (f0)ℓ0)
ℓ1
) in

stat (ℓ0◀ Int◀ ℓ2) (app{Int} (dyn (ℓ2◀ (Int⇒ Int)◀ ℓ0) (f0)ℓ0) 5)
ℓ2
)
ℓ0
; ∅; ∅

−→∗
T
(stat (ℓ0◀ Int◀ ℓ2) (app{Int} ((p0))ℓ0ℓ2 5)

ℓ2
)
ℓ0
;H0;B0

where H0 = {p0 7→ λx0. ⟨x0,x0⟩}

and B0 = {p0 7→ (ℓ1◀ (Int⇒ Int)◀ ℓ0), (ℓ0◀ (Int⇒ Int)◀ ℓ1), (ℓ2◀ (Int⇒ Int)◀ ℓ0)}

−→∗
T
(stat (ℓ0◀ Int◀ ℓ2) (check Int ((p1))ℓ0ℓ2 p0)

ℓ2
)
ℓ0
;H1;B1

−→∗
T
BndryErr (B1(p1) ∪ B1(p0), ((p1))ℓ0ℓ2);H1;B1

where H1 = H0 ∪ {p1 7→ ⟨5, 5⟩}
and B1 = B0 ∪ {p1 7→ ∅}

Thus senders (B1(p1) ∪ B1(p0)) = {ℓ0, ℓ1} ⊈ {ℓ0, ℓ2} = owners (((p1))ℓ0ℓ2). Specifically, component

ℓ1 has nothing to do with the type mismatch. □

Blame completeness fails because Transient does not update the blame map when an untyped

function is applied in an untyped context. This fact suggests that a mixed-typed language cannot

satisfy blame completeness if it has no control over untyped code.

Lemma 9.5. There exists a well-formed expression (e0)ℓ0 such that (e0)ℓ0 −→∗
T
BndryErr (b∗

0
,v0)

and senders (b∗
0
) ⊉ owners (v0).

Proof. The expression below presents an untyped function f1 that updates the type assigned to

another function (f0). Because the update happens in untyped code, the blame map does not record

the crucial boundary.

(let f0 = stat (ℓ0◀τ0◀ ℓ1) (dyn (ℓ1◀τ0◀ ℓ2) (λx0. x0)) in

let f1 = stat (ℓ0◀ (τ0⇒τ1)◀ ℓ3) (dyn (ℓ3◀ (τ0⇒τ1)◀ ℓ4) (λx1. x1)) in

stat (ℓ0◀ (Int×Int)◀ ℓ5)
(app{Int×Int} (dyn (ℓ5◀τ1◀ ℓ0) (app{U} f1 f0)

ℓ0) 42)
ℓ5
)
ℓ0
; ∅; ∅

−→∗
T
(stat (ℓ0◀ (Int×Int)◀ ℓ5)

(app{Int×Int} (dyn (ℓ5◀τ1◀ ℓ0) (app{U} ((p1))ℓ4ℓ3ℓ0 ((p0))ℓ2ℓ1ℓ0)
ℓ0
) 42)

ℓ5
)
ℓ0

;H0;B0

−→∗
T
(stat (ℓ0◀ (Int×Int)◀ ℓ5) (app{Int×Int} ((p0))ℓ0 42)

ℓ5
)
ℓ0

;H1;B1

−→∗
T
(stat (ℓ0◀ (Int×Int)◀ ℓ5) (check (Int×Int) ((42))ℓ1 p0)

ℓ5
)
ℓ0

;H2;B2

−→∗
T
BndryErr (B2(p0), ((42))ℓ1);H2;B2

where τ0 = (Int⇒ Int)
and τ1 = (Int⇒ Int×Int)

and ℓ0 = ℓ2ℓ1ℓ0ℓ3ℓ4ℓ3ℓ0ℓ5

and ℓ1 = ℓ5ℓ0(rev (ℓ0))
andH2 = {(p0 7→ λx0. x0), (p1 7→ λx1. x1)}

and B2 = {(p0 7→ {(ℓ0◀τ0◀ ℓ1), (ℓ1◀τ0◀ ℓ2), (ℓ5◀τ1◀ ℓ0)}),

(p1 7→ {(ℓ0◀ (τ0⇒τ1)◀ ℓ3), (ℓ3◀ (τ0⇒τ1)◀ ℓ4)})}

Hence, senders (B2(p0)) = {ℓ0, ℓ1, ℓ2} ⊉ {ℓ0, ℓ1, ℓ2, ℓ3, ℓ4, ℓ5} = owners (((42))ℓ1). The crucial labels
ℓ3 and ℓ4 are nowhere to be found. □

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

Complete Monitors for Gradual Types 122:25

Finally, to prove blame soundness for Amnesic, we reuse the proof technique for complete

monitoring. The key invariant is that only trace-wrapped values may accumulate multiple owners;

other terms satisfy the consistency relation. We turn this observation into a judgment, ⊩A, that

weakens ⊩ just enough. Technically, we weaken the trace rules. For example:

{ℓ0, ℓ1, . . . , ℓn} =
⋃
{{ℓj , ℓk } | (ℓj◀τ0◀ ℓk) ∈ b

∗
0
} L0; ℓn ⊩A e0

L0; ℓ0 ⊩A (traceb∗0 ((e0))
ℓn ...ℓ1)

ℓ0

Lemma 9.6. If (e0)ℓ0 is well-formed and (e0)ℓ0 −→∗
A
BndryErr (b∗

0
,v0), senders (b∗0)=owners (v0).

Proof Sketch. By a preservation lemma for the ⊩A judgment; see the technical report. □

In fact, a variant of Amnesic satisfies a stronger property than lemma 9.6. The variant uses

lists of boundaries rather than sets, and a similar proof effort shows that Amnesic reports the
inter-component path that propagates a value to a mismatched boundary. We refer the interested

reader to the technical report.

9.1 Discussion: The Trade-Off Between the Precision and Cost of Blame
The exploration of blame points to three insights about the precision and cost of blame. First,

Natural is best for developers who wish to get precise blame information, and it obviously suffers

from high overhead. As Greenman et al. [2019b] point out, the latter is partly due to the wrappers

needed to protect typed values from bad untyped code and untyped values from bad types.

Second, the design of Transient represents a rather different trade-off. The runtime cost of types

can be much lower than Natural in programs that mix typed and untyped code [Greenman and

Felleisen 2018], but Transient types offer few guarantees to programmers. The type soundness

theorem for Transient ensures only the top-level shape of values in typed code. Transient fails
complete monitoring, meaning it omits some runtime checks to the detriment of the developers

of untyped code. And because Transient is neither blame-sound nor blame-complete, it may send

developers looking for type violations in the wrong place.

A strong type soundness theorem, complete monitoring, and blame completeness are not in

reach for Transient. The design’s key axiom is freedom from wrappers [Vitousek et al. 2017], but

without wrappers there is no interposition point in untyped code for checking channels and for

updating blame information.

There are at least two ways that a variant of Transient can satisfy a notion of blame soundness.

One way is to blame fewer boundaries. Reporting zero boundaries in the app and check rules, while
keeping the current dyn rules, is sure to eliminate all irrelevant boundaries. A second option is to

weaken the ownership rules advocated in section 7. Instead of path-based ownership, a language

can advocate a heap-based notion that merges all paths to the same address. It remains to be seen

whether heap-based ownership can be useful to developers, but the technical report provides a

definition and proves heap-based blame soundness for Transient.
Third, the design of Amnesic is best understood as a variation of Transient that accepts a limited

number (three) of wrappers (monitor and/or trace) per value. On one hand, this seemingly small

compromise strictly improves the theoretical properties of Transient. On the other hand, Amnesic
remains a proof-of-concept semantics.

A practical implementation of Amnesic must address two problems. The first concerns space

consumption. Amnesic satisfies blame completeness because it records every boundary that a value

crosses, meaning this record may actually consume an unbounded amount of space. The simplest fix

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

122:26 Ben Greenman, Matthias Felleisen, and Christos Dimoulas

is to sacrifice blame completeness by limiting the number of elements in a blame set. Another option

is to invent a compression scheme that reduces the space needs of a blame set. The second problem

concerns the naïve assumption of the model that every value can be wrapped with metadata to

trace its provenance. This is clearly impractical for fixed-width integers and other basic values.

Again, an implementation may omit such wrappers at the cost of blame completeness when it

detects a type mismatch for an unwrapped value. Because of these challenges, we predict that an

implementation of trace wrappers will be blame-sound but blame-incomplete.

10 RELATEDWORK
Our work introduces new criteria for analyzing a gradual/migratory typing system, its semantics,

and its promises. Hence we first compare our work here to other criteria for gradual typing.

The standard metatheory for gradual typing includes a type soundness theorem and a blame

theorem [Tobin-Hochstadt and Felleisen 2006; Wadler 2015; Wadler and Findler 2009]. The latter

property says that all blame errors are manifest by a dynamic value flowing into a static context.

Siek et al. [2015b] introduce criteria for the meaning of types in a grammar that includes a dynamic

type. None of these criteria distinguish a system that fully enforces types (such as Natural) from
one that does not (such as Amnesic and Transient).
Three recent pieces of work go beyond the standard metatheory. Chung et al. [2018] compare

different gradual typing systems as different translations from one surface language to one core

language; they do not use theorems to characterize the difference in type soundness. Greenman and

Felleisen [2018] interpret one gradual typing systems as several different semantics for a common

surface language; their theorems establish distinct type soundness properties. New et al. [2019]

present an axiomatic theory of gradual typing and prove that only the Natural semantics satisfies

all the axioms. Other semantics can be understood based on how they fail to satisfy the axioms.

The axioms do not specify the blame behavior of gradual typing systems.

Our search for additional criteria started from the work on complete monitoring [Dimoulas et al.

2012] and a fundamental insight from the research on higher-order contracts: specifications can
be wrong. This point was driven home dramatically when Racket programmers complained about

failures of the original contract system [Findler and Felleisen 2002] concerning dependent contracts.

On some occasions, these contracts failed to catch a problem; on others, the blame assignment

pointed in the wrong direction. Several researchers also noted problems with the original semantics,

but their proposed alternatives did not resolve the practical problems either [Blume and McAllester

2006; Greenberg et al. 2012; Hinze et al. 2006].

With complete monitoring, it was possible to pinpoint the faulty assumption behind the original

contract work thanks to the crucial technical tool of ownership semantics [Dimoulas et al. 2011],

which was in turn inspired by a syntactic techique for proving type abstraction [Grossman et al.

2000]. Complete monitoring led to a new implementation of contracts that eliminated the observed

problems and helped research teams validate later work on: first-class classes [Takikawa et al. 2012],

delimited continuations [Takikawa et al. 2013], and authorization contracts [Moore et al. 2016].

Ownership semantics also served to validate the design of Whip, a contract system that may be

partially deployed in a distributed application [Waye et al. 2017]. Although Whip does not satisfy

complete monitoring, it does satisfy a weakened blame correctness theorem. Our paper articulates

the generalization with blame soundness and blame completeness; Whip is blame-sound relative

to a heap-based notion of ownership (section 9.1) and blame-incomplete. On a similar note, we

conjecture that the ⊩A relation for Amnesic answers a question raised by Swords et al. [2018]

about how to adapt complete monitoring for “best-effort” contracts; such contracts do not satisfy

complete monitoring, but may aim for blame soundness and completeness.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

Complete Monitors for Gradual Types 122:27

As for the various semantics to be considered, there are several we did not analyze here. Castagna
and Lanvin [2017] present a semantics that resembles Amnesic without blame. The monotonic

semantics for references enforces an increasingly-precise type for every heap location [Siek et al.

2015c]; a monotonic variant of Natural would store functions on a heap and add a monitor directly

to a heap value H(p) when the address p crosses a boundary. Pyret (pyret.org) implements a

combination of the Natural and Transient semantics without blame; the language eagerly checks

fixed-size data and performs first-order checks for recursive types (e.g. lists) and higher-order

types.
10
In terms of our framework, Pyret establishes Natural-like boundaries for fixed-size data

and permissive ones for everthing else.

Semantics of mixed-typed languages other than the above fall outside the scope of this paper.

An erasure, or optional, semantics uses types for static analysis and ignores them at runtime.

Erasure type soundness, TS(·, 0), is independent of the surface-language type [Bierman et al. 2014;

Bonnaire-Sergeant et al. 2016; Chaudhuri et al. 2017; Maidl et al. 2015]. A concrete semantics requires

a runtime type for every value, and therefore prohibits untyped code from creating new values that

flow to typed regions [Muehlboeck and Tate 2017; Rastogi et al. 2015; Richards et al. 2017, 2015;

Wrigstad et al. 2010].

11 COMPLETE MONITORING IS NEEDED
Greenman and Felleisen [2018] demonstrated that Typed Racket and Transient Reticulated Python

satisfy different type soundness theorems. This paper shows that these languages also differ in how

they protect untyped code from faulty type specifications. To explain this difference, we adapt the

notion of complete monitoring from contracts to gradual typing.

The adaptation of complete monitoring also provides a tool for explaining the differences in

blame between the semantics. While the Natural semantics points to a single boundary between

typed and untyped code, Transient delivers a set of boundaries that may point to irrelevant ones

and may miss crucial ones, relative to a standard path-based notion of ownership.

The creation of Amnesic illustrates the use of complete monitoring as a design tool. The Amnesic
semantics satisfies the same type soundness as Natural and performs the same first-order checks as

Transient. Amnesic does not satisfy complete monitoring, but its blame-assignment policy satisfies

both soundness and completeness. Although we do not consider Amnesic ready for implementation,

its very existence validates the power of complete monitoring as a design guideline.

In sum, we demonstrate that complete monitoring is an effective tool for researchers working

on mixed-typed languages. It helps with both the analysis and design of the semantics of typing

systems. Adding complete monitoring to the researchers’ tool box will greatly improve future

explorations of this area.

TECHNICAL REPORT
The technical report is available from the Northeastern University Library Digital Repository

Service (DRS) [Greenman et al. 2019a].

ACKNOWLEDGMENTS
We thank Michael M. Vitousek for conversations about Transient and its type soundness; Amal

Ahmed, Michael Ballantyne, Stephen Chang, andMax S. New for conversations about complete mon-

itoring; and the anonymous OOPSLA reviewers for their questions, comments, and proofreading.

This work was partially supported by NSF grants CCF 1518844 and CCF 1763922.

10
Personal communication with Benjamin Lerner and Shriram Krishnamurthi.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

https://www.pyret.org
"http://hdl.handle.net/2047/D20202641"
"https://www.nsf.gov/awardsearch/showAward?AWD_ID=1518844"
"https://www.nsf.gov/awardsearch/showAward?AWD_ID=1763922"

122:28 Ben Greenman, Matthias Felleisen, and Christos Dimoulas

REFERENCES
Esteban Allende, Johan Fabry, and Éric Tanter. 2013. Cast Insertion Strategies for Gradually-Typed Objects. In DLS. 27–36.
Henk Barendregt. 1981. The Lambda Calculus: Its Syntax and Semantics. North-Holland Publishing Company.

Gavin Bierman, Martin Abadi, and Mads Torgersen. 2014. Understanding TypeScript. In ECOOP. 257–281.
Matthias Blume and David A. McAllester. 2006. Sound and Complete Models of Contracts. JFP 16, 4-5 (2006), 375–414.

Ambrose Bonnaire-Sergeant, Rowan Davies, and Sam Tobin-Hochstadt. 2016. Practical Optional Types for Clojure. In ESOP.
68–94.

Giuseppe Castagna and Victor Lanvin. 2017. Gradual Typing with Union and Intersection Types. PACMPL 1, ICFP (2017),

41:1–41:28.

Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel Levy. 2017. Fast and Precise Type Checking

for JavaScript. PACMPL 1, OOPSLA (2017), 56:1–56:30.

Sheng Chen and John Peter Campora, III. 2019. Blame Tracking and Type Error Debugging. In SNAPL. 2:1–2:14.
Benjamin W. Chung, Paley Li, Francesco Zappa Nardelli, and Jan Vitek. 2018. KafKa: Gradual Typing for Objects. In ECOOP.

12:1–12:23.

Matteo Cimini and Jeremy Siek. 2017. Automatically Generating the Dynamic Semantics of Gradually Typed Languages. In

POPL. 789–803.
Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and Matthias Felleisen. 2011. Correct Blame for Contracts: No

More Scapegoating. In POPL. 215–226.
Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012. Complete Monitors for Behavioral Contracts. In

ESOP. 214–233.
Asger Feldthaus and Anders Møller. 2014. Checking Correctness of TypeScript Interfaces for JavaScript Libraries. In OOPSLA.

1–16.

Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. 2009. Semantics Engineering with PLT Redex. MIT Press.

Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for Higher-Order Functions. In ICFP. 48–59.
Michael Greenberg. 2015. Space-Efficient Manifest Contracts. In POPL. 181–194.
Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. 2012. Contracts made manifest. JFP 22, 3 (2012), 225–274.

Ben Greenman and Matthias Felleisen. 2018. A Spectrum of Type Soundness and Performance. PACMPL 2, ICFP (2018),

71:1–71:32.

Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2019a. Complete Monitors for Gradual Types: Supplementary
Material. Technical Report NU-CCIS-2019-001. Northeastern University.

Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey, Robert Bruce Findler, Jan Vitek, and Matthias Felleisen. 2019b.

How to evaluate the performance of gradual type systems. JFP 29, e4 (2019), 1–45.

Dan Grossman, Greg Morrisett, and Steve Zdancewic. 2000. Syntactic Type Abstraction. TOPLAS 22, 6 (2000), 1037–1080.
David Herman, Aaron Tomb, and Cormac Flanagan. 2010. Space-efficient Gradual Typing. HOSC 23, 2 (2010), 167–189.

Ralf Hinze, Johan Jeuring, and Andres Löh. 2006. Typed Contracts for Functional Programming. In FLOPS. 208–225.
Andre Murbach Maidl, Fabio Mascarenhas, and Roberto Ierusalimschy. 2015. A Formalization of Typed Lua. In DLS. 13–25.
Jacob Matthews and Robert Bruce Findler. 2009. Operational Semantics for Multi-Language Programs. TOPLAS 31, 3 (2009),

1–44.

Robin Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput. System Sci. 17, 3 (1978), 348–375.
Scott Moore, Christos Dimoulas, Robert Bruce Findler, Matthew Flatt, and Stephen Chong. 2016. Extensible Access Control

with Authorization Contracts. In OOPSLA. 214–233.
Fabian Muehlboeck and Ross Tate. 2017. Sound Gradual Typing is Nominally Alive and Well. PACMPL 1, OOPSLA (2017),

56:1–56:30.

Max S. New and Amal Ahmed. 2018. Graduality from Embedding-Projection Pairs. PACMPL 2, ICFP (2018), 73:1–73:30.

Max S. New, Daniel R. Licata, and Amal Ahmed. 2019. Gradual Type Theory. PACMPL 3, POPL (2019), 15:1–15:31.

Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris. 2015. Safe & Efficient Gradual Typing

for TypeScript. In POPL. 167–180.
Gregor Richards, Ellen Arteca, and Alexi Turcotte. 2017. The VM Already Knew That: Leveraging Compile-Time Knowledge

to Optimize Gradual Typing. PACMPL 1, OOPSLA (2017), 55:1–55:27.

Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. 2015. Concrete Types for TypeScript. In ECOOP. 76–100.
Richard Roberts, Stefan Marr, Michael Homer, and James Noble. 2019. Transient Typechecks are (Almost) Free. In ECOOP.

15:1–15:29.

Jeremy Siek, Peter Thiemann, and Philip Wadler. 2015a. Blame and Coercion: Together Again for the First Time. In PLDI.
425–435.

Jeremy Siek, Michael M. Vitousek, Matteo Cimini, Sam Tobin-Hochstadt, and Ronald Garcia. 2015c. Monotonic References

for Efficient Gradual Typing. In ESOP. 432–456.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

Complete Monitors for Gradual Types 122:29

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. 2015b. Refined Criteria for Gradual Typing. In

SNAPL. 274–293.
Vincent St-Amour and Neil Toronto. 2013. Experience Report: Applying Random Testing to a Base Type Environment. In

ICFP. 351–356.
Cameron Swords, Amr Sabry, and Sam Tobin-Hochstadt. 2018. An extended account of contract monitoring strategies as

patterns of communication. JFP 28, e4 (2018), 1–47.

Asumu Takikawa, Daniel Feltey, Earl Dean, Robert Bruce Findler, Matthew Flatt, Sam Tobin-Hochstadt, and Matthias

Felleisen. 2015. Towards Practical Gradual Typing. In ECOOP. 4–27.
Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen. 2012. Gradual

Typing for First-Class Classes. In OOPSLA. 793–810.
Asumu Takikawa, T. Stephen Strickland, and Sam Tobin-Hochstadt. 2013. Constraining Delimited Control with Contracts.

In ESOP. 229–248.
Satish Thatte. 1990. Quasi-static Typing. In POPL. 367–381.
Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage Migration: from Scripts to Programs. In DLS. 964–974.
Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and Implementation of Typed Scheme. In POPL. 395–406.
Sam Tobin-Hochstadt and Matthias Felleisen. 2010. Logical Types for Untyped Languages. In ICFP. 117–128.
Sam Tobin-Hochstadt, Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Ben Greenman, Andrew M. Kent, Vincent

St-Amour, T. Stephen Strickland, and Asumu Takikawa. 2017. Migratory Typing: Ten years later. In SNAPL. 17:1–17:17.
Michael M. Vitousek. 2019. Gradual Typing for Python, Unguarded. Ph.D. Dissertation. Indiana University.
Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. 2017. Big Types in Little Runtime: Open-World Soundness and

Collaborative Blame for Gradual Type Systems. In POPL. 762–774.
Philip Wadler. 2015. A Complement to Blame. In SNAPL. 309–320.
Philip Wadler and Robert Bruce Findler. 2009. Well-typed Programs Can’t be Blamed. In ESOP. 1–15.
Lucas Waye, Stephen Chong, and Christos Dimoulas. 2017. Whip: Higher-Order Contracts for Modern Services. PACMPL 1,

ICFP (2017), 36:1–36:28.

Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Ostlund, and Jan Vitek. 2010. Integrating Typed and

Untyped Code in a Scripting Language. In POPL. 377–388.

Proc. ACM Program. Lang., Vol. 3, No. OOPSLA, Article 122. Publication date: October 2019.

	Abstract
	1 Type Soundness Is Not Enough
	2 Motivational Examples, the Basic Insights
	2.1 What Protects the Untyped Code
	2.2 How Precise Can Blame Be When Gradual Typing Fails to Monitor All Channels
	2.3 Informal Overview of Results
	2.4 Informal Overview of the Amnesic Semantics

	3 The Model: Syntax and Types
	4 The Model: Three Semantics
	4.1 Natural Notions of Reduction
	4.2 Transient Notion of Reduction
	4.3 Amnesic Notions of Reduction
	4.4 From Notions of Reduction to Semantics

	5 Type Soundness
	6 Type Soundness Is Really Not Enough
	7 Ownership: Labels and Reductions
	7.1 Ownership-labeled Syntax
	7.2 Ownership-labeled Reduction
	7.3 Lifting by Example

	8 Complete Monitoring
	9 Implications for Blame
	9.1 Discussion: The Trade-Off Between the Precision and Cost of Blame

	10 Related Work
	11 Complete Monitoring Is Needed
	Acknowledgments
	References

