
Deep and Shallow Types for Gradual Languages
Ben Greenman

∗

Brown University

USA

benjamin.l.greenman@gmail.com

Abstract
Sound gradual types come in many forms and offer varying

levels of soundness. Two extremes are deep types and shal-

low types. Deep types offer compositional guarantees but

depend on expensive higher-order contracts. Shallow types

enforce only local properties, but can be implemented with

first-order checks. This paper presents a language design

that supports both deep and shallow types to utilize their

complementary strengths.

In the mixed language, deep types satisfy a strong com-

plete monitoring guarantee and shallow types satisfy a first-

order notion of type soundness. The design serves as the

blueprint for an implementation in which programmers can

easily switch between deep and shallow to leverage their dis-

tinct advantages. On the GTP benchmark suite, the median

worst-case overhead drops from several orders of magnitude

down to 3x relative to untyped. Where an exhaustive search

is feasible, 40% of all configurations run fastest with a mix

of deep and shallow types.

CCSConcepts: • Software and its engineering→ Seman-
tics; Constraints; Functional languages.

Keywords: gradual typing, migratory typing, complete mon-

itoring, type-enforcement strategies

ACM Reference Format:
Ben Greenman. 2022. Deep and Shallow Types for Gradual Lan-

guages. In Proceedings of the 43rd ACM SIGPLAN International Con-
ference on Programming Language Design and Implementation (PLDI
’22), June 13–17, 2022, San Diego, CA, USA. ACM, New York, NY,

USA, 23 pages. https://doi.org/10.1145/3519939.3523430

∗
Research done at Northeastern University

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9265-5/22/06. . . $15.00

https://doi.org/10.1145/3519939.3523430

1 A Spectrum of Type Enforcement
Taken broadly, the research area of gradual typing presents

several type-enforcement strategies that enforce static types
against untyped code to varying levels of fidelity. Among

strategies that are compatible with an untyped host language

and provide a type soundness guarantee, two promising al-

ternatives are Natural [40, 60, 52] and Transient [70]. The

Natural strategy uses higher-order contracts to enforce the

behavioral claims implied by higher-order types. The Tran-

sient strategy uses first-order checks to enforce basic aspects

of types. Unsurprisingly, these two strategies come with dif-

ferent benefits and drawbacks. Contracts in Natural enable

deep types that satisfy type soundness and complete mon-

itoring [27]. These contracts, however, can impose a huge

performance cost [30]. First-order checks in Transient en-

able only shallow types, which promise a weak soundness

guarantee, but these checks rarely dominate the running

time of a program [70, 29, 51].

The question thus arises as to whether the two enforce-

ment strategies can interoperate, giving programmers deep

types when guarantees matter and shallow types to avoid

performance bottlenecks. This paper provides an affirmative

answer via three contributions.

• A theoretical model that integrates deep-typed code,

shallow-typed code, and untyped code via a semantics

that applies ideas from Natural and Transient (sec-

tion 3). The model comes with two essential meta-

theorems: the first validates plain type soundness for

shallow-typed code, and the second shows that deep-

typed code retains the customary type soundness prop-

erty via complete monitoring.

• An implementation of Typed Racket [63] that permits

developers to combine deep, shallow, and untyped

components (section 4). The deep and shallow halves

of the implementation stand on equal footing. Switch-

ing between them is a one-line change.

• A practical evaluation of the performance, guarantees,

and expressiveness of the revised Typed Racket imple-

mentation (section 5). The performance study of this

novel three-way Typed Racket demonstrates signifi-

cant improvements on the GTP benchmark suite [32]

over the two-way versions.

Deep and shallow types can interoperate without sacrificing

their formal properties. Best of all, the combination brings

measurable benefits. These contributions strongly suggest

that combining type-sound gradual typing strategies is an

https://orcid.org/0000{-}0001{-}7078{-}9287
https://doi.org/10.1145/3519939.3523430
https://doi.org/10.1145/3519939.3523430

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Ben Greenman

effective means to give programmers control over the pro-

tection/performance tradeoff.

2 Background
2.1 Gradual, Migratory, Mixed-Typed
Gradual typing explores combinations of static and dynamic

typing [52, 60, 40, 31]. The goal of this research is a language

that supports two styles of code in a convenient manner.

Untyped code is free to perform any computation that the

language can express. Typed code is restricted to well-typed

computations, but comes with a guarantee that static types

are meaningful predictions about run-time behaviors. Differ-

ences among gradual languages arise over what makes for

a convenient mix. True gradually-typed languages include

a universal Dynamic type that helps to blur the distinction

between typed and untyped code [54]. Migratory typing sys-

tems add idiomatic types to an existing language [63]. Other

mixed-typed methods include the development of novel lan-

guages [72, 44, 38, 51] and compilers [49, 5].

With these various end-goals in mind, our formal devel-

opment (section 3) begins with two restrictions: types may

only be enforced with ahead-of-time techniques and there

is no dynamic type. These rules ensure a widely-applicable

baseline for languages that can mix typed and untyped code.

2.2 Deep and Shallow Types
Sound gradual language designs do not agree on how types

should guide the behavior of a program. Two leading alterna-

tives for run-time properties are deep and shallow types. To

a first approximation, deep types enforce (but do not verify)

the same guarantees as conventional static types and shallow

types enforce only local type soundness.

Figure 1 presents a three-module program to illustrate the

gap between deep and shallow types. The untyped module

on top contains a stub definition for a function text that

expects two arguments. This module is a simplified picture of

the Racket images/icons/symbol module, which incorpo-

rates thousands of lines of rendering and raytracing code—a

module that is easiest left untyped. The typed module in the

middle is an interface for the untyped function, which passes

on (in a higher-order manner) to clients who might rely on

the type. The type correctly states that text expects a string
and a font object and computes a bitmap object. Finally, the

untyped client module on the bottom mistakenly calls text
with two strings instead of one string and one object.

The question raised by this example is whether static

types can catch the mistake in the untyped client. Deep and

shallow types give opposite answers:

• Deep types enforce the typed interface with run-time

obligations for both the client and the library. Because

the client sends a string where the type expects a font

object, the client triggers a run-time type error.

(define (text s f)

 ;; render string s using font f

 )

(require/typed/provide

 (text (-> String Font Bitmap)))

(text "cat" "roman")

Figure 1: Untyped library, typed interface, and untyped

client

S
D

U
wrap wrap

noop

scan

Figure 2: Outline for deep, shallow, and untyped

interactions

• Shallow types guarantee the local integrity of typed

code, but nothing more. The untyped client is allowed

to send any input to the untyped text function, in-

cluding two strings, without causing a type-level error.

From a theoretical perspective, shallow types satisfy a

type soundness property and nothing more [70, 26]. Sound-

ness states that the type of an expression predicts the kinds

of values that evaluation can produce. In typed code, these

predictions are often specific and useful. For example, an ex-

pression with a function type cannot evaluate to a number. In

untyped code, these predictions are trivial; soundness merely

ensures a well-formed result. A property that distinguishes

deep types from shallow is complete monitoring [13, 27].

Semantics that satisfy complete monitoring enforce types as

invariants that all clients, typed or untyped, can rely on.

2.2.1 Natural Semantics. One way to implement deep

types is the Natural semantics [60, 40, 52].
1
Natural inter-

prets types as contracts in a straightforward manner.
2
For

example, base types are enforcedwith predicate checks, types

for immutable values are enforced with first-order traver-

sals, and types for higher-order values such as arrays and

functions are enforced with higher-order wrapper contracts.
Because each contract fully enforces a type, these contracts

need only guard the boundaries between typed and untyped

code. Within typed modules, code can run efficiently and

employ type-directed optimizations [59].

1
Natural is a.k.a. Guarded [68], Behavioral [9], and Deep [65].

2
Researchers are actively seeking improved variants of Natural [35, 22, 55,

53, 21] and measuring the efficiency of implementations [15, 38]. Theoretical

results about Natural hold for these semantics-preserving variants as well.

Deep and Shallow Types for Gradual Languages PLDI ’22, June 13–17, 2022, San Diego, CA, USA

s = x | i | ⟨s, s⟩ | λx . s | λ(x :τ). s | λ(x :⌞τ⌟). s |
unop s | binop s s | app s s | moduleL s

L = D | S | U
τ = Nat | Int | τ×τ | τ→τ
T = τ | ⌞τ⌟ | U

Figure 3: Surface syntax

2.2.2 Transient Semantics. The Transient semantics is

an implementation of shallow types that does not require

wrappers [70]. Transient enforces types by injecting first-

order checks throughout typed pieces of code: typed, public

functions must check their inputs; typedmodules must check

their untyped imports; and typed expressions must check

the results computed during a function call, the elements

extracted from a data structure, and the outcome of any

downcasts. In figure 2, these conditions imply one check:

the typed interface must check that text is a function. In

general, every line of typed code may add several Transient

checks, but each check is inexpensive. By contrast to higher-

order contracts, the checks do not traverse values and do not

impose allocation and indirection costs.

3 Model and Metatheory
A normal gradual language allows for two styles of code,

typed and untyped, and uses run-time checks to enforce

the claims made by static types. Our model allows for three

syntaxes: deep-typed code, shallow-typed code, and untyped

code. Both deep and shallow code must satisfy the same

type checker, which validates conventional well-formedness

properties. Untyped code has fewer constraints. Run-time

checks enforce type claims at boundaries, but use different

strategies for deep and for shallow types.

Overall, the primary goal of the model is to test whether

deep, shallow, and untyped code can safely interoperate. A

secondary goal of the model is to outline an implementation.

For this reason, the three syntaxes compile to one kernel

language that can express a variety of standard run-time

checks: a wrap term applies a contract, a scan term performs

a first-order (predicate) check, and a noop term represents

a boundary that any value may cross. Figure 2 sketches the

plan for applying these terms at type boundaries in a way

that protects deep and shallow code from untyped values

(including values that have passed through a typed context).

3.1 Three-Way Surface Syntax
The surface syntax (figure 3) equips a basic expression lan-

guage with optional type annotations and module bound-

aries. Surface expressions s consist of function applications

(app s s), primitive operation applications (unop s , binop s s),
variables x , integers i , pairs ⟨s, s⟩, and optionally-annotated

functions. An untyped function has no annotation (λx . s), a
deep-typed function has a plain type annotation (λ(x :τ). s),

and a shallow-typed function has an underlined type an-

notation (λ(x :⌞τ⌟). s). The underline is a syntactic hint that
only the top-level shape of this type is guaranteed at run-

time. Types τ express natural numbers (Nat), integers (Int),
pairs (τ×τ), and functions (τ→τ). Modules associate a label

with an expression (moduleL s). The label L is either D for

deep-typed code, S for shallow-typed code, or U for untyped

code. For example, the term (moduleD s0) says that s0 is a
deep-typed expression. Any module expressions within s0
are free to use any typing style (D , S , or U).

3.2 Three-Way Surface Typing
Deep and shallow code must satisfy strong (and equal) type

constraints. Untyped code is subject to a weaker constraint;

namely, it cannot reference variables that it did not bind.

These well-formedness conditions are spelled out in the typ-

ing judgment of figure 4, which relates a type environment

Γ and an expression s to a result specification. A result T is

either a type τ for deep-typed code, an underlined type ⌞τ⌟
for shallow-typed code, or the uni-type U for untyped code.

With the exception of modules, the typing rules are stan-

dard for a basic functional language. Modules allow any

kind of expression to appear within another. For instance,

an untyped expression may appear within a deep expression

provided that the untyped code is well-formed. There are

seven such rules to ensure that the module language (L0)
matches the type of the subexpression (T0); figure 4 presents
these rules as one template rule (in [brackets]) and a table.

Figure 4 also defines a subtyping judgment (<:) and a type-
assignment for primitive operations (∆). Subtyping declares

that the natural numbers are a subset of the integers and

extends this covariantly to pairs and contra/co-variantly to

function domains/codomains. The primitive operations are

consequently overloaded to accept natural numbers or inte-

gers. The purpose of this basic subtyping judgment is not

to sketch out a numeric tower [3], but rather to show that

an upcast (via subtyping) can weaken the run-time checks

that shallow code inserts. Weakening may have serious prag-

matic implications for gradual union, intersection, and object

types [8, 61, 2, 58, 36, 64].

3.3 Common Evaluation Syntax
Evaluation expressions e consist of variables, values, primi-

tive applications, function applications, errors, and bound-

ary terms. Unlike the surface syntax, there are no module

terms. Instead, the three boundary terms describe run-time

checks. A wrap boundary asks for the full enforcement of

a type, either with a comprehensive first-order check or a

higher-order wrapper. A scan boundary asks for a first-order

type-shape (σ) check. A noop boundary asks for no check.

Values and errors represent the possible results of an eval-

uation. The values are integers, pairs, functions, and guard

wrappers. A guard wrapper (G (τ0→τ1) v0) provides type-
restricted access to a function. Shallow-typed functions have

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Ben Greenman

Γ ⊢s s : T

(x0 :τ0) ∈ Γ

Γ ⊢s x0 : τ0

(x0 :⌞τ0⌟) ∈ Γ

Γ ⊢s x0 : ⌞τ0⌟

(x0 :U) ∈ Γ
Γ ⊢s x0 : U

(x0 :τ0), Γ ⊢s e0 : τ1

Γ ⊢s λ(x0 :τ0). e0 : τ0→τ1

(x0 :⌞τ0⌟), Γ ⊢s e0 : ⌞τ1⌟

Γ ⊢s λ(x0 :⌞τ0⌟). e0 : ⌞τ0→τ1⌟

(x0 :U), Γ ⊢s e0 : U
Γ ⊢s λx0. e0 : U

Γ ⊢s e0 : ⌞τ0→τ1⌟ Γ ⊢s e1 : ⌞τ0⌟

Γ ⊢s app e0 e1 : ⌞τ1⌟

Γ ⊢s e0 : τ0 τ0 <: τ1

Γ ⊢s e0 : τ1

Γ ⊢s e0 : ⌞τ0⌟ τ0 <: τ1

Γ ⊢s e0 : ⌞τ1⌟


Γ ⊢s e0 : T0

Γ ⊢s moduleL0 e0 : T1



L0 T0 T1
D τ0 τ0
D τ0 ⌞τ0⌟
D τ0 U
S ⌞τ0⌟ τ0
S ⌞τ0⌟ ⌞τ0⌟
S ⌞τ0⌟ U
U U T1

τ <: τ

Nat <: Int

τ0 <: τ2 τ1 <: τ3

τ0×τ1 <: τ2×τ3

τ2 <: τ0 τ1 <: τ3

τ0→τ1 <: τ2→τ3

∆ : unop × τ −→τ

∆(fst,τ0×τ1) = τ0
∆(snd,τ0×τ1) = τ1

∆ : binop × τ × τ −→τ

∆(plus,Nat,Nat) = Nat
∆(plus, Int, Int) = Int
∆(quotient,Nat,Nat) = Nat
∆(quotient, Int, Int) = Int

Figure 4: Surface typing (selected rules), subtyping, and

types for primitive operations

e = x | v | ⟨e, e⟩ | unop e | binop e e | app e e |
Error | wrapτ e | scanσ e | noop e

v = i | ⟨v,v⟩ | λx . e | λ(x :τ). e | λ(x :scanσ). e |
G (τ→τ) v

σ = Nat | Int | Pair | Fun | Top
Error = WrapErr | ScanErr | DivZeroErr | TagErr
E = • | unopE | binopE e | binopv E | ⟨E, e⟩ | ⟨v,E⟩ |

appE e | appv E | noop E | scanσ E | wrapτ E

Figure 5: Evaluation syntax

a shape annotation and a scan tag in the evaluation syntax

(λ(x : scanσ). e) to suggest that such functions must vali-

date the shape of their input at run-time. Errors may arise

from either a failed check at wrap boundary (WrapErr), a
failed check at a scan boundary (ScanErr), a division by zero

(DivZeroErr), or a malformed untyped expression (TagErr).

Γ ⊢D e : τ

(x0 :τ0) ∈ Γ

Γ ⊢D x0 : τ0

(x0 :τ0), Γ ⊢D e0 : τ1

Γ ⊢D λ(x0 :τ0). e0 : τ0→τ1

Γ ⊢U v0 : U
Γ ⊢D G τ0 v0 : τ0

Γ ⊢S v0 : σ0

Γ ⊢D G τ0 v0 : τ0

Γ ⊢D e0 : τ0→τ1 Γ ⊢D e1 : τ0

Γ ⊢D app e0 e1 : τ1

Γ ⊢D e0 : τ0

Γ ⊢D noop e0 : τ0

Γ ⊢U e0 : U
Γ ⊢D wrapτ0 e0 : τ0

Γ ⊢S e0 : σ0

Γ ⊢D wrapτ0 e0 : τ0

Figure 6: Deep typing judgment (selected rules)

3.4 Three-Way Evaluation Typing
The evaluation syntax comes with three typing judgments

that describe the invariants of deep, shallow, and untyped

code. The deep typing judgment (⊢D) validates full types, the

shallow judgment (⊢S) checks top-level type shapes, and the

untyped judgment (⊢U) checks that all variables are bound.

Both the deep and untyped rules are similar to the cor-

responding surface-language rules because they support

equally-strong conclusions (full types and the uni-type). The

shallow judgment is different because it validates type shapes

instead of full types. When inspecting a pair, for example, the

shallow judgment concludes with the Pair shape no matter

what shapes the elements have. Consequently, a pair elimi-

nation form such as (fstx0) has the Top shape because the

pair may contain any sort of value. Similar comments apply

to functions and applications. Thus if a program expects a

certain shape from a pair element or a function call, then the

program must use a scan term to confirm the expectation.

3.5 Compilation from Surface to Evaluation
A compilation pass maps surface terms with modules to

evaluation-language terms with run-time checks. The goal

of the inserted checks is to ensure that well-typed surface

expressions are well-typed in the evaluation syntax.

• In deep-typed code, all module boundaries to non-

deep code become wrap checks. Compilation inserts

no other checks.

• In shallow code, deep boundaries become wrap checks

and untyped boundaries become scan checks. Extra

scan checks protect typed code (e.g., from pairs).

• In untyped code, boundaries to deep modules become

wrap checks and boundaries to shallow modules be-

come scan checks. There are no other checks.

The rules in figure 9 present selected details of compilation.

Variables compile to themselves. Functions in deep (and un-

typed) code simply recur on the function body and compile

Deep and Shallow Types for Gradual Languages PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Γ ⊢S e : σ

(x0 :σ0) ∈ Γ

Γ ⊢S x0 : σ0

(x0 :U), Γ ⊢U e0 : U
Γ ⊢S λx0. e0 : Fun

(x0 :σ0), Γ ⊢S e0 : σ1

Γ ⊢S λ(x0 :scanσ0). e0 : Fun

Γ ⊢D v0 : τ0

Γ ⊢S G τ0 v0 : Fun

Γ ⊢S e0 : Fun Γ ⊢S e1 : σ0

Γ ⊢S app e0 e1 : Top

Γ ⊢S e0 : σ0

Γ ⊢S noop e0 : σ0

Γ ⊢U e0 : U
Γ ⊢S noop e0 : Top

Γ ⊢U e0 : U
Γ ⊢S scanσ0 e0 : σ0

Γ ⊢S e0 : σ1

Γ ⊢S scanσ0 e0 : σ0

Γ ⊢D e0 : τ0 shape (τ0) = σ0

Γ ⊢S wrapτ0 e0 : σ0

σ <: σ
Nat <: Int σ0 <: Top

shape : τ −→σ

shape (Nat) = Nat
shape (Int) = Int

shape (τ0×τ1) = Pair
shape (τ0→τ1) = Fun

Figure 7: Shallow typing (selected rules), subtyping, and

type-to-shape metafunction

Γ ⊢U e : U

(x0 :U) ∈ Γ
Γ ⊢U x0 : U

(x0 :U), Γ ⊢U e0 : U
Γ ⊢U λx0. e0 : U

(x0 :σ0), Γ ⊢S e0 : σ1

Γ ⊢U λ(x0 :scanσ0). e0 : U
Γ ⊢D v0 : τ0

Γ ⊢U G τ0 v0 : U

Γ ⊢U e0 : U Γ ⊢U e1 : U
Γ ⊢U app e0 e1 : U

Γ ⊢D e0 : τ0

Γ ⊢U wrapτ0 e0 : U

Figure 8: Untyped typing judgment (selected rules)

to a new function. Functions in shallow code add a scan tag

to their argument to indicate the need for a domain check,

because untyped code can potentially invoke these functions.

Applications in deep (and untyped) code recur on their subex-

pressions. Applications in shallow code insert an additional

scan check to validate the result. Pair elimination forms (fst,
snd) use scans in a similar way. Finally, one template rule

and a table represent six rules for module boundaries. These

rules correspond to arrows in figure 2.

Example. The three-module program from figure 1 can

be encoded with shallow types roughly as follows:

Γ ⊢s s : T ⇝ e

Γ ⊢sx0 :T0⇝x0

(x0 :τ0), Γ ⊢s e0 : τ1 ⇝ e1

Γ ⊢sλ(x0 :τ0). e0 :τ0→τ1⇝λ(x0 :τ0). e1

(x0 :⌞τ0⌟), Γ ⊢s e0 : ⌞τ1⌟ ⇝ e1 shape (τ0) = σ0

Γ ⊢s λ(x0 :⌞τ0⌟). e0 : ⌞τ0→τ1⌟ ⇝ λ(x0 :scanσ0). e1

Γ ⊢s e0 : τ1→τ0 ⇝ e2 Γ ⊢s e1 : τ1 ⇝ e3

Γ ⊢s app e0 e1 : τ0 ⇝ app e2 e3

Γ ⊢s e0 : ⌞τ1→τ0⌟ ⇝ e2
Γ ⊢s e1 : ⌞τ1⌟ ⇝ e3 shape (τ0) = σ0

Γ ⊢s app e0 e1 : ⌞τ0⌟ ⇝ scanσ0 (app e2 e3)


Γ ⊢s e0 : T0 ⇝ e1

Γ ⊢smoduleL0 e0 :T1⇝e2


L0 T0 T1 ⇝ e2
D τ0 U wrapτ0 e1
S ⌞τ0⌟ τ0 wrapτ0 e1
U U τ0 wrapτ0 e1
D τ0 ⌞τ0⌟ wrapτ0 e1
S ⌞τ0⌟ U noop e1
U U ⌞τ0⌟ scanσ0 e1

where σ0 = shape (τ0)

Figure 9: Surface-to-evaluation compilation (selected rules)

let x0 = module S (moduleU (λx0 x1. _)) in
appx0 ‘cat’ ‘roman’

Compilation yields a term with one scan check:

let x0 = noop (scan Fun (λx0 x1. _)) in
appx0 ‘cat’ ‘roman’

3.6 Reduction Relation
The left half of figure 10 presents a notion of reduction for

the evaluation syntax. (Section 3.7 discusses the right half.)

Each rule relates two expressions (e ▷ e). Rules that share a
syntactically-equal domain come with a test for the domain

expression. These tests use basic set theory to pattern-match

on expressions; for example, the test (v0 ∈ λ(x :τ). e) holds
when the value v0 is a type-annotated lambda.

The rules for unary and binary operations apply the δ
metafunction (figure 11) and halt with a tag error if δ is

undefined. In general, δ models the behavior of a run-time

system that works at a lower level of abstraction than the

evaluation language. For unary operations, δ eliminates a

pair. For binary operations, δ performs arithmetic.

The rules for function application check that the first ex-

pression is a function and try to substitute the argument

expression into the function body. If the function has a type-

shape annotation (σ), then a shape check (figure 11) vali-

dates the argument before substitution. If the function is

enclosed in a guard wrapper, then the application unfolds

into two wrap checks: one for the argument and one for the

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Ben Greenman

e ▷ e (e)ℓ▷+(e)ℓ

unopv0 ▷ TagErr (unop ((v0))ℓ0)
ℓ1

▷+ (TagErr)ℓ1

if δ (unop,v0) is undefined if v0 < (v)
ℓ
and δ (unop,v0) is undefined

unopv0 ▷ δ (unop,v0) (unop ((v0))ℓ0)
ℓ1

▷+ ((δ (unop,v0)))ℓ0ℓ1

if δ (unop,v0) is defined if δ (unop,v0) is defined

binopv0v1 ▷ TagErr (binop ((v0))ℓ0 ((v1))ℓ1)
ℓ2

▷+ (TagErr)ℓ2

if δ (binop,v0,v1) is undefined if vi < (v)
ℓ
and δ (binop,v0,v1) is undefined

binopv0v1 ▷ δ (binop,v0,v1) (binop ((v0))ℓ0 ((v1))ℓ1)
ℓ2

▷+ (δ (binop,v0,v1))ℓ2

if δ (binop,v0,v1) is defined if δ (binop,v0,v1) is defined

appv0v1 ▷ TagErr (app ((v0))ℓ0 v1)
ℓ1

▷+ (TagErr)ℓ1

if ¬shape-match (Fun,v0) if v0 < (v)
ℓ
and ¬shape-match (Fun,v0)

app (λx0. e0)v0 ▷ e0[x0←v0] (app ((λx0. e0))ℓ0 v0)
ℓ1

▷+ ((e0[x0←((v0))
ℓ1rev (ℓ0)]))

ℓ0ℓ1

app (λ(x0 :τ0). e0)v0 ▷ e0[x0←v0] (app ((λ(x0 :τ0). e0))ℓ0 v0)
ℓ1

▷+ ((e0[x0←((v0))
ℓ1rev (ℓ0)]))

ℓ0ℓ1

app (λ(x0 :scanσ0). e0)v0 ▷ ScanErr (app ((λ(x0 :scanσ0). e0))ℓ0 v0)
ℓ1
▷+ (ScanErr)ℓ1

if ¬shape-match (σ0,v0) if ¬shape-match (σ0,v0)

app (λ(x0 :scanσ0). e0)v0 ▷ e0[x0←v0] (app ((λ(x0 :scanσ0). e0))ℓ0 v0)
ℓ1
▷+ ((e0[x0←((v0))

ℓ1rev (ℓ0)]))
ℓ0ℓ1

if shape-match (σ0,v0) if shape-match (σ0,v0)

app (G (τ0→τ1) v0)v1 ▷ (app ((G (τ0→τ1) (v0)
ℓ0))

ℓ1
v1)

ℓ2

▷+

wrapτ1 (appv0 (wrapτ0 v1)) ((wrapτ1 (appv0 (wrapτ0 ((v1))ℓ2rev (ℓ1)))
ℓ0
))
ℓ1ℓ2

noop v0 ▷v0 (noop ((v0))ℓ0)
ℓ1

▷+ ((v0))
ℓ0ℓ1

scanσ0 v0 ▷ ScanErr (scanσ0 ((v0))ℓ0)
ℓ1

▷+ (ScanErr)ℓ1

if ¬shape-match (σ0,v0) if ¬shape-match (σ0,v0)

scanσ0 v0 ▷v0 (scanσ0 ((v0))ℓ0)
ℓ1

▷+ ((v0))
ℓ0ℓ1

if shape-match (σ0,v0) if shape-match (σ0,v0)

wrapτ0 v0 ▷WrapErr (wrapτ0 ((v0))ℓ0)
ℓ1

▷+ (WrapErr)ℓ1

if ¬shape-match (shape (τ0),v0) if ¬shape-match (shape (τ0),v0)

wrap (τ0→τ1) v0 ▷G (τ0→τ1) v0 (wrap (τ0→τ1) ((v0))
ℓ0)

ℓ1
▷+ (G (τ0→τ1) ((v0))

ℓ0)
ℓ1

if shape-match (Fun,v0) if shape-match (Fun,v0)

wrap (τ0×τ1) ⟨v0,v1⟩ ▷ ⟨wrapτ0v0,wrapτ1v1⟩ (wrap (τ0×τ1) ((⟨v0,v1⟩))ℓ0)
ℓ1
▷+ (⟨wrapτ0 ((v0))ℓ0,wrapτ1 ((v1))ℓ0⟩)

ℓ1

wrapτ0 v0 ▷v0 (wrapτ0 ((v0))ℓ0)
ℓ1

▷+ (v0)
ℓ1

if τ0 ∈ Int ∪ Nat and shape-match (τ0,v0) if τ0 ∈ Int ∪ Nat and shape-match (τ0,v0)

e →∗ e
def
= reflexive, transitive, compatible

(w.r.t. E) closure of ▷
e +→∗ e

def
= reflexive, transitive, compatible

(w.r.t. E) closure of ▷+

s →∗ e
def
= ∃T , e1.

⊢s s : T ⇝ e1 ∧ e1 →
∗ e

Figure 10: Semantics for the evaluation syntax (left) and a labeled variant (right)

Deep and Shallow Types for Gradual Languages PLDI ’22, June 13–17, 2022, San Diego, CA, USA

δ : unop ×v−→v

δ (fst, ⟨v0,v1⟩) = v0
δ (snd, ⟨v0,v1⟩) = v1

δ : binop ×v ×v−→v

δ (plus, i0, i1) = i0 + i1
δ (quotient, i0, 0) = DivErr
δ (quotient, i0, i1) = ⌊i0/i1⌋

shape-match : σ ×v−→B
shape-match (Fun,v0) = True
if v0 ∈ λx . e ∪ λ(x :τ). e ∪ λ(x :scanσ). e ∪ G τ v

shape-match (Pair, ⟨v0,v1⟩) = True
shape-match (Int, i0) = True
shape-match (Nat,n0) = True
shape-match (Top,v0) = True
shape-match (σ0,v0) = False

otherwise

rev : ℓ−→ℓ rev (ℓ0, · · · , ℓn) = ℓn , · · · , ℓ0

Figure 11: Semantic metafunctions

result. Functions that are wrapped in several guards must

step through several unfoldings.

The remaining rules state the behavior of run-time checks.

A noop boundary performs no check and lets any value

across. A scan boundary checks the top-level shape of an

incoming value against the expected type-shape, and halts

if the two disagree. Lastly, a wrap boundary checks the top-

level shape of a value and then proceeds based on the type.

For function types, awrap installs a guard wrapper. For pairs,
a wrap validates both components and creates a new pair

value. For base types, the shape check is enough.

The semantics of the evaluation syntax is given in standard

fashion [14] as the the reflexive, transitive closure of the

compatible closure of ▷ relative to the evaluation contexts

(E) from figure 5. Each expression has a unique redex thanks

to the inductive structure of evaluation contexts.

3.7 Labeled Evaluation, Deep Label Consistency
The model requires two final definitions to enable a syntactic

analysis of complete monitoring: a label-annotated reduction

relation and a consistency judgment that validates the labels.

Labels provide a specification of who owns what in a running

program.More precisely, the labels on an expression describe

the surface modules that are responsible for the behavior

of the expression. A consistently-labeled expression keeps

deep-typed code separate from shallow and untyped code.

Informally, consistent labelling is possible if a semantics can

check all inputs to and outputs from deep-typed values.

e = x | v | ⟨e, e⟩ | unop e | binop e e | app e e | Error |
wrapτ (e)ℓ | scanσ (e)ℓ | noop (e)ℓ | (e)ℓ

v = i | ⟨v,v⟩ | λx . e | λ(x :τ). e | λ(x :scanσ). e |
G (τ→τ) (v)ℓ | (v)ℓ

E = . . . | (E)ℓ

ℓ = D0 | D1 | . . . | S0 | S1 | . . . | U0 | U1 | . . .

ℓ = sequence of labels (ℓ)
L = · | (x :ℓ),L

Abbreviation: (· · · (e0)
ℓ0 · · ·)

ℓn
= ((e0))

ℓ0, · · · , ℓn

Figure 12: Labeled evaluation syntax

The right half of figure 10 presents a labeled notion of

reduction for the evaluation language.
3
By design, the reduc-

tion rules are identical to the basic rules from figure 10 except

for superscript labels and parentheses. Labels are metadata;

they do not change the underlying behavior of a reduction

rule. The labels on the left-hand expression of each rule give

names to the parties responsible for any relevant subexpres-

sions. The labels on the right-hand expression show how

responsibilities change in response to the reduction step. For

example, an untyped function application (app (λx0. e0)v0)
substitutes an argument value into the function body. Be-

cause of the substitution, the parties that were responsible

for the function become responsible for both the value and

for the expression that the function computes. The label

metafunction rev (figure 11) keeps these labels in proper or-

der by reversing them—because the argument value flows in

to the function.

Labels typically accumulate without bound. The only way

that labels may disappear is after a successful run-time check

or after an error (when evaluation is over). For example, the

wrap rule for base types says that client ℓ1 may assume full

responsibility of numbers that reach a well-typed boundary.

Technically, the addition of labels to the evaluation lan-

guage calls for an entirely new syntax (figure 12). The ex-

pression form (e)ℓ attaches a label to any subexpression. A

similar value form (v)ℓ lets any value appear under an arbi-

trary number of labels. These labels correspond to modules

from the surface syntax, and thus combine a kind (D , S , or
U) with a unique identifying number. The labeled syntax

has two other noteworthy aspects:

• All boundaries require a label for their subexpression.

This means that the v0 in the following four patterns

must have at least one label: (wrapτ0 v0), (scanσ0 v0),
(noop v0), and (G τ0 v0).
• To reduce parenthesis and superscripts, the abbreva-

tion ((·))· captures a sequence of labels. For example,

3
The design of a labeled reduction relation is like any other definition in that

it requires ingenuity to create and careful reading to understand. To help

readers gain an intuition for appropriate labeling, the appendix presents

the guidelines that underlie figure 10.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Ben Greenman

ℓ;L ⊩ e

ℓ1;L0 ⊩ e0

ℓ0;L0 ⊩ noop (e0)ℓ1
ℓ1;L0 ⊩ e0

ℓ0;L0 ⊩ scanσ0 (e0)ℓ1
ℓ1;L0 ⊩ e0

ℓ0;L0 ⊩ wrapτ0 (e0)ℓ1
ℓ1;L0 ⊩ v0

ℓ0;L0 ⊩ G τ0 (v0)
ℓ1

D1;L0 ⊩ e0

D0;L0 ⊩ (e0)
D1

S1;L0 ⊩ e0

S0;L0 ⊩ (e0)
S1

U0;L0 ⊩ e0

S0;L0 ⊩ (e0)
U0

U1;L0 ⊩ e0

U0;L0 ⊩ (e0)
U1

S0;L0 ⊩ e0

U0;L0 ⊩ (e0)
S0

Figure 13: Deep label consistency (selected rules)

the value (((4)ℓ0)
ℓ1
)
ℓ2
matches the pattern ((v0))

ℓ0
with

v0=4 and ℓ0=ℓ0, ℓ1, ℓ2.

Figure 13 presents a consistency judgment for labeled ex-

pressions. The judgment allows any mix of shallow (S) and
untyped (U) labels around an expression, but restricts the

use of deep labels (D). Concretely, the judgment analyzes an

expression relative to a context label and an environment

(L). Variables must have a binding in the label environment

that matches the context label and most other expressions

simply need consistent subterms; these rules are deferred

to the appendix. Boundary expressions and guarded values

are ownership switch points; these terms are consistent if

their subterm matches the context label that appears inside

the boundary. The rules for labeled expressions specify the

allowed mixtures. Shallow and untyped labels can mix to-

gether around an expression, but a deep-labeled expression

must have only deep labels around it.

3.8 Properties
Type soundness predicts the possible outcomes of a well-

typed expression. Because the surface language allows three

kinds of typed expression (deep, shallow, and untyped), the

definition is parameterized over both a language kind L and a
characterization function F that maps a subset of the surface
types T to an evaluation-language type (either τ , σ , or U).

Definition 3.1 (TS (⊢L, F)). Language L satisfies TS (⊢L, F)
if for all s0 such that ⊢s s0 : T holds and F (T) is defined, one
of the following holds:
• s0 →

∗ v0 and ⊢L v0 : F (T)
• s0 →

∗ Error
• s0 →

∗ diverges

There are three important characterization functions F
for the analysis: 1 is the identity function on types τ ; shape
maps underlined types ⌞τ⌟ to shapes σ (similar to shape from
figure 7); and 0 maps U to U.

Theorem 3.2 (type soundness).
• Language D satisfies TS (⊢D , 1)
• Language S satisfies TS (⊢S , shape)
• Language U satisfies TS (⊢U , 0)

Proof Sketch. By lemmas for progress, preservation, and com-

pilation (deferred to the appendix). □

Unlike a conventional soundness theorem [41, 71], defini-

tion 3.1 does not claim that the evaluation of a well-typed

expression cannot go wrong by throwing a tag error. Such

a claim would not hold for typed expressions that contain

faulty untyped modules. It is true, however, that the reduc-

tion of a well-typed redex cannot yield a tag error:

Lemma 3.3 (type discipline). If e0 is typed (either ⊢D e0 : τ0
or ⊢S e0 : σ0) and e0 ▷ e1 then e1 < TagErr.

Complete monitoring states that the evaluation language

has control over every interaction between deep-typed code

and weaker code. More precisely, the proof-technical ques-

tion is whether the labels that arise in evaluation are consis-

tent according to the ⊩ judgment (figure 13).

Theorem 3.4 (complete monitoring). If ⊢s s0 : T ⇝ e0 and
ℓ0; · ⊩ e0 and e0 +→∗ e1 then ℓ0; · ⊩ e1.

Proof Sketch. By a preservation argument. The proofs for a

few interesting cases are sketched below. Other cases are in

the appendix.

Case: (app ((λx0. e0))ℓ0 v0)
ℓ1
▷+((e0[x0←((v0))

ℓ1rev (ℓ0)]))
ℓ0ℓ1

1. ℓ0 is all deep or a mix of shallow and untyped, by

deep-label consistency of the redex

2. ℓ1; · ⊩ v0, also by deep-label consistency of the redex
3. let ℓn be the rightmost label in the sequence ℓ0

4. ℓn ; · ⊩ ((v0))
ℓ1rev (ℓ0)

, by steps 1 and 2

5. ℓn ; · ⊩ x0 for each occurrence of x0 in e0, by deep-

label consistency of the redex

6. by a substitution lemma

Case: (app ((G τ0→τ1 (v0)
ℓ0))

ℓ1
v1)

ℓ2

▷+

((wrapτ1 (appv0 (wrapτ0 ((v1))ℓ2rev (ℓ1)))
ℓ0
))
ℓ1ℓ2

1. ℓ0; · ⊩ v0, by deep-label consistency of the redex

2. ℓ2; · ⊩ v1, again by deep-label consistency

3. ℓ1 is either all deep or a mix of shallow and untyped,

again by the consistency of the redex

4. by the definition of ⊩

Case: (noop ((v0))ℓ0)
ℓ1
▷+((v0))

ℓ0ℓ1

by the definition of⇝, because a noop boundary con-

nects either two deep components or a mix of shallow

and untyped components (self edges or S to U)

Case: (scanσ0 ((v0))ℓ0)
ℓ1
▷+(ScanErr)ℓ1

Deep and Shallow Types for Gradual Languages PLDI ’22, June 13–17, 2022, San Diego, CA, USA

by the definition of ⊩

Case: (scanσ0 ((v0))ℓ0)
ℓ1
▷+((v0))

ℓ0ℓ1

by the definition of⇝, because a scan boundary links

only shallow and/or untyped components

Case: (wrap (τ0→τ1) ((v0))
ℓ0)

ℓ1
▷+(G τ0→τ1 ((v0))

ℓ0)
ℓ1

by the definition of ⊩ □

4 Implementation Challenges
We have implemented three-way interactions atop Typed

Racket. The extension combines the standard “Deep” Typed

Racket, which implements the natural semantics [62], with

the “Shallow Racket” implementation of transient [28]. Pro-

grammers may choose deep or shallow types when declaring

a module. Switching between the two is a one-line change

except in programs that fine-tune the checks that guard type

boundaries (section 4.4).

For the most part, the model was an effective guide for the

implementation. Deep and Shallow share a common surface

syntax, type checker, and evaluation syntax. The key issue

was how to modify these compiler back-ends to produce

code with context-dependent runtime checks. Unexpected

challenges arose regarding separate compilation, the enforce-

ment of deep types, and metaprogramming.

4.1 Wrapping Contracts and Type Environments
Higher-order exports from deep-typed code need protection

from untyped and shallow-typed clients. Wrapping contracts

are a convenient way to implement this protection because

they let deep modules share exports with no performance

overhead. They introduce a problem with separate compi-

lation, however, because the type checker for shallow code

must find a type for these wrappers to understand uses of

deep-typed identifiers.

In Typed Racket, all exports from deep code statically

resolve to either an unwrapped identifier or a wrapped one

depending on the context in which they are used [10, 59].

The wrappers do not have types due to the organization of

compiled code. Types appear in one submodule [19] while

wrappers appear in a sibling submodule to delay the cost of

building them. But because the wrappers are implemented as

Racket contracts [17], they come with a compile-time pointer

to the unwrapped identifier. Shallow Racket follows these

pointers to typecheck interactions.

4.2 Shallow-to-Deep Contracts
Deep-typed code needs to wrap imports from untyped and

shallow-typed modules. Because untyped imports lack types,

the straightforward solution is to ask programmers for a

type-annotated import statement and to generate contracts

at the import. Shallow imports already have types. This raises

a question about where to prepare the validating contracts:

the exporting shallow module or the importing deep module.

Shallow Racket eagerly prepares contracts for its deep-

typed clients and stores these contracts in a lazily-loaded

submodule. Themain benefit of this approach is that multiple

clients can reference one set of contract definitions.

4.3 Macros and Hidden Exports
Macro expansion may cause private identifiers from one

module to appear in the expansion of anothermodule [18, 20].

If onemodule uses deep types and the other uses shallow, this

behavior is a threat to type soundness. The stowed identifiers

must be protected like any other export.

By default, Deep and Shallow Racket cannot share macros.

Programmers can enable reuse by exporting amacro unsafely.

An open question is whether a static analysis can determine

which macros may safely cross type boundaries.

4.4 Three-Way Boundary Utilities
Static types and higher-order contracts are fundamentally

different tools. Types enable proofs via static analysis. Con-

tracts check behaviors dynamically. For certain types, such

as a type for terminating functions [46], it is difficult to gen-

erate an approximating contract. A language may therefore

wish to offer an API that lets programmers specify the con-

tracts that enforce deep types at a boundary. These APIs

must be adapted to support a three-way implementation.

Typed Racket comes with two tools for type boundaries.

The first, require/untyped-contract, expects a typed iden-
tifier and a subtype of the identifier’s actual type; it uses the

subtype to generate a contract. This behavior can make it

somewhat harder to switch from Deep to Shallow types. For

example, the standard array library uses this tool to give

untyped code access to an overloaded function that expects

either an array of integers or an array of natural numbers.

Rather than generate a contract based on the overloaded type,

which would require a higher-order union contract, the li-

brary uses a subtype that expects arrays of integers. Shallow

code can access this array function as well, but only through

the contract. Switching a module from Deep to Shallow may

therefore require casts to meet the subtype.

The second tool combines two identifiers. In the follow-

ing example, f is defined as a context-sensitive identifier

that expands to tf in Deep code and to uf in untyped code:

(define-typed/untyped-identifier f tf uf). Shallow
cannot be trusted with tf because of its weak soundness

guarantee, and it cannot use uf if that identifier lacks a type.

Thus, the tool needs a third input for Shallow contexts.

5 Evaluation
The integration of Deep and Shallow Typed Racket offers

substantial benefits over either one alone:

• Switching from Shallow to Deep strengthens the for-

mal guarantees for a block of code (section 5.1).

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Ben Greenman

• Switching from Deep to Shallow can remove spurious

errors from a program (section 5.2).

• The combination of Deep and Shallow improves worst-

case overheads relative to untyped code (section 5.3).

5.1 Guarantees by Deep
By design, deep types enforce stronger guarantees than shal-

low. A deep type is a behavioral claim that is substantiated

by comprehensive run-time checks. No matter where a deep-

typed value ends up, the type constrains its behavior. A shal-

low type is valid only in a limited scope. If a value escapes

to untyped or less-precisely typed code, e.g., via subtyping,

then its original type gets forgotten (section 2.2).

Prior work suggests that the relative weakness of shallow

types can lead to confusing situations. Lazarek et al. [39]

performed an automated study of debugging in Typed Racket

and found that Shallow blame errors are more likely to reach

a dead end than Deep blame errors. Tunnell Wilson et al. [65]

conducted a survey using a hypothetical gradual language

and reported that participants found the behaviors allowed

by shallow types “unexpected” more often than deep types.

Migrating from shallow to deep types may therefore be an

effective way of finding the root issue in a buggy program.

5.2 Expressiveness by Shallow
Shallow Racket can express a variety of useful programs

that Deep Racket rejects at run-time. At first glance, the

existence of such programs is surprising because the theory

suggests that the deep semantics is more “correct” (section 3).

It turns out that deep types can be overly restrictive; in such

programs, delayed shallow checks work better in practice. In

other programs, the gap between Deep and Shallow Racket

is due to implementation issues. Refer to the appendix for

motivating examples submitted by Typed Racket users.

5.2.1 Relaxed Top Type. Statically, the top type is a su-

pertype of every other type. Programmers often use this

type as a convenient placeholder to avoid committing to a

more-specific type. When enforced as a deep type, however,

the top type has a strict semantics that prevents clients from

inspecting top-wrapped values [16]. For example, if deep

code exports a function using a top type, then non-deep

clients cannot invoke the function.

The shallow top type imposes no such restrictions. Un-

typed code may invoke a shallow function exported via the

top type, and may even write to a top-typed array. These

behaviors can be useful and do not undermine the weak

shallow soundness guarantee.

Figure 14 presents an example in Typed Racket that uses

a mutable box and the top type Any, which is not a dynamic

type. When module in the left part of the figure uses Deep

types, the untyped client cannot mutate the box. With Shal-

low, untyped mutations are allowed.

(define b : (Boxof Char)

 (box #\X))

(define any : Any b)

(set-box! any #\Y)

Deep: cannot write to box

Shallow: (void)

Figure 14: Deep Racket enforces the top type (Any) with a

contract that rejects all inputs

5.2.2 NoMissingWrappers. Mutable values that can ap-

pear in deep code need tailored wrappers to monitor their

interactions with non-deep clients. These wrappers are diffi-

cult to implement because they often require support from

the run-time system [56]. Unsurprisingly, some infrequently-

used types in Deep Racket lack wrappers (12 in total).

By contrast, a shallow language avoids the question of how

to implement wrappers. Shallow types need only first-order

checks, which require far less engineering.

5.2.3 Uniform Behavior. Although the purpose of deep

wrappers is to reject type-incorrect operations without oth-

erwise changing behaviors, certain wrappers in Deep Racket

do cause subtle changes. The most problematic ones are the

wrappers for polymorphic types. Deep Racket enforces types

such as (All (A) (-> A A)) with a function contract that

seals inputs and unseals outputs [33]. The seals change the

outcome of basic operations.

Shallow Racket avoids all such changes in behavior, in-

cluding the well-known object identity issues [56, 37, 68, 67],

because the transient semantics does not use wrappers.

5.3 Performance by Deep and Shallow
The three-way mix of deep and shallow types improves per-

formance across the board. On the GTP benchmark suite

v6.0 [32], toggling between deep and shallow avoids patho-

logical cases. Mixing deep and shallow modules can further

improve performance, up to 2x faster than deep or shallow

alone (relative to untyped code).

All data in this sectionwas collected on a single-user Linux

box with 4 physical i7-4790 3.60GHz cores and 16GB RAM.

The machine ran Racket v7.8.0.5+ [48] and a pre-release of

Typed Racket [66] that extends Typed Racket v1.12. Each

data point is the result of running one program configuration

nine times in a row and averaging the speed of the final eight

runs. Our Racket [48] does not optimize transient checks to

the same extent as a tracing JIT compiler (section 6), so there

is potential room for improvement.

5.3.1 Deep and Shallow Combined. Mixing deep and

shallow typeswithin one program configuration can improve

its performance. Such configurations are quite common in

the GTP benchmarks. Out of the 2
N
configurations in sixteen

of the smaller benchmarks, amedian of 37.5% run fastest with

a mix of deep and shallow types (figure 15). These mixtures

also increase the number of D-deliverable migration paths

Deep and Shallow Types for Gradual Languages PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Benchmark Best w/ D+S

forth 12%

fsm 38%

fsmoo 31%

mbta 19%

morsecode 25%

zombie 6%

dungeon 31%

jpeg 38%

Benchmark Best w/ D+S

zordoz 47%

lnm 66%

suffixtree 48%

kcfa 55%

snake 46%

take5 36%

acquire 64%

tetris 62%

Figure 15: Percent of configurations that run fastest with a

mix of Deep and Shallow modules.

(defined in section 5.3.4). All paths in fsm, morsecode, lnm,

and kcfa become 1.2-deliverable when configurations can

mix deep and shallow types.

These encouraging numbers are the result, however, of

a search through 3
N

configurations. The following three

subsections therefore investigate Deep and Shallowmixtures

without relying on an exhaustive search.

5.3.2 Case Studies. To test whether fast-running configu-
rations can be found without a search, we manually explored

deep and shallow combinations in the following programs:

MsgPack. MsgPack is a Typed Racket library that con-

verts Racket values into serialized MessagePack data.
4
The

author of this library reported poor performance due to deep

type boundaries. Changing a bridge module from deep to

shallow types (a one-line change), reduces the time needed to

run all tests from 320 seconds to 204 seconds (40% speedup).

Synth. The synth benchmark is based on an untyped pro-

gram that interacts with a deep-typed math library to syn-

thesize music.
5
This untyped program runs 14x slower than

a deep-typed version because of the library boundary. When

the library uses shallow types instead, the gap between an

untyped and deep-typed client improves to 5x.

5.3.3 Deep or Shallow,Worst-Case. Both deep and shal-
low implementations have known bottlenecks. With deep

types, high-traffic boundaries can lead to huge costs [35, 57,

30]. With shallow types, every line of typed code contributes

a small cost [70, 29].

By switching between Deep and Shallow a programmer

can often, however, avoid the worst-cases of each. Figure 16

quantifies the benefits of this either-or strategy on the GTP

benchmarks. The first column shows that, as expected, deep

types may have enormous costs. The second column shows

that the worst configurations for Shallow Racket are far

less severe. The third column shows, however, that toggling

between Deep and Shallow often avoids the pathologies of

each style. Numbers in this third column are typeset in bold
if they are the best (lowest) in their row.

4gitlab.com/HiPhish/MsgPack.rkt
5github.com/stamourv/synth

Benchmark Worst Deep Worst Shallow Worst D∥S

sieve 16x 4.36x 2.97x
forth 5800x 5.51x 5.43x
fsm 2.24x 2.38x 1.91x
fsmoo 420x 4.28x 4.25x
mbta 1.91x 1.74x 1.71x
morsecode 1.57x 2.77x 1.3x
zombie 46x 31x 31x

dungeon 15000x 4.97x 3.16x
jpeg 23x 1.66x 1.56x
zordoz 2.63x 2.75x 2.58x
lnm 1.23x 1.21x 1.17x
suffixtree 31x 5.8x 5.8x

kcfa 4.33x 1.24x 1.24x

snake 12x 7.67x 7.61x
take5 44x 2.99x 2.97x
acquire 4.22x 1.42x 1.42x

tetris 13x 9.93x 5.44x
synth 47x 4.2x 4.2x

gregor 1.72x 1.59x 1.51x
quadT 26x 7.39x 7.23x
quadU 55x 7.57x 7.45x

Figure 16: Worst-case overheads vs. the untyped

configuration for Deep alone, Shallow alone, and an

either-or mix.

Remark: the either-or “toggling” strategy is possible only

because Deep and Shallow can interoperate. Most of the

benchmarks rely on deep-typed code that lives outside their

N core migratable modules (16 out of 21 benchmarks). With-

out interoperability, the outside code would require changes

that are unrealistic to make in practice.

In figure 16, the sieve and tetris benchmarks are no-

table successes. The zombie benchmark is the worst. Deep

Racket pays a huge cost in zombie because functions repeat-

edly cross its module boundaries. Shallow Racket pays a

high cost as well because zombie uses functions to simu-

late message-passing objects, and therefore contains many

elimination forms that incur shape checks.

5.3.4 Migration Paths. The complementary strengths of

Deep and Shallow Racket can help programmers avoid bot-

tlenecks as they migrate an untyped codebase to a typed

configuration. Consider the set of all migration paths, each

of which begins at the untyped configuration and adds types

to one module at a time until reaching the fully-typed con-

figuration. A path is D-deliverable if all of its configurations
run at most D times slower than the untyped configuration.

Figure 17 counts the proportion of 3-deliverable paths out

of all N ! migration paths in a subset of the GTP benchmarks.

Larger benchmarks are omitted. The first column counts

paths in Deep Racket, the second column counts paths in

Shallow Racket, and the third column counts paths using

Deep or Shallow at each point. With Deep alone, all paths

https://gitlab.com/HiPhish/MsgPack.rkt
http://msgpack.org/
https://groups.google.com/g/racket-users/c/6KQxpfMLTn0/m/lil_6qSMDAAJ
https://gitlab.com/HiPhish/MsgPack.rkt
https://github.com/stamourv/synth

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Ben Greenman

Benchmark Deep paths Shallow paths D∥S paths

sieve 0% 0% 100%
forth 0% 0% 50%
fsm 100% 100% 100%

fsmoo 0% 0% 50%
mbta 100% 100% 100%

morsecode 100% 100% 100%

zombie 0% 0% 50%
dungeon 0% 0% 67%
jpeg 0% 100% 100%

zordoz 100% 100% 100%

lnm 100% 100% 100%

suffixtree 0% 0% 12%
kcfa 33% 100% 100%

snake 0% 0% 0%

take5 0% 100% 100%

Figure 17: Percent of 3-deliverable migration paths for

Deep alone, Shallow alone, and an either-or mix.

in nine benchmarks reach a bottleneck that exceeds the 3x

limit. With Shallow alone, all paths in seven benchmarks

exceed the limit as well—often near the end of the migration

path. With the either-or mix, only one benchmark (snake)
has zero 3-deliverable paths.

6 Related Work
Two gradual languages, Thorn [72] and StrongScript [50],

support a combination of sound concrete types and erased

like types. Thorn is a scalable scripting language that com-

piles to the JVM [7]. StrongScript extends TypeScript [6]

with concrete types. Pyret explores a type-based combina-

tion, with deep checks for types that describe fixed-size data

and shallow checks for other types.
6
For example, pair types

get a deep check and list types get a shallow check. Static

Python combines shallow and concrete checks [4]. Shallow

checks are the default, and programmers can opt-in to con-

crete data structures. Outside the realm of gradual typing,

option contracts allow client code to trust (and skip checking)

specific contracts from server code [11].

The model in section 3 builds on the semantic framework

of Greenman and Felleisen [26], which is in turn inspired

by Matthews and Findler [40]. Unlike those frameworks, the

present model uses a surface-to-evaluation compiler similar

to how Chung et al. [9] compile several gradual languages to

theKafKa core language. The compiler in section 3 is inspired

by the coercion calculus [34]; in particular, its completion
pass that makes run-time type checks explicit.

There is a great deal of related work that addresses the

performance of deep or shallow types via implementation

techniques [15], static analysis [47, 46, 69, 43], compilation

techniques [5, 49, 51], and clean-slate language designs [44,

6
Personal communication. pyret.org

38, 45]. These improvements are orthogonal to a combined

language; they should apply to a three-way language as well

as any normal gradual language. As a case in point, our three-

way Typed Racket benefits from collapsible contracts [15].

7 Future Work
One drawback apparent in themodel is that deep and shallow

cannot trust one another. Deep code always wraps inputs

from shallow code because they may have originated in un-

typed code. Greenman [23] sketches two ideas for removing

checks from deep–shallow boundaries. One requires an es-

cape analysis. The other asks for a shallow semantics that

creates wrappers (such as in [8]) instead of the transient se-

mantics. A third idea is to adapt confined gradual typing [1].

If the type system can prove that confined values originate

in typed code and never escape to untyped, then deep and

shallow can freely share these values.

A second future direction is to identify best practices for

coding in a three-way language. Anecdotal experience sug-

gests the following strategy:

1. Start by adding deep types because their strong guar-

antees may help identify logical errors.

2. If performance becomes an issue, switch to shallow.

3. Once all critical boundaries are typed, use deep to

maximize the effect of type-driven optimizations.

Adapting the notion of a rational programmer [39] may pro-

vide a way to systematically test the usefulness of this mi-

gration plan. Meanwhile, there may be additional ways to

leverage the spectrum of type enforcement.

8 Conclusion
This is the first implementation of a sound gradual type

system where programmers can explicitly choose to trade

performance for guarantees as they add types. If a new set of

type annotations brings unacceptable overhead, switching

the types’ semantics from deep to shallow can avoid the

bottleneck and may even be good enough to deploy. The

guarantees from deep types can always be used for debug-

ging the inevitable failure, and can be applied sparingly to

defend a critical module. In the future, implementors may

wish to explore other ways to trade performance for guaran-

tees, making the trade-off even more programmable.

Data Availability Statement
The datasets and software that support section 5 of this paper

are available via Software Heritage [24] and Zenodo [25].

Acknowledgments
This work is supported by NSF grant 1518844, NSF grant

1763922, and NSF grant 2030859 to the CRA for the CIFel-

lows project. Thanks to Matthias Felleisen for improving

drafts of this paper and to the rest of my thesis committee

https://www.pyret.orgpyret.org
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1518844
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1763922
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1763922
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2030859
https://cifellows2020.org
https://cifellows2020.org

Deep and Shallow Types for Gradual Languages PLDI ’22, June 13–17, 2022, San Diego, CA, USA

for supervising parts of this work: Amal Ahmed, Fritz Hen-

glein, Shriram Krishnamurthi, Sam Tobin-Hochstadt, and

Jan Vitek.

A Appendix
A.1 Surface Typing, Completion, Evaluation

Typing, and Label Consistency Judgments
Figure 18 presents the full typing judgment for the surface

language. Figure 19 presents the surface-to-evaluation com-

pilation rules. Three other figures present the evaluation

typing judgments: figure 20 for deep types, figure 21 for

shallow types, and figure 22 for dynamic typing. Figure #f

presents the consistency judgment for labeled expressions.

A.2 How to Lift a Reduction Relation
A.2.1 Background on CompleteMonitoring. The idea
behind complete monitoring is to test whether a semantics

has control over every interaction between typed and un-

typed code. If the property holds, then a programmer can

rely on the language to insert checks at the right places, for

example, between the library and client demonstrated in

figure 1. As a concrete example, if a value passes through the

type (Int→ Int) then complete monitoring guarantees that

the language has control over every input to the function

and every result that the function computes, regardless of

what context these interactions occur in.

Because all such interactions originate at the boundaries

between typed and untyped code, a very simple way to for-

malize complete monitoring is to ask whether each boundary

comes with a full run-time check when possible and an error

otherwise. A language that meets this strict requirement

certainly has full control. Other good designs fail, though.

Suppose typed code expects a pair of integers and a seman-

tics initially admits any pair at the boundary but eventually

checks that the pair contains integers. Despite the incom-

plete check at the boundary, this delayed-checking semantics

eventually performs all necessary checks and should satisfy

a complete monitoring theorem. Higher-order values raise

a similar question because a single run-time check cannot

prove that a function value always behaves a certain way.

Nevertheless, a language that checks every call and return is

in full control of the function’s interactions.

Our definition of complete monitoring translates these

ideas about interactions and control into statements about

ownership labels [12]. At the start of an evaluation, no interac-
tions have occurred yet and every expression has one owner:

the enclosing component. The reduction of a boundary term

is the semantics of an interaction in which a value flows from

one sender component to a client. At this point, the sender

loses full control over the value. If the value fully matches

the type expectations of the client, then the loss of control is

no problem and the client gains full ownership. Otherwise,

the sender and client may have to assume joint ownership of

Γ ⊢s s : T

(x0 :U) ∈ Γ
Γ ⊢s x0 : U

(x0 :τ0) ∈ Γ

Γ ⊢s x0 : τ0

(x0 :⌞τ0⌟) ∈ Γ

Γ ⊢s x0 : ⌞τ0⌟

Γ ⊢s i0 : U Γ ⊢s n0 : Nat Γ ⊢s n0 : ⌞Nat⌟

Γ ⊢s i0 : Int Γ ⊢s i0 : ⌞Int⌟

Γ ⊢s s0 : U Γ ⊢s s1 : U
Γ ⊢s ⟨s0, s1⟩ : U

Γ ⊢s s0 : τ0 Γ ⊢s s1 : τ1

Γ ⊢s ⟨s0, s1⟩ : τ0×τ1

Γ ⊢s s0 : ⌞τ0⌟ Γ ⊢s s1 : ⌞τ1⌟

Γ ⊢s ⟨s0, s1⟩ : ⌞τ0×τ1⌟

(x0 :U), Γ ⊢s e0 : U
Γ ⊢s λx0. e0 : U

(x0 :τ0), Γ ⊢s e0 : τ1

Γ ⊢s λ(x0 :τ0). e0 : τ0→τ1

(x0 :⌞τ0⌟), Γ ⊢s e0 : ⌞τ1⌟

Γ ⊢s λ(x0 :τ0). e0 : ⌞τ0→τ1⌟

Γ ⊢s s0 : U
Γ ⊢s unop s0 : U

Γ ⊢s e0 : τ0
∆(unop,τ0) = τ1
Γ ⊢s unop e0 : τ1

Γ ⊢s e0 : ⌞τ0⌟ ∆(unop,τ0) = τ1
Γ ⊢s unop e0 : ⌞τ1⌟

Γ ⊢s s0 : U Γ ⊢s s1 : U
Γ ⊢s binop s0 s1 : U

Γ ⊢s e0 : τ0 Γ ⊢s e1 : τ1
∆(binop,τ0,τ1) = τ2
Γ ⊢s binop e0 e1 : τ2

Γ ⊢s e0 : ⌞τ0⌟ Γ ⊢s e1 : ⌞τ1⌟
∆(binop,τ0,τ1) = τ2
Γ ⊢s binop e0 e1 : ⌞τ2⌟

Γ ⊢s s0 : U Γ ⊢s s1 : U
Γ ⊢s app{s0} s1 : U

Γ ⊢s e0 : τ0→τ1
Γ ⊢s e1 : τ0

Γ ⊢s app{e0} e1 : τ1

Γ ⊢s e0 : ⌞τ0→τ1⌟
Γ ⊢s e1 : ⌞τ0⌟

Γ ⊢s app{e0} e1 : ⌞τ1⌟

Γ ⊢s e0 : τ0 τ0 <: τ1

Γ ⊢s e0 : τ1

Γ ⊢s e0 : ⌞τ0⌟ τ0 <: τ1

Γ ⊢s e0 : ⌞τ1⌟


Γ ⊢s e0 : T0

Γ ⊢s moduleL0 e0 : T1



L0 T0 T1
D τ0 τ0
D τ0 ⌞τ0⌟
D τ0 U
S ⌞τ0⌟ τ0
S ⌞τ0⌟ ⌞τ0⌟
S ⌞τ0⌟ U
U U T1

Figure 18: Surface typing judgment

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Ben Greenman

Γ ⊢s x0 : U ⇝ x0 Γ ⊢s x0 : τ0 ⇝ x0

Γ ⊢s x0 : ⌞τ0⌟ ⇝ x0 Γ ⊢s i0 : U ⇝ i0

Γ ⊢s i0 : τ0 ⇝ i0 Γ ⊢s i0 : ⌞τ0⌟ ⇝ i0

Γ ⊢s e0 : U ⇝ e2 Γ ⊢s e1 : U ⇝ e3

Γ ⊢s ⟨e0, e1⟩ : U ⇝ ⟨e2, e3⟩

Γ ⊢s e0 : τ0 ⇝ e2 Γ ⊢s e1 : τ1 ⇝ e3

Γ ⊢s ⟨e0, e1⟩ : τ0×τ1 ⇝ ⟨e2, e3⟩

Γ ⊢s e0 : ⌞τ0⌟ ⇝ e2 Γ ⊢s e1 : ⌞τ1⌟ ⇝ e3

Γ ⊢s ⟨e0, e1⟩ : ⌞τ0×τ1⌟ ⇝ ⟨e2, e3⟩

(x0 :U), Γ ⊢s e0 : U ⇝ e1

Γ ⊢s λx0. e0 : U ⇝ λx0. e1

(x0 :τ0), Γ ⊢s e0 : τ1 ⇝ e1

Γ ⊢s λ(x0 :τ0). e0 : τ0→τ1 ⇝ λ(x0 :τ0). e1

(x0 :⌞τ0⌟), Γ ⊢s e0 : ⌞τ1⌟ ⇝ e1 shape (τ0) = σ0

Γ ⊢s λ(x0 :⌞τ0⌟). e0 : ⌞τ0→τ1⌟ ⇝ λ(x0 :scanσ0). e1

Γ ⊢s e0 : U ⇝ e2 Γ ⊢s e1 : U ⇝ e3

Γ ⊢s app e0 e1 : U ⇝ app e2 e3

Γ ⊢s e0 : τ1→τ0 ⇝ e2 Γ ⊢s e1 : τ1 ⇝ e3

Γ ⊢s app e0 e1 : τ0 ⇝ app e2 e3

Γ ⊢s e0 : ⌞τ1→τ0⌟ ⇝ e2
Γ ⊢s e1 : ⌞τ1⌟ ⇝ e3 shape (τ0) = σ0

Γ ⊢s app e0 e1 : ⌞τ0⌟ ⇝ scanσ0 (app e2 e3)


Γ ⊢s e0 : T0 ⇝ e1

Γ ⊢smoduleL0 e0 :T1⇝e2



L0 T0 T1 ⇝ e2
D τ0 τ0 noop e1
S ⌞τ0⌟ ⌞τ0⌟ noop e1
U U U noop e1
D τ0 U wrapτ0 e1
S ⌞τ0⌟ τ0 wrapτ0 e1
U U τ0 wrapτ0 e1
D τ0 ⌞τ0⌟ wrapτ0 e1
S ⌞τ0⌟ U noop e1
U U ⌞τ0⌟ scanσ0 e1

where σ0 = shape (τ0)

Figure 19: Surface-to-evaluation compilation

Γ ⊢D e : τ

(x0 :τ0) ∈ Γ

Γ ⊢D x0 : τ0 Γ ⊢D n0 : Nat Γ ⊢D i0 : Int

Γ ⊢D e0 : τ0 Γ ⊢D e1 : τ1

Γ ⊢D ⟨e0, e1⟩ : τ0×τ1

(x0 :τ0), Γ ⊢D e0 : τ1

Γ ⊢D λ(x0 :τ0). e0 : τ0→τ1

Γ ⊢U v0 : U
Γ ⊢D G τ0 v0 : τ0

Γ ⊢S v0 : σ0

Γ ⊢D G τ0 v0 : τ0

Γ ⊢D e0 : τ0
∆(unop,τ0) = τ1
Γ ⊢D unop e0 : τ1

Γ ⊢D e0 : τ0 Γ ⊢D e1 : τ1
∆(binop,τ0,τ1) = τ2
Γ ⊢D binop e0 e1 : τ2

Γ ⊢D e0 : τ0→τ1 Γ ⊢D e1 : τ0

Γ ⊢D app e0 e1 : τ1

Γ ⊢D e0 : τ0

Γ ⊢D noop e0 : τ0

Γ ⊢U e0 : U
Γ ⊢D wrapτ0 e0 : τ0

Γ ⊢S e0 : σ0

Γ ⊢D wrapτ0 e0 : τ0

Γ ⊢D e0 : τ0 τ0 <: τ1

Γ ⊢D e0 : τ1 Γ ⊢D Error : τ0

Figure 20: Deep typing judgment

the value depending on the nature of the reduction relation.

If a semantics can create a value with multiple owners, then

it admits that a component may lose full control over its

interactions with other components.

Technically, an ownership label
ℓ0
names one source-code

component. Expressions and values come with at least one

ownership label; for example, (42)ℓ0 is an integer with one

owner and (((42)ℓ0)
ℓ1
)
ℓ2

is an integer with three owners,

written ((42))ℓ0ℓ1ℓ2 for short. A complete monitoring theorem

requires two ingredients that manage these labels. First, a

reduction relation→∗
r
must propagate ownership labels to

reflect interactions and checks. Second, a single-ownership

judgment ⊩ must test whether every value in an expres-

sion has a unique owner. To satisfy complete monitoring,

reduction must preserve single-ownership.

The key single-ownership rules (figure #f) deal with la-

beled expressions and boundary terms. For example, every

label in a deep-typed component must match a (possibly

different) deep-typed component, and the subterm in every

scan boundary must match its server label:

L ; ℓ ⊩ e D1;L0 ⊩ e0

D0;L0 ⊩ (e0)
D1

ℓ1;L0 ⊩ e0

ℓ0;L0 ⊩ scanσ0 (e0)ℓ1

Values such as ((42))ℓ0ℓ1 represent a communication that

slipped past the run-time checking protocol, and therefore

Deep and Shallow Types for Gradual Languages PLDI ’22, June 13–17, 2022, San Diego, CA, USA

Γ ⊢S e : σ

(x0 :σ0) ∈ Γ

Γ ⊢S x0 : σ0 Γ ⊢S n0 : Nat Γ ⊢S i0 : Int

Γ ⊢S e0 : σ0 Γ ⊢S e1 : σ1

Γ ⊢S ⟨e0, e1⟩ : Pair

(x0 :U), Γ ⊢U e0 : U
Γ ⊢S λx0. e0 : Fun

(x0 :σ0), Γ ⊢S e0 : σ1

Γ ⊢S λ(x0 :scanσ0). e0 : Fun

Γ ⊢D v0 : τ0

Γ ⊢S G τ0 v0 : Fun

Γ ⊢S e0 : σ0

Γ ⊢S unop e0 : Top

Γ ⊢S e0 : σ0 Γ ⊢S e1 : σ1
∆(binop,σ0,σ1) = σ2

Γ ⊢S binop e0 e1 : σ2

Γ ⊢S e0 : Fun Γ ⊢S e1 : σ0

Γ ⊢S app e0 e1 : Top

Γ ⊢S e0 : σ0

Γ ⊢S noop e0 : σ0

Γ ⊢U e0 : U
Γ ⊢S noop e0 : Top

Γ ⊢U e0 : U
Γ ⊢S scanσ0 e0 : σ0

Γ ⊢S e0 : σ1

Γ ⊢S scanσ0 e0 : σ0

Γ ⊢D e0 : τ0 shape (τ0) = σ0

Γ ⊢S wrapτ0 e0 : σ0

Γ ⊢S e0 : σ0 σ0 <: σ1

Γ ⊢S e0 : σ1 Γ ⊢S Error : σ0

Figure 21: Shallow typing judgment

fail to satisfy single ownership. The client owns the wrapper,

and the sender retains ownership of the enclosed value.

A.2.2 Lifting a Reduction Relation. In practice, a lan-

guage comes with an unlabeled reduction relation, and it

is up to a researcher to design a lifted relation that handles

labeled terms. Lifting requires insight to correctly transfer

labels and to ensure that labels do not change the behav-

ior of programs. If labels do not transfer correctly, then a

complete monitoring theorem becomes meaningless. And

if the lifted relation depends on labels to compute a result,

then a complete monitoring theorem says nothing about the

original reduction relation.

The following informal guidelines explain how to lift a

reduction relation. They convey the intuitions behind our for-

mulation of complete monitoring and those of prior work [12,

13, 58, 42]. Each guideline describes a way that labels may

be transferred or dropped during evaluation. To convey the

general idea, each guideline also comes with a brief illustra-

tion, namely, an example reduction and a short comment.

The example reductions use a hypothetical r relation over

the surface language. Recall that stat and dyn are boundary

Γ ⊢U e : U

(x0 :U) ∈ Γ
Γ ⊢U x0 : U Γ ⊢U i0 : U

Γ ⊢U e0 : U Γ ⊢U e1 : U
Γ ⊢U ⟨e0, e1⟩ : U

(x0 :U), Γ ⊢U e0 : U
Γ ⊢U λx0. e0 : U

(x0 :σ0), Γ ⊢S e0 : σ1

Γ ⊢U λ(x0 :scanσ0). e0 : U
Γ ⊢D v0 : τ0

Γ ⊢U G τ0 v0 : U

Γ ⊢U e0 : U
Γ ⊢U unop e0 : U

Γ ⊢U e0 : U Γ ⊢U e1 : U
Γ ⊢U binop e0 e1 : U

Γ ⊢U e0 : U Γ ⊢U e1 : U
Γ ⊢U app e0 e1 : U

Γ ⊢U e0 : U
Γ ⊢U noop e0 : U

Γ ⊢S e0 : σ0

Γ ⊢U noop e0 : U
Γ ⊢U e0 : U

Γ ⊢U scanσ0 e0 : U

Γ ⊢S e0 : σ1

Γ ⊢U scanσ0 e0 : U
Γ ⊢D e0 : τ0

Γ ⊢U wrapτ0 e0 : U

Γ ⊢U Error : U

Figure 22: Untyped typing judgment

terms; they link two components, a context and an enclosed

expression, via a type.

When reading an example, accept the transitions e r e as
axioms and focus on how the labels change in response:

1. If a base value reaches a boundary with a matching

base type, then the value must drop its current labels

as it crosses the boundary.

(stat (ℓ0◀Nat◀ ℓ1) ((0))ℓ2ℓ1)
ℓ0 r (0)ℓ0

The value 0 fully matches the type Nat.

2. Any other value that crosses a boundary must acquire

the label of the new context.

(stat (ℓ0◀Nat◀ ℓ1) (⟨−2, 1⟩)ℓ1)
ℓ0 r ((⟨−2, 1⟩))ℓ1ℓ0

The pair ⟨−2, 1⟩ does not match the type Nat.

3. Every value that flows out of a value v0 acquires the
labels of v0 and the context.

(snd ((⟨(1)ℓ0 , (2)ℓ1⟩))
ℓ2ℓ3
)
ℓ4

r ((2))ℓ1ℓ2ℓ3ℓ4
The value 2 flows out of the pair ⟨1, 2⟩.

4. Every value that flows into a function v0 acquires the
label of the context and the reversed labels of v0.

(app ((λx0. fst x0))ℓ0ℓ1 (⟨8, 6⟩)ℓ2)
ℓ3 r

(((fst ((⟨8, 6⟩))ℓ2ℓ3ℓ1ℓ0))
ℓ0ℓ1
)
ℓ3

The argument value ⟨8, 6⟩ is input to the function.

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Ben Greenman

ℓ;L ⊩ e

(x0 :ℓ0) ∈ L0

ℓ0;L0 ⊩ x0 ℓ0;L0 ⊩ i0

ℓ0;L0 ⊩ e0 ℓ0;L0 ⊩ e1

ℓ0;L0 ⊩ ⟨e0, e1⟩

ℓ0; (x0 :ℓ0),L0 ⊩ e0

ℓ0;L0 ⊩ λ(x0 :τ0). e0

ℓ0; (x0 :ℓ0),L0 ⊩ e0

ℓ0;L0 ⊩ λ(x0 :scanσ0). e0

ℓ0; (x0 :ℓ0),L0 ⊩ e0

ℓ0;L0 ⊩ λx0. e0

ℓ0;L0 ⊩ e0

ℓ0;L0 ⊩ unop e0

ℓ0;L0 ⊩ e0 ℓ0;L0 ⊩ e1

ℓ0;L0 ⊩ binop e0 e1

ℓ0;L0 ⊩ e0 ℓ0;L0 ⊩ e1

ℓ0;L0 ⊩ app e0 e1

ℓ0;L0 ⊩ Error

ℓ1;L0 ⊩ e0

ℓ0;L0 ⊩ noop (e0)ℓ1

ℓ1;L0 ⊩ e0

ℓ0;L0 ⊩ scanσ0 (e0)ℓ1
ℓ1;L0 ⊩ e0

ℓ0;L0 ⊩ wrapτ0 (e0)ℓ1

ℓ1;L0 ⊩ v0

ℓ0;L0 ⊩ G τ0 (v0)
ℓ1

D1;L0 ⊩ e0

D0;L0 ⊩ (e0)
D1

S1;L0 ⊩ e0

S0;L0 ⊩ (e0)
S1

U0;L0 ⊩ e0

S0;L0 ⊩ (e0)
U0

U1;L0 ⊩ e0

U0;L0 ⊩ (e0)
U1

S0;L0 ⊩ e0

U0;L0 ⊩ (e0)
S0

Figure 23: Deep label consistency

The substituted body flows out of the function,
and by guideline 3 acquires the function’s labels.

5. A primitive operation (δ) may remove labels on incom-

ing base values.

(plus (2)ℓ0 (3)ℓ1)
ℓ2 r (5)ℓ2

Assuming δ (plus, 2, 3) = 5.

6. Consecutive equal labels may be dropped.

((0))ℓ0ℓ0ℓ1ℓ0 = ((0))ℓ0ℓ1ℓ0

7. Labels on an error term may be dropped.

(dyn (ℓ0◀ Int◀ ℓ1) (plus 9 (DivErr)ℓ1))
ℓ0 r DivErr

Although guideline 4 talks about functions, it generalizes to

reference cells and other higher-order values.

A.3 Lemmas for the Model
Theorem A.1 (complete monitoring). If ⊢s s0 : T ⇝ e0 and
ℓ0; · ⊩ e0 and e0 +→∗ e1 then ℓ0; · ⊩ e1.

Proof Sketch. By a preservation argument.

Case: (unop ((v0))ℓ0)
ℓ1
▷+(TagErr)ℓ1

by definition ℓ1; · ⊩ (TagErr)ℓ1

Case: (unop ((v0))ℓ0)
ℓ1
▷+((δ (unop,v0)))ℓ0ℓ1

1. ℓ0 is either all deep labels or a mix of shallow and

untyped, by deep-label consistency of the redex

2. similarly, ℓ1 must match ℓ0
3. v0 is a pair, because δ is defined on it

4. both components of v0 are well-labeled, again by

deep-label consistency on the redex

5. by the definition of δ

Case: (binop ((v0))ℓ0 ((v1))ℓ1)
ℓ2
▷+(TagErr)ℓ2

by the definition of ⊩

Case: (binop ((v0))ℓ0 ((v1))ℓ1)
ℓ2
▷+(δ (binop,v0,v1))ℓ2

by the definition of ⊩ and δ (binary operators are not

elimination forms in the model, thus the number com-

puted by δ does not acquire labels from v0 and v1)

Case: (app ((v0))ℓ0 v1)
ℓ1
▷+(TagErr)ℓ1

by the definition of ⊩

Case: (app ((λx0. e0))ℓ0 v0)
ℓ1
▷+((e0[x0←((v0))

ℓ1rev (ℓ0)]))
ℓ0ℓ1

1. ℓ0 is all deep or a mix of shallow and untyped, by

deep-label consistency of the redex

2. ℓ1; · ⊩ v0, also by deep-label consistency of the redex
3. let ℓn be the rightmost label in the sequence ℓ0

4. ℓn ; · ⊩ ((v0))
ℓ1rev (ℓ0)

, by steps 1 and 2

5. ℓn ; · ⊩ x0 for each occurrence of x0 in e0, by deep-

label consistency of the redex

6. by a substitution lemma

Case: (app ((λ(x0 :τ0). e0))ℓ0 v0)
ℓ1
▷+

((e0[x0←((v0))
ℓ1rev (ℓ0)]))

ℓ0ℓ1

similar to the previous case

Case: (app ((λ(x0 :scanσ0). e0))ℓ0 v0)
ℓ1
▷+(ScanErr)ℓ1

by the definition of ⊩

Case: (app ((λ(x0 :scanσ0). e0))ℓ0 v0)
ℓ1
▷+

((e0[x0←((v0))
ℓ1rev (ℓ0)]))

ℓ0ℓ1

similar to the other substitution cases

Case: (app ((G τ0→τ1 (v0)
ℓ0))

ℓ1
v1)

ℓ2

▷+

((wrapτ1 (appv0 (wrapτ0 ((v1))ℓ2rev (ℓ1)))
ℓ0
))
ℓ1ℓ2

1. ℓ0; · ⊩ v0, by deep-label consistency of the redex

2. ℓ2; · ⊩ v1, again by deep-label consistency

3. ℓ1 is either all deep or a mix of shallow and untyped,

again by the consistency of the redex

4. by the definition of ⊩

Case: (noop ((v0))ℓ0)
ℓ1
▷+((v0))

ℓ0ℓ1

by the definition of⇝, because a noop boundary con-

nects either two deep components or a mix of shallow

and untyped components (self edges or S to U)

Case: (scanσ0 ((v0))ℓ0)
ℓ1
▷+(ScanErr)ℓ1

by the definition of ⊩

Case: (scanσ0 ((v0))ℓ0)
ℓ1
▷+((v0))

ℓ0ℓ1

by the definition of⇝, because a scan boundary links

only shallow and/or untyped components

Case: (wrapτ0 ((v0))ℓ0)
ℓ1
▷+(WrapErr)ℓ1

Deep and Shallow Types for Gradual Languages PLDI ’22, June 13–17, 2022, San Diego, CA, USA

by the definition of ⊩

Case: (wrap (τ0→τ1) ((v0))
ℓ0)

ℓ1
▷+(G τ0→τ1 ((v0))

ℓ0)
ℓ1

by the definition of ⊩

Case: (wrap (τ0×τ1) ((⟨v0,v1⟩))ℓ0)
ℓ1
▷+

(⟨wrapτ0 ((v0))ℓ0 ,wrapτ1 ((v1))ℓ0⟩)
ℓ1

by the definition of ⊩; the step makes a new pair

Case: (wrapτ0 ((v0))ℓ0)
ℓ1
▷+(v0)

ℓ1

where τ0 ∈ Int ∪ Nat and shape-match (τ0,v0)
by the definition of ⊩

□

Lemma A.2 (compilation). If ⊢s s0 : T then ⊢s s0 : T ⇝ e0
and either:
• T ∈ τ and ⊢D e0 : T
• T ∈ ⌞τ⌟ and ⊢S e0 : shape (T)
• T ∈ U and ⊢U e0 : U

Lemma A.3 (type progress). If ⊢s e0 : T then either e0 ∈
v ∪ Error or e0 → e1

Lemma A.4 (type preservation). If ⊢s e0 : T and e0 → e1
then ⊢s e1 : T

Lemma A.5 (decomposition). For all e0 there exists unique
e1,E0 such that e0 = E0[e1]

Lemma A.6. If ⊢S e0 : σ0 then ⊢U e0 : U

Proof. By definition, in particular because the untyped rules

allow shape-annotated functions. □

Lemma A.7 (boundary-crossing).
• If ⊢L v0 : T and shape-match (σ0,v0) then ⊢S v0 : σ0
• If ⊢S v0 : σ0 then ⊢U v0 : U
• If ⊢D v0 : τ0 and wrapτ0 v0 ▷ v1 then ⊢S v1 :

shape (τ0) and ⊢U v1 : U

Lemma A.8 (owner preservation). If ⊢ e0 : T and ℓ0 ⊩ e0
and e0 ▷ e1 then ℓ0 ⊩ e1

A.4 Expressiveness by Shallow: Example Programs
A.4.1 Less-strict TopType. Inspired by the followingmes-
sages to the Racket-Users mailing list:
• error : Attempted to use a higher-order value passed as
‘Any‘ in untyped code, sent by Denis Michiels on 2018-

04-16. groups.google.com/g/racket-users/c/cCQ6dRNybDg/m/CK

XgX1PyBgAJ accessed 2020-12-15

• Typed Racket: ’Unable to protect opaque value passed
as ‘Any‘’ with interesting behavior, sent by Marc Kauf-

mann on 2019-12-11. groups.google.com/g/racket-users/c/jt

mVDFCGL28/m/jwl4hsjtBQAJ accessed 2020-12-15

Deep Racket enforces the top type with a wrapper that

prevents clients from inspecting the enclosed value. This

wrapper is a surprise for developers who expect programs

such as figure 14 to run without error. This program defines

a mutable box in typed code, assigns the top type (Any) to

(: add-mpair (-> (MPairof Real Real) Real))

(define (add-mpair mp)

 (+ (mcar mp) (mcdr mp)))

(add-mpair (mcons 2 4))

Shallow: 6

Deep: no contract for type

Figure 24: Deep lacks wrappers for mutable pairs and a few

other uncommon datatypes

the box, and sends it to untyped code. The untyped module

attempts to set the box. Deep Racket raises an exception

when untyped code tries to modify the box. Unfortunately

for the programmer, this error is essential for soundness. If

untyped code put an integer in the box, then typed uses of

the box would give a result that is inconsistent with its type.

Shallow Racket runs the program without error because of

its delayed checking strategy. If shallow-typed code tries to

read a symbol from the box, that access will raise an error.

Other top types for higher-order values have similar be-

havior. For example, Shallow Racket can import a function at

the general Procedure type, cast to a more specific type, and

apply the function. A Deep cast only adds a second wrapper

atop the restrictive wrapper for the Procedure type.

A.4.2 No MissingWrappers. Several little-used types in
Deep Racket lack wrappers (12 in total). Figure 24 demon-

strates the issue with a mutable pair (MPairof) type. Deep
Racket raises a run-time error when untyped code tries to

call the add-mpair function. Shallow can run the program.

A.4.3 Uniform Behavior. Inspired by the following mes-
sages to the Racket-Users mailing list:
• Typed code from untyped code, sent by Bertrand on

2020-02-17. groups.google.com/g/racket-users/c/UD20HadJ9Ec/

m/Lmuw0U8mBwAJ accessed 2020-12-15

• index-of + TR ... parametricity problem?, sent by John

B. Clements on 2019-12-15. groups.google.com/g/racket-

users/c/ZbYRQCy93dY/m/kF_Ek0VvAQAJ accessed 2020-12-15

Figure 25 presents a typed module that imports an un-

typed function, index-of, with a precise polymorphic type.

The wrapper that enforces this type creates a new wrapper

for every input to the function—to enforce parametric poly-

morphism [33]. Unfortunately, these input wrappers change

the behavior of index-of; it searches the list for a wrapped
version of the symbol ’a and returns a “not found” result

(#false) instead of the correct position (0). Shallow Racket

avoids all such changes in behavior because the transient

semantics does not use wrappers to enforce types.

https://groups.google.com/g/racket-users/c/cCQ6dRNybDg/m/CKXgX1PyBgAJ
https://groups.google.com/g/racket-users/c/cCQ6dRNybDg/m/CKXgX1PyBgAJ
https://groups.google.com/g/racket-users/c/jtmVDFCGL28/m/jwl4hsjtBQAJ
https://groups.google.com/g/racket-users/c/jtmVDFCGL28/m/jwl4hsjtBQAJ
https://groups.google.com/g/racket-users/c/UD20HadJ9Ec/m/Lmuw0U8mBwAJ
https://groups.google.com/g/racket-users/c/UD20HadJ9Ec/m/Lmuw0U8mBwAJ
https://groups.google.com/g/racket-users/c/ZbYRQCy93dY/m/kF_Ek0VvAQAJ
https://groups.google.com/g/racket-users/c/ZbYRQCy93dY/m/kF_Ek0VvAQAJ

PLDI ’22, June 13–17, 2022, San Diego, CA, USA Ben Greenman

(index-of '(a b) 'a)

Untyped: 0

(require/typed racket/list

 [index-of

 (All (T)

 (-> (Listof T) T

 (U #false Natural)))])

(index-of '(a b) 'a)

Shallow: 0

Deep: #false

Figure 25: Deep contracts can change the behavior of code

References
[1] Esteban Allende, Johan Fabry, Ronald Garcia, and Éric Tanter. 2014.

Confined gradual typing. In OOPSLA, 251–270. doi: 10.1145/2660193
.2660222.

[2] Esteban Allende, Johan Fabry, and Éric Tanter. 2013. Cast insertion

strategies for gradually-typed objects. In DLS, 27–36. doi: 10.1145/2
508168.2508171.

[3] Vincent St-Amour, Sam Tobin-Hochstadt, Matthew Flatt, and

Matthias Felleisen. 2012. Typing the numeric tower. In PADL,
289–303. doi: 10.1007/978-3-642-27694-1_21.

[4] Anonymous Author(s). 2022. Gradual soundness: lessons from Static

Python. In Submitted for publication.
[5] Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam

Tobin-Hochstadt. 2017. Sound gradual typing: only mostly dead.

PACMPL, 1, OOPSLA, 54:1–54:24. doi: 10.1145/3133878.
[6] Gavin Bierman, Martin Abadi, and Mads Torgersen. 2014. Under-

standing TypeScript. In ECOOP, 257–281. doi: 10.1007/978-3-662-44
202-9_11.

[7] Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund, Gregor

Richards, Rok Strniša, Jan Vitek, and Tobias Wrigstad. 2009. Thorn:

robust, concurrent, extensible scripting on the JVM. In OOPSLA,
117–136. doi: 10.1145/1640089.1640098.

[8] Giuseppe Castagna and Victor Lanvin. 2017. Gradual typing with

union and intersection types. PACMPL, 1, ICFP, 41:1–41:28. doi:
10.1145/3110285.

[9] Benjamin Chung, Paley Li, Francesco Zappa Nardelli, and Jan Vitek.

2018. KafKa: gradual typing for objects. In ECOOP, 12:1–12:23. doi:
10.4230/LIPIcs.ECOOP.2018.12.

[10] Ryan Culpepper, Sam Tobin-Hochstadt, and Matthew Flatt. 2007.

Advanced macrology and the implementation of Typed Scheme. In

SFP. Université Laval, DIUL-RT-0701, 1–14. http://www2.ift.ulaval.ca
/~dadub100/sfp2007/procPaper1.pdf.

[11] Christos Dimoulas, Robert Bruce Findler, and Matthias Felleisen.

2013. Option contracts. In OOPSLA, 475–494. doi: 10.1145/2509136.2
509548.

[12] Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and

Matthias Felleisen. 2011. Correct blame for contracts: no more scape-

goating. In POPL, 215–226.
[13] Christos Dimoulas, Sam Tobin-Hochstadt, and Matthias Felleisen.

2012. Complete monitors for behavioral contracts. In ESOP, 214–233.
doi: 10.1007/978-3-642-28869-2_11.

[14] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. 2009.

Semantics Engineering with PLT Redex. MIT Press. isbn: 978-0-262-

06275-6.

[15] Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce

Findler, and Vincent St-Amour. 2018. Collapsible contracts: fixing

a pathology of gradual typing. PACMPL, 2, OOPSLA, 133:1–133:27.
doi: 10.1145/3276503.

[16] Robert Bruce Findler and Matthias Blume. 2006. Contracts as Pairs

of Projections. Tech. rep. TR-2006-01. University of Chicago. doi:

10.1007/11737414_16.
[17] Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for

higher-order functions. In ICFP, 48–59. doi: 10.1145/581478.581484.
[18] Matthew Flatt. 2016. Binding as sets of scopes. In POPL, 705–717.

doi: 10.1145/2837614.2837620.
[19] Matthew Flatt. 2013. Submodules in Racket: youwant itWhen, again?

In GPSE, 13–22. doi: 10.1145/2517208.2517211.
[20] Matthew Flatt, Ryan Culpepper, David Darais, and Robert Bruce

Findler. 2012. Macros that work together: compile-time bindings,

partial expansion, and definition contexts. JFP, 22, 2, 181–216. doi:
10.1017/S0956796812000093.

[21] Ronald Garcia, Alison M. Clark, and Éric Tanter. 2016. Abstracting

gradual typing. In POPL, 429–442. doi: 10.1145/2837614.2837670.
[22] Michael Greenberg. 2015. Space-efficient manifest contracts. In POPL,

181–194. doi: 10.1145/2676726.2676967.
[23] Ben Greenman. 2020. Deep and Shallow Types. Ph.D. Dissertation.

Northeastern University. isbn: 9798557043649.

[24] [SW Rel.] Ben Greenman, Deep and Shallow Types for Gradual

Languages (source code) version 1.0, 2022. vcs: https://github.com
/bennn/g-pldi-2022, swhid: ⟨swh:1:dir:2f1f76cafb72491d8526d18ae
556499065ac6853⟩.

[25] [SW] Ben Greenman, Deep and Shallow Types for Gradual Lan-

guages v1.0 version 1.0, Apr. 2022. doi: 10.5281/zenodo.6498926.
[26] Ben Greenman and Matthias Felleisen. 2018. A spectrum of type

soundness and performance. PACMPL, 2, ICFP, 71:1–71:32. doi: 10.1
145/3236766.

[27] Ben Greenman, Matthias Felleisen, and Christos Dimoulas. 2019.

Complete monitors for gradual types. PACMPL, 3, OOPSLA, 122:1–
122:29. doi: 10.1145/3360548.

[28] Ben Greenman, Lukas Lazarek, Christos Dimoulas, and Matthias

Felleisen. 2022. A transient semantics for Typed Racket. <Program-
ming>, 6, 2, 9:1–9:26. doi: 10.22152/programming-journal.org/2022
/6/9.

[29] Ben Greenman and Zeina Migeed. 2018. On the cost of type-tag

soundness. In PEPM, 30–39. doi: 10.1145/3162066.
[30] Ben Greenman, Asumu Takikawa, Max S. New, Daniel Feltey, Robert

Bruce Findler, Jan Vitek, and Matthias Felleisen. 2019. How to evalu-

ate the performance of gradual type systems. JFP, 29, e4, 1–45. doi:
10.1017/S0956796818000217.

[31] Jessica Gronski, Kenneth Knowles, Aaron Tomb, Stephen N. Freund,

and Cormac Flanagan. 2006. Sage: hybrid checking for flexible speci-

fications. In SFP. University of Chicago, TR-2006-06, 93–104. http://sc
heme2006.cs.uchicago.edu/scheme2006.pdf.

[32] [SW Rel.], GTP Benchmarks version 6.0, 2020. vcs: https://github.co
m/bennn/gtp-benchmarks, swhid: ⟨swh:1:rev:d1a85945b64d8f4987
6f8921ef7a7bcdd82cc96f ⟩.

[33] Arjun Guha, Jacob Matthews, Robert Bruce Findler, and Shriram

Krishnamurthi. 2007. Relationally-parametric polymorphic contracts.

In DLS, 29–40. doi: 10.1145/1297081.1297089.
[34] Fritz Henglein. 1994. Dynamic typing: syntax and proof theory. Sci-

ence of Computer Programming, 22, 3, 197–230. doi: 10.1016/0167-64
23(94)00004-2.

[35] David Herman, Aaron Tomb, and Cormac Flanagan. 2010. Space-

efficient gradual typing. HOSC, 23, 2, 167–189. doi: 10.1007/s10990-
011-9066-z.

[36] Khurram A. Jafery and Jana Dunfield. 2017. Sums of uncertainty:

refinements go gradual. In POPL, 804–817. doi: 10.1145/3009837.300
9865.

https://doi.org/10.1145/2660193.2660222
https://doi.org/10.1145/2660193.2660222
https://doi.org/10.1145/2508168.2508171
https://doi.org/10.1145/2508168.2508171
https://doi.org/10.1007/978-3-642-27694-1_21
https://doi.org/10.1145/3133878
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1145/1640089.1640098
https://doi.org/10.1145/3110285
https://doi.org/10.4230/LIPIcs.ECOOP.2018.12
http://www2.ift.ulaval.ca/~dadub100/sfp2007/procPaper1.pdf
http://www2.ift.ulaval.ca/~dadub100/sfp2007/procPaper1.pdf
https://doi.org/10.1145/2509136.2509548
https://doi.org/10.1145/2509136.2509548
https://doi.org/10.1007/978-3-642-28869-2_11
https://doi.org/10.1145/3276503
https://doi.org/10.1007/11737414_16
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/2837614.2837620
https://doi.org/10.1145/2517208.2517211
https://doi.org/10.1017/S0956796812000093
https://doi.org/10.1145/2837614.2837670
https://doi.org/10.1145/2676726.2676967
https://github.com/bennn/g-pldi-2022
https://github.com/bennn/g-pldi-2022
http://archive.softwareheritage.org/swh:1:dir:2f1f76cafb72491d8526d18ae556499065ac6853
http://archive.softwareheritage.org/swh:1:dir:2f1f76cafb72491d8526d18ae556499065ac6853
https://doi.org/10.5281/zenodo.6498926
https://doi.org/10.1145/3236766
https://doi.org/10.1145/3236766
https://doi.org/10.1145/3360548
https://doi.org/10.22152/programming-journal.org/2022/6/9
https://doi.org/10.22152/programming-journal.org/2022/6/9
https://doi.org/10.1145/3162066
https://doi.org/10.1017/S0956796818000217
http://scheme2006.cs.uchicago.edu/scheme2006.pdf
http://scheme2006.cs.uchicago.edu/scheme2006.pdf
https://github.com/bennn/gtp-benchmarks
https://github.com/bennn/gtp-benchmarks
http://archive.softwareheritage.org/swh:1:rev:d1a85945b64d8f49876f8921ef7a7bcdd82cc96f
http://archive.softwareheritage.org/swh:1:rev:d1a85945b64d8f49876f8921ef7a7bcdd82cc96f
https://doi.org/10.1145/1297081.1297089
https://doi.org/10.1016/0167-6423(94)00004-2
https://doi.org/10.1016/0167-6423(94)00004-2
https://doi.org/10.1007/s10990-011-9066-z
https://doi.org/10.1007/s10990-011-9066-z
https://doi.org/10.1145/3009837.3009865
https://doi.org/10.1145/3009837.3009865

Deep and Shallow Types for Gradual Languages PLDI ’22, June 13–17, 2022, San Diego, CA, USA

[37] Matthias Keil and Peter Theimann. 2015. Blame assignment for

higher-order contracts with intersection and union. In ICFP, 375–386.
doi: 10.1145/2784731.2784737.

[38] Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G.

Siek. 2019. Toward efficient gradual typing for structural types via

coercions. In PLDI, 517–532. doi: 10.1145/3314221.3314627.
[39] Lukas Lazarek, Ben Greenman, Matthias Felleisen, and Christos

Dimoulas. 2021. How to evaluate blame for gradual types. PACMPL,
5, ICFP, 68:1–68:29. doi: 10.1145/3473573.

[40] Jacob Matthews and Robert Bruce Findler. 2009. Operational seman-

tics for multi-language programs. TOPLAS, 31, 3, 1–44. doi: 10.1145
/1498926.1498930.

[41] Robin Milner. 1978. A theory of type polymorphism in programming.

Journal of Computer and System Sciences, 17, 3, 348–375. doi: 10.101
6/0022-0000(78)90014-4.

[42] Scott Moore, Christos Dimoulas, Robert Bruce Findler, Matthew Flatt,

and Stephen Chong. 2016. Extensible access control with authoriza-

tion contracts. In OOPSLA, 214–233.
[43] Cameron Moy, Phuc C. Nguyen, Sam Tobin-Hochstadt, and David

Van Horn. 2021. Corpse reviver: sound and efficient gradual typing

via contract verification. PACMPL, 5, POPL, 1–28. doi: 10.1145/3434
334.

[44] Fabian Muehlboeck and Ross Tate. 2017. Sound gradual typing is

nominally alive and well. PACMPL, 1, OOPSLA, 56:1–56:30. doi:
10.1145/3133880.

[45] Fabian Muehlboeck and Ross Tate. 2021. Transitioning from struc-

tural to nominal code with efficient gradual typing. PACMPL, 5,
OOPSLA, 127:1–127:29. doi: 10.1145/3485504.

[46] Phuc C. Nguyen, Thomas Gilray, Sam Tobin-Hochstadt, and David

Van Horn. 2019. Size-change termination as a contract: dynamically

and statically enforcing termination for higher-order programs. In

PLDI, 845–859. doi: 10.1145/3314221.3314643.
[47] Phuc C. Nguyen, Thomas Gilray, Sam Tobin-Hochstadt, and David

Van Horn. 2018. Soft contract verification for higher-order stateful

programs. PACMPL, 2, POPL, 51:1–51:30. doi: 10.1145/3158139.
[48] [SW Rel.], Racket version 7.8.0.5+ revision 7c9038, 2020. vcs: https:

//github.com/racket/racket, swhid: ⟨swh:1:rev:7c903871bd8cb4bd32
ed7188c180b5124f9bc201⟩.

[49] Gregor Richards, Ellen Arteca, and Alexi Turcotte. 2017. The vm

already knew that: leveraging compile-time knowledge to optimize

gradual typing. PACMPL, 1, OOPSLA, 55:1–55:27. doi: 10.1145/31338
79.

[50] Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. 2015.

Concrete types for TypeScript. In ECOOP, 76–100. doi: 10.4230/LIPIc
s.ECOOP.2015.76.

[51] Richard Roberts, Stefan Marr, Michael Homer, and James Noble.

2019. Transient typechecks are (almost) free. In ECOOP, 15:1–15:29.
doi: 10.4230/LIPIcs.ECOOP.2019.5.

[52] Jeremy G. Siek and Walid Taha. 2006. Gradual typing for functional

languages. In SFP. University of Chicago, TR-2006-06, 81–92. http://sc
heme2006.cs.uchicago.edu/scheme2006.pdf.

[53] Jeremy G. Siek, Peter Thiemann, and Philip Wadler. 2021. Blame

and coercion: together again for the first time. JFP, 31, e20. doi:
10.1017/S0956796821000101.

[54] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang

Boyland. 2015. Refined criteria for gradual typing. In SNAPL, 274–
293. doi: 10.4230/LIPIcs.SNAPL.2015.274.

[55] Jeremy Siek, Peter Thiemann, and Philip Wadler. 2015. Blame and

coercion: together again for the first time. In PLDI, 425–435. doi:
10.1145/2737924.2737968.

[56] T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler,

and Matthew Flatt. 2012. Chaperones and impersonators: run-time

support for reasonable interposition. In OOPSLA, 943–962. doi: 10.1
145/2384616.2384685.

[57] Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan

Vitek, and Matthias Felleisen. 2016. Is sound gradual typing dead?

In POPL, 456–468. doi: 10.1145/2837614.2837630.
[58] Asumu Takikawa, T. Stephen Strickland, Christos Dimoulas, Sam

Tobin-Hochstadt, and Matthias Felleisen. 2012. Gradual typing for

first-class classes. In OOPSLA, 793–810. doi: 10.1145/2384616.238467
4.

[59] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew

Flatt, and Matthias Felleisen. 2011. Languages as libraries. In PLDI,
132–141. doi: 10.1145/1993498.1993514.

[60] Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage

migration: from scripts to programs. In DLS, 964–974. doi: 10.1145/1
176617.1176755.

[61] Sam Tobin-Hochstadt and Matthias Felleisen. 2010. Logical types for

untyped languages. In ICFP, 117–128. doi: 10.1145/1863543.1863561.
[62] Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The design and

implementation of Typed Scheme. In POPL, 395–406. doi: 10.1145/1
328438.1328486.

[63] Sam Tobin-Hochstadt, Matthias Felleisen, Robert Bruce Findler,

Matthew Flatt, Ben Greenman, Andrew M. Kent, Vincent

St-Amour, T. Stephen Strickland, and Asumu Takikawa. 2017.

Migratory typing: ten years later. In SNAPL, 17:1–17:17. doi:
10.4230/LIPIcs.SNAPL.2017.17.

[64] Matías Toro and Éric Tanter. 2017. A gradual interpretation of union

types. In SAS, 382–404. doi: 10.1007/978-3-319-66706-5_19.
[65] Preston TunnellWilson, Ben Greenman, Justin Pombrio, and Shriram

Krishnamurthi. 2018. The behavior of gradual types: a user study. In

DLS, 1–12. doi: 10.1145/3276945.3276947.
[66] [SW Rel.], Typed Racket version 1.12+ revision c074c93, 2020. vcs:

https://github.com/bennn/typed-racket, swhid: ⟨swh:1:rev:c074c93
33e467cb7cd2058511ac63a1d51b4948e⟩.

[67] Tom Van Cutsem and Mark S Miller. 2013. Trustworthy proxies. In

ECOOP, 154–178. doi: 10.1007/978-3-642-39038-8_7.
[68] Michael M. Vitousek, Andrew Kent, Jeremy G. Siek, and Jim Baker.

2014. Design and evaluation of gradual typing for Python. In DLS,
45–56. doi: 10.1145/2661088.2661101.

[69] Michael M. Vitousek, Jeremy G. Siek, and Avik Chaudhuri. 2019.

Optimizing and evaluating transient gradual typing. In DLS, 28–41.
doi: 10.1145/3359619.3359742.

[70] Michael M. Vitousek, Cameron Swords, and Jeremy G. Siek. 2017.

Big types in little runtime: open-world soundness and collaborative

blame for gradual type systems. In POPL, 762–774. doi: 10.1145/300
9837.3009849.

[71] Andrew K. Wright and Matthias Felleisen. 1994. A syntactic ap-

proach to type soundness. Information and Computation, 38–94. First
appeared as Technical Report TR160, Rice University, 1991. doi:

10.1006/inco.1994.1093.
[72] Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan

Östlund, and Jan Vitek. 2010. Integrating typed and untyped code in a

scripting language. In POPL, 377–388. doi: 10.1145/1706299.1706343.

https://doi.org/10.1145/2784731.2784737
https://doi.org/10.1145/3314221.3314627
https://doi.org/10.1145/3473573
https://doi.org/10.1145/1498926.1498930
https://doi.org/10.1145/1498926.1498930
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/3434334
https://doi.org/10.1145/3434334
https://doi.org/10.1145/3133880
https://doi.org/10.1145/3485504
https://doi.org/10.1145/3314221.3314643
https://doi.org/10.1145/3158139
https://github.com/racket/racket
https://github.com/racket/racket
http://archive.softwareheritage.org/swh:1:rev:7c903871bd8cb4bd32ed7188c180b5124f9bc201
http://archive.softwareheritage.org/swh:1:rev:7c903871bd8cb4bd32ed7188c180b5124f9bc201
https://doi.org/10.1145/3133879
https://doi.org/10.1145/3133879
https://doi.org/10.4230/LIPIcs.ECOOP.2015.76
https://doi.org/10.4230/LIPIcs.ECOOP.2015.76
https://doi.org/10.4230/LIPIcs.ECOOP.2019.5
http://scheme2006.cs.uchicago.edu/scheme2006.pdf
http://scheme2006.cs.uchicago.edu/scheme2006.pdf
https://doi.org/10.1017/S0956796821000101
https://doi.org/10.4230/LIPIcs.SNAPL.2015.274
https://doi.org/10.1145/2737924.2737968
https://doi.org/10.1145/2384616.2384685
https://doi.org/10.1145/2384616.2384685
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/2384616.2384674
https://doi.org/10.1145/2384616.2384674
https://doi.org/10.1145/1993498.1993514
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1145/1176617.1176755
https://doi.org/10.1145/1863543.1863561
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.4230/LIPIcs.SNAPL.2017.17
https://doi.org/10.1007/978-3-319-66706-5_19
https://doi.org/10.1145/3276945.3276947
https://github.com/bennn/typed-racket
http://archive.softwareheritage.org/swh:1:rev:c074c9333e467cb7cd2058511ac63a1d51b4948e
http://archive.softwareheritage.org/swh:1:rev:c074c9333e467cb7cd2058511ac63a1d51b4948e
https://doi.org/10.1007/978-3-642-39038-8_7
https://doi.org/10.1145/2661088.2661101
https://doi.org/10.1145/3359619.3359742
https://doi.org/10.1145/3009837.3009849
https://doi.org/10.1145/3009837.3009849
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/1706299.1706343

	1 A Spectrum of Type Enforcement
	2 Background
	2.1 Gradual, Migratory, Mixed-Typed
	2.2 Deep and Shallow Types

	3 Model and Metatheory
	3.1 Three-Way Surface Syntax
	3.2 Three-Way Surface Typing
	3.3 Common Evaluation Syntax
	3.4 Three-Way Evaluation Typing
	3.5 Compilation from Surface to Evaluation
	3.6 Reduction Relation
	3.7 Labeled Evaluation, Deep Label Consistency
	3.8 Properties

	4 Implementation Challenges
	4.1 Wrapping Contracts and Type Environments
	4.2 Shallow-to-Deep Contracts
	4.3 Macros and Hidden Exports
	4.4 Three-Way Boundary Utilities

	5 Evaluation
	5.1 Guarantees by Deep
	5.2 Expressiveness by Shallow
	5.3 Performance by Deep and Shallow

	6 Related Work
	7 Future Work
	8 Conclusion
	Acknowledgments
	A Appendix
	A.1 Surface Typing, Completion, Evaluation Typing, and Label Consistency Judgments
	A.2 How to Lift a Reduction Relation
	A.3 Lemmas for the Model
	A.4 Expressiveness by Shallow: Example Programs

