
Rising Motion Controllers for
Physically Simulated Characters

by

Benjamin James Jones

B.S. Computer Science, B.S. Engineering Physics, Colorado School of Mines,

2009

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

THE FACULTY OF GRADUATE STUDIES

(Computer Science)

The University Of British Columbia

(Vancouver)

July 2011

c© Benjamin James Jones, 2011

Abstract

The control of physics-based simulated characters is an important open problem

with potential applications in film, games, robotics, and biomechanics. While

many methods have been developed for locomotion and quiescent stance, the prob-

lem of returning to a standing posture from a sitting or fallen posture has received

much less attention. In this thesis, we develop controllers for biped sit-to-stand,

quadruped getting-up, and biped prone-to-stand motions. These controllers are

created from a shared set of simple components including pose tracking, root ori-

entation correction, and virtual force based control. We also develop an optimiza-

tion strategy that generates fast, dynamic rising motions from an initial statically

stable motion. This strategy is also used to generalize controllers to sloped terrain

and characters of varying size.

ii

Preface

Chapter 5 describes work included in “Locomotion Skills for Simulated Quadrupeds,”

published in ACM Transactions on Graphics 30(4), 2011, a collaboration with

Stelian Coros, Andrej Karpathy, Lionel Reveret, and Michiel van de Panne. The

image in Figure 2.4 is included from “Exploiting the global dynamics structure of

whole-body humanoid motion–getting the knack of roll-and-rise motions” by Ya-

suo Kuniyoshi, Yoshiyuki Ohmura, Koji Terada, Akihiko Nagakubo, Shin’ichiro

Eitoku, and Tomoyuki Yamamoto published in Robotics and Autonomous Systems

48(4), 2004, with permission from Yasuo Kuniyoshi. The images in Figures 2.1,

2.2, 2.3 and 5.3 are used with permission from Michiel van de Panne.

iii

Table of Contents

Abstract . ii

Preface . iii

Table of Contents . iv

List of Tables . vi

List of Figures . vii

1 Introduction . 1
1.1 Contributions . 3

1.2 Organization . 3

2 Related Work . 4
2.1 Kinematic Methods . 4

2.2 Physically Simulated Character Animation 4

2.3 Robotics . 6

2.4 Biomechanics . 7

3 Controller Components . 8
3.1 Pose Tracking . 9

3.2 Root Orientation Correction . 10

3.3 Virtual Forces . 12

4 Biped Sit-to-Stand Motions . 15
4.1 Character Description . 15

iv

4.2 Controller . 15

4.3 Results . 18

5 Quadruped Controllers . 21
5.1 Approach . 22

5.1.1 Controller Structure . 22

5.1.2 Sitting . 23

5.1.3 Lying Down . 25

5.1.4 Lateral Decubitus-to-Stand 26

5.2 Results . 28

6 Biped Prone-to-Stand Motions . 30
6.1 Controller Representation . 31

6.2 Optimization . 34

6.2.1 Static-to-Dynamic Optimization 35

6.2.2 Generalization for Terrain Slope 37

6.2.3 Generalization for Character Size 39

7 Conclusions . 42
7.1 Discussion . 42

7.1.1 Modeling Issues . 43

7.1.2 Key Control Components 43

7.2 Limitations and Future Work . 43

Bibliography . 46

v

List of Tables

Table 3.1 Summary of controller components used in each chapter 14

Table 4.1 Control parameters for 3D biped sit-to-stand motion 17

vi

List of Figures

Figure 1.1 Sample results from Chapters 4, 5 and 6. Top to bottom: 3D

biped sit-to-stand motion; 3D quadruped lateral decubitus-to-

stand; 2D prone-to-stand. 2

Figure 2.1 Example of flexible locomotion control applied to multiple

characters [3]. Used with permission. 5

Figure 2.2 Example of dynamic supine-to-stand motion for a physics based

character [6]. Used with permission. 6

Figure 2.3 A kinematic rolling motion is retargeted to a physics based

Asimo-like character [15]. Used with permission. 6

Figure 2.4 Dynamic supine-to-stand motion with the R. Daneel Study 1

robot[12]. Used with permission. 7

Figure 3.1 Overview of controller structure 8

Figure 3.2 Two link IK is applied twice to solve for joint orientations of a

quadruped limb. 10

Figure 3.3 Root orientation correction with two swing and two stance limbs. 11

Figure 3.4 Example virtual force being applied to the foot with the pelvis

as the base link. The torques mimic the application of the

force, F, at the foot. 13

Figure 3.5 A subset of the feedback virtual forces used for quadruped con-

trollers. 13

Figure 4.1 Schematic diagram of the biped character. 16

Figure 4.2 The phases of the sit to stand motion. Bolded limbs contribute

to active center of mass computation. 17

vii

Figure 4.3 Collision primitives for the 3D biped model. 19

Figure 4.4 Sit to stand controller used unmodified on chair heights of 45,

50, 60 cm. The duration of all three motions is approximately

2 s. 20

Figure 5.1 Quadruped display and collision geometry. 21

Figure 5.2 The gait graph for one phase of the stand-to-lie motion. The

bars represent step timings, while the lines above represent hip

and shoulder height trajectories. 22

Figure 5.3 Abstract representation of the quadruped model as two leg

frames connected by a flexible spine [4]. Used with permis-

sion. 23

Figure 5.4 Stand-to-sit motion for the simulated quadruped. 24

Figure 5.5 Sit-to-stand motion for the simulated quadruped. 24

Figure 5.6 Stand-to-prone motion for the simulated quadruped. 25

Figure 5.7 Prone-to-stand motion for the simulated quadruped. 26

Figure 5.8 Fall recovery controller transition from lateral decubitus posi-

tion to standing. 28

Figure 5.9 Generated controllers are robust to environmental disturbances

like this 8cm block. 29

Figure 6.1 Sagittal corrective force to maintain balance. 33

Figure 6.2 Selected frames from prone to stand sequence which requires

13.5 s to perform. 34

Figure 6.3 Comparison of support graphs before and after time optimiza-

tion. 37

Figure 6.4 Prone to stand motion completion time compared to optimiza-

tion iteration. 38

Figure 6.5 Number of evaluations required to find an improved set of pa-

rameters at each iteration of time optimization for the prone to

stand motion. 39

Figure 6.6 Selected frames from prone to stand sequence with parameters

optimized for a steep, uphill slope. 40

viii

Figure 6.7 Selected frames from prone to stand sequence with parameters

optimized for a steep, downhill slope. 40

Figure 6.8 Selected frames from prone to stand sequence with parameters

optimized for a character with 1.45 times greater dimensions

and 2.10 times greater torso mass. 41

ix

Chapter 1

Introduction

Generating motion for animated characters is an important and challenging prob-

lem for the film and games. There has been significant research in this area, which

can be divided into kinematic methods and dynamic methods. Kinematic meth-

ods generate character poses over time but do not guarantee physically plausible

motions, and often only have support for a predetermined set of interactions with

other characters or the environment. Motion trajectories are often supplied by mo-

tion capture data, an expensive and labor intensive process.

Dynamic methods use the equations of motion to ensure that the generated mo-

tions are physically valid. At each frame, the controller computes actuation torques

for each joint. This is a simplification for the aggregate effect of muscle activity in

humans or animals. Forward simulation methods compute control torques online,

while trajectory optimization techniques compute the entire control and motion se-

quence at once. Forward simulations methods are therefore better suited to chang-

ing environments or unpredicted interactions. Unlike kinematic methods, dynamic

methods do not have direct control over character motion, as the computed con-

trol torques are combined with other physical constraints to generate the character

motion. The increased realism of the motion is thus attained at the cost of more

complex, indirect control of the movement as compared to kinematic methods.

Much work on dynamic controllers for animation has focused on locomotion,

with positive results. However, most legged characters are inherently unstable. For

example, a humanoid, which has much of its mass concentrated in the upper body,

1

(a)

(b)

(c)

Figure 1.1: Sample results from Chapters 4, 5 and 6. Top to bottom: 3D
biped sit-to-stand motion; 3D quadruped lateral decubitus-to-stand; 2D
prone-to-stand.

will fall when pushed unless a corrective action such as stepping is taken. When

external forces become too great or frequent, even the most robust controllers can-

not prevent a fall. This thesis describes methods for recovering from such falls and

generating other rising motions for physically simulated characters. Sample results

are shown in Figure 1.1.

2

1.1 Contributions
The main contributions of this work are:

• Controllers developed from a common set of simple components, for several

tasks:

– 3D biped sit-to-stand motions

– 3D quadruped sit-to-stand, prone-to-stand, and lateral decubitus-to-

stand motions

– 2D biped prone-to-stand motions

• An optimization framework for increasing the motion speed of fall recovery

motions

• A continuation framework for generalizing the controllers to different envi-

ronments and characters

1.2 Organization
This thesis is organized as follows: Chapter 2 reviews related work from character

animation and robotics. Chapter 3 describes the core components used in all con-

trollers developed for this work. Using these components, the next three chapters

describe independent results for three different situations. Chapter 4 describes a

sit-to-stand controller for a 3D humanoid. Chapter 5 describes controllers for a

variety of sitting and standing motions for a 3D quadruped. Chapter 6 describes

a family of controllers for standing up from the prone position for a 2D character.

These are then optimized and extended to decrease motion duration and support a

wider range of initial conditions and body sizes. Finally, Chapter 7 concludes and

provides directions for future work.

3

Chapter 2

Related Work

Related work on character control can be divided into four main areas: kinematic

animation, physically based animation, robot control, and biomechanics. Though

their applications are often quite different, they share many strategies and tools.

2.1 Kinematic Methods
For generating motions, most kinematic methods rely on either hand created mo-

tions, painstakingly created by talented artists, or motion capture data recorded

from actors. Motion graphs can be used to define allowable sequences of transi-

tions between individual motion clips [10]. Motion graphs have been extended to

generate parameterized motions that are more flexible and less repetitive, and to

blend kinematic motion with physics based collision responses, e.g. [2, 13]. Any

generated motion, however, is based on a captured performance, so motions similar

to each desired motion must be recorded. A complete survey of kinematic based

animation methods is outside the scope of this thesis.

2.2 Physically Simulated Character Animation
In computer animation, much work has been focused on locomotion. Many of

the controller components used in this work have been combined to generate ro-

bust, stylized walking motions for a characters of arbitrary size, as shown in Fig-

ure 2.1[3] . Online optimization based approaches have also been applied to loco-

4

motion, e.g. [5]. Offline optimization of control parameters can generalize loco-

motion controllers to different environments, e.g. rough terrain or slippery surfaces

[22, 23].

Figure 2.1: Example of flexible locomotion control applied to multiple char-
acters [3]. Used with permission.

Some work has focused on controllers for contact rich motions including stand-

ing up. Lin and Huang [14] incorporate a dynamics simulation to link an arbitrary

initial pose to a frame in a rising motion database, then transition to a kinematic

motion. Faloutsos et al. [6] demonstrate moderate speed prone-to-stand and supine-

to-stand motions, as well a a dynamic “kip” supine-to-stand motion. Their kip

motion is shown in Figure 2.2. The controllers are based on pose tracking and

timed state transitions, making it difficult to transfer controllers to new characters

or environments.

Starting with kinematic data, Liu et al. [15] generate open loop dynamic con-

trollers for contact rich motions including rolling and dynamic rising motions. This

is an expensive offline process, however, and does not incorporate feedback into the

generated controllers. Figure 2.3 shows a rolling motion retargeted to a physically

simulated Asimo-like character.

5

Figure 2.2: Example of dynamic supine-to-stand motion for a physics based
character [6]. Used with permission.

Figure 2.3: A kinematic rolling motion is retargeted to a physics based
Asimo-like character [15]. Used with permission.

2.3 Robotics
The problem of standing up from a sitting, supine or prone position has been ad-

dressed in the robotics community by several researchers on a variety of hardware

platforms. Kanehiro et al. successfully implemented prone-to-stand and supine-

to-stand motion on the HRP-2P robot, which is 1.5 m tall and weighs 58 kg[9].

Similar controllers for a smaller 0.6 m, 2.3 kg RoboCup KidSize class humanoid

robot have also been developed [21]. The motions, however are extremely slow,

and require static stability throughout most of the motion.

Kuniyoshi et al. use an adult size humanoid robot and analyze the critical as-

pects of a highly dynamic getting up motion and use this information to find param-

eters to generate successful motions[12]. Transferring the motion from simulation

to the robot was challenging and error prone, however, due to the dependence of

the motion on difficult to simulate ground contact forces. Images of their robot

performing this motion are shown in Figure 2.4. All of these previous works use

control descriptions tied to a specific character and scenario, (e.g. a particular robot

on flat ground), while the control descriptions described in this thesis are demon-

strated to be applicable over a broader range of characters and environments.

6

194 Y. Kuniyoshi et al. / Robotics and Autonomous Systems 48 (2004) 189–201

4.1. The humanoid robot

The Roll-and-Rise motion involves a dynamic mo-
tion under rolling contact. The perturbation due to the
contact motion is strong and difficult to model pre-
cisely. Therefore, experiments with a real humanoid
robot is very important.
Fig. 5 shows our current research platform, “R. Da-

neel Study 1”. It is an adult-size humanoid robot de-
signed for versatile dynamic behaviors. It is important
to note that the system is not specifically designed or
optimized for Roll-and-Rise motion. The overall de-
sign is aimed towards simulating the physical perfor-
mance of an average human body as close as possible
with available technology [17,23].
The characteristics of the robot are the following:

• High power motors are placed in all the joints.
• High rate of acceleration/deceleration and
high-speed motion is possible.

• Joints have large mobility ranges (similar to
human’s).

These characteristics make R. Daneel suitable for
dynamic general posture motion experiments. A spe-
cial control architecture was developed which enables
highly dynamic and responsive torque control of all the
joints in precise coordination.

4.2. Experimental results

We carried out a series of experiments with R. Da-
neel. As predicted, even when we provide a postural

Fig. 6. Successful execution of a Roll-and-Rise motion.

trajectory from a successful simulation, the real robot
failed in the task. This is due to the strong perturba-
tions by the ground reaction forces, which cannot be
precisely modelled, and other modeling errors.
Throughmore than a hundred times of experiments,

we identified successful trajectories. After that, the suc-
cess rate of real experiments approached almost 100%,
counting the cases where the robot goes over the feet
support state and hit the ground with its arms as suc-
cess. The balancing control at the feet support state is
still primitive, and the success rate of holding itself on
the feet is currently about 70%.
Fig. 6 shows a successful case.
It took only 2 s from the start of swinging up the legs

to the crouching position. This is more than 10 times
faster compared to past “rising” motion experiments
with quasi-static strategies.

4.3. Analysis of the experimental results

In the real robot experiments, we tried a number
of motor command trajectories in search of success-
ful ones. In effect, it was a search around successful
trajectories.
By comparing the data from success and failure

cases, we attempt to identify the features that signify
the successful motor control. In the following, we com-
pare three successful data and five failure data.

4.3.1. Similarity of the joint trajectories
First, we test if the overall distances of the joint tra-

jectories to a successful one discriminate the successes
and the failures.

Figure 2.4: Dynamic supine-to-stand motion with the R. Daneel Study 1
robot[12]. Used with permission.

2.4 Biomechanics
Standing-up motions are well studied by the biomechanics community. Of partic-

ular importance to this work is the analysis of sit-to-stand motions. The dynamics

and stability of these motions is well understood [18]. Muscle activity through

the motion can be divided into three distinct phases: a forward lean of the up-

per body, an upward acceleration due to leg extension, and a deceleration phase

[7, 11, 19]. The contact forces between the buttocks and feet are (indirectly) con-

trolled by muscle activations to generate the forward and upward acceleration to

stand. These forces are greatest just before seat-off, when the buttocks break con-

tact with the seat, and the weight is supported entirely by the feet.

7

Chapter 3

Controller Components

The controllers developed in this thesis share several key components that have

been shown to define a good vocabulary for designing controllers [3, 4]. At a

high level, these consist of pose trajectories, root orientation correction, and vir-

tual force trajectories. Pose tracking allows for approximate tracking of desired

kinematic trajectories, while virtual force trajectories allow for the development of

components that track in a cartesian reference frame. Root orientation corrections

attempt to indirectly control the root orientation of the character because it cannot

be controlled directly. Root orientation control modifies torques computed by the

pose tracking control at the hip and shoulder joints. Torque contributions form vir-

tual forces are simply summed to the output of pose tracking with root orientation

correction. When combined as shown in Figure 3.1, these building blocks can be

used to create flexible, robust controllers.

Desired Pose

PD
Controllers

Root Orientation
Correction

Σ

J

Physics

Character
State

θ

...

Hips,
Shoulders

T

Virtual
Forces

Balance
Feedback

F

Desired End
Effector Positions

Inverse
Kinematics

(x,y,z)

θ

θ

Figure 3.1: Overview of controller structure

8

3.1 Pose Tracking
The pose tracking controller takes as input the desired relative orientation of the

bodies in each controlled joint and computes joint torques using proportional-

derivative (PD) control. Each joint defines a parent and child link, and their rela-

tive orientation is used to compute the torque: τ = kp ∗Eangle− kd ∗ Ėangle where

Eangle is the deviation from the desired relative orientation between links. For one

degree-of-freedom(DOF) joints (e.g. knees), the desired orientations are specified

by a piecewise linear trajectory over time. For joints with more than one DOF,

the desired orientation is represented by yaw, pitch, and roll trajectories or a sin-

gle angle trajectory with a constant rotation axis. In both cases, the error terms

are evaluated using quaternions to avoid numerical instabilities. It is sometimes

convenient to control a link relative to the world coordinate frame or the charac-

ter’s heading instead of the parent link. In these cases the desired orientations are

automatically converted to parent-relative orientations in the controller.

Inverse Kinematics

Inverse Kinematics (IK) is a method for determining the joint angles required to po-

sition the end effector of an articulated chain at a particular location in the world.

For our humanoid characters, IK is used to specify the orientations of shoulder-

s/hips and knees/elbows to position feet/hands in the world. This allows for more

intuitive specification, as the trajectory of a hand or foot is simpler to reason about

than the coupled rotation trajectories of hip and knee joints.

For humanoid characters, IK is used for the arms and legs. Both limbs are two

link chains consisting of a three degree of freedom (DOF) ball and socket joint at

the hip/shoulder, and a one DOF hinge joint at the knee/elbow. The two joint angles

can be computed analytically to position the hand anywhere the arm can reach. To

prevent numerical problems, if the end effector target is adjusted so it lies within the

limb’s reach. In two dimensions, there are two solutions, corresponding to which

direction the elbow bends. For the arm, the solution chosen arbitrarily, while for

the leg, it is chosen so that the knee bends in the anatomically correct direction.

In three dimensions, there are an infinite number of solutions corresponding to the

circle of rotations about the axis from the shoulder to the hand. The particular

9

Hip

Knee

d

αd

Figure 3.2: Two link IK is applied twice to solve for joint orientations of a
quadruped limb.

solution for the legs is chosen such that the leg lies in a desired plane relative to the

pelvis. For the arms, the solution is chosen such that the forearm is as vertical as

possible, and the elbow is positioned away from the torso.

For the dog character, each leg has three links, so the above approach is still

underconstrained. However, the shape of canine legs is used as a guide to add an

additional constraint. The distance from the knee to end effector is specified to be

some factor, α , times the femur length. With this constraint, two link IK can be

applied twice to return the orientation of both leg joints as shown in Figure 3.2.

3.2 Root Orientation Correction
The characters examined in this work are all underactuated, meaning they can-

not directly control their center of mass position or orientation. Global position

and orientation must be controlled indirectly via control of the contact forces with

the environment, which are discontinuous and potentially difficult to predict. Cor-

recting for the orientation error in the pelvis with torques from the hips has been

shown to adequately control the character’s global orientation[17]. That approach

is adapted for all controllers in this work.

10

root

4
3

21

stance
= root - 3- 4

Stance
limbs

Swing
limbs

1 2= =

2
- stance

Figure 3.3: Root orientation correction with two swing and two stance limbs.

The pelvis is controlled via a PD controller, whose desired orientation is speci-

fied relative to the global coordinate frame, which computes the torques necessary

to achieve the desired pelvis orientation, τroot . The difference between this desired

torque, and the torque from pose tracking of non-supporting limbs is computed as

τstance = τroot − ∑
swing
limbs

τpose,i

as shown in Figure 3.3. This torque replaces the PD torques computed for the

stance hips, each hip exerting −τstance/nstance. In the prone-to-stand controller,

more precise pose control is required at the stance hips, so the error torques are

linearly blended with the torques computed by the pose controller rather than re-

placing them. Ideally, this corrective torque will induce a tangential contact force

from the ground, applying a net torque to the character and correcting its global

orientation. This feedback strategy works well for small perturbations, but inter-

feres with pose tracking at the hips joints and can cause feet to slip when τstance is

very different from the torques computed for the stance legs by pose control.

11

3.3 Virtual Forces
Virtual forces are a technique for generating coordinated joint torques along a chain

of links that mimic the effect of an external force [1]. A virtual force acts from a

base link, which is assumed to be stable, onto a link of application. The virtual

force is the set of torques on the joints between the base and point of application

generate at net force F on the link of application. For an infinitesimal displacement,

the work done by an articulated chain is

W = F∆x = τ∆q.

Forward kinematics relates ∆x and ∆q by the Jacobian,

∆x = J∆q.

Substituting and rearranging gives

τ = JT F.

In this thesis, virtual forces are used to model a character “pushing” the ground

with an end effector, a technique which has been employed successfully for a va-

riety of controllers and characters[3, 4, 16]. For these virtual forces, the base is

the character’s torso, and the point of application is the center of a hand or foot.

Figure 3.4 shows a virtual force being applied at the foot using the pelvis as the

base.

Virtual Forces are used to control a variety of aspects of the developed motions.

As an example, Figure 3.5 shows a subset of the forces used for quadruped control.

Fg is a gravity compensation virtual force, which counteracts gravity forces which

would otherwise prevent PD tracking from actually reaching the desired pose. Vir-

tual forces are added at the center of mass of certain links with the desired force

−mg. The base link for these torques is one of the torso links (shoulders or pelvis).

Other virtual forces regulate center of mass position in the coronal and sagittal

planes (Fcor and Fsag). Finally, virtual forces are used to regulate leg frame height

(Fh).

12

F

Figure 3.4: Example virtual force being applied to the foot with the pelvis as
the base link. The torques mimic the application of the force, F, at the
foot.

Figure 3.5: A subset of the feedback virtual forces used for quadruped con-
trollers.

13

Table 3.1 outlines the components used in each chapter.

Table 3.1: Summary of controller components used in each chapter

Chapter Pose Root Orientation Virtual Optimi-
Tracking Correction Forces zation

Direct IK

3D Sit to Stand X X X
3D Quadruped Skills X X X X
2D Prone to Stand X X X X

14

Chapter 4

Biped Sit-to-Stand Motions

A common human interaction with the environment is sitting down and standing

up from chairs. This is an attractive situation to address because it is one of the

simplest contact-rich motions that involves a support change and the motion has

been well studied by the biomechanics community.

4.1 Character Description
The character is modeled as a 17-link articulated rigid body. The pelvis, torso,

and head are modeled with 1 link each. The arms are modeled as three links each:

humerus, radius/ulna, and hand. The legs are modeled as four links each: femur,

tibia/fibula, foot, and toes. A schematic diagram of the character is shown in Fig-

ure 4.1.

4.2 Controller
The controller for this motion is implemented as a pose tracking controller with

root orientation correction and a virtual force feedback loop. The joint trajectories

are represented as a finite state machine with static target poses and timed tran-

sitions. The desired pose trajectory consists of the three phases described in the

biomechanics literature. Once the sit to stand motion is triggered, forward mo-

mentum is generated by leaning forward at the hips and waist. Next, once the

character is supported by its feet, the legs are extended by straightening the hips

15

torso

head

humerusradius/ulna

foot

pelvis

hand

fem
ur

tibia/fibula

toes

3-DOF Ball
and Socket

Joint

2-DOF
Universal Joint

1-DOF Hinge
Joint

neck

shoulder

elbow wrist

waist

hip

knee

ankle

arch

Figure 4.1: Schematic diagram of the biped character.

and knees, and the character accelerates upward. Finally, the character decelerates

and the desired pose becomes a stationary standing pose. The ankle, shoulder and

neck joint targets are held constant throughout the motion, while the wrists and

arches are uncontrolled. To prevent the hands from colliding with the chair, the

elbows are bent to 90◦ during the lean and lift phases. This sequence is illustrated

in Figure 4.2, while the precise pose targets are described in Table 4.1. While the

desired pose provides a coarse description of the desired motion, it is insufficient

for dynamic control. It does not provide a means for balance correction.

To handle perturbations in the motion, root orientation correction is applied

during the lift and standing phases, and a linear feedback system is added using

virtual forces. Root orientation correction attempts to keep the pelvis completely

vertical. To prevent falling to the side, the position of the planar projection of the

active center of mass is controlled using virtual forces. The active center of mass

16

time

Sitting Lean Lift Balance

Figure 4.2: The phases of the sit to stand motion. Bolded limbs contribute to
active center of mass computation.

Table 4.1: Control parameters for 3D biped sit-to-stand motion

Phase Dura- Desired Angle(◦) Root Virtual
tion (s) Orientation Forces

Correction
Torso Hip Knee Elbow

Sitting - 0 90 limp limp coronal

Lean 0.9 90 90 90 limp coronal
Forward

Lift 0.5 0 0 10 90 X coronal,
Upward sagittal

Stand - 0 0 10 limp X coronal,
Balanced sagittal

17

is defined as the center of mass of all bodies above the supporting limbs,

~xcom =

∑
supported

bodies

~ximi

∑
supported

bodies

mi
.

For example, when seated, the active center of mass is the center of mass of the

torso, head, and arms, while when standing, it includes all links of the character.

Virtual forces, using the supporting link as the base joint, are applied to the torso

using independent PD controllers for the sagittal and coronal planes. In the coronal

plane, the desired force is computed as

~F = kp(~xcom−~xdes)cor− kd~vcom,cor,

where the ~ucor is the horizontal projection of ~u in the coronal plane and com refers

to the active center of mass. The force in the sagittal plane is computed analo-

gously. The desired position position is the center of support. When sitting, this is

the center of the pelvis. When standing, this is the midpoint of the feet. Without

this control, the character may fall sideways out of the chair, and cannot maintain

balance while standing.

4.3 Results
Open Dynamics Engine [20], a 3D articulated rigid body simulator, is used for

simulation. Collision primitives are a combination of capsules, spheres, and boxes,

as shown in Figure 4.3. The simulation is run at 2.0 KHz using a ground friction

coefficient of 0.8.

This control representation was used to create a functional sit to stand con-

troller which is capable of reliably standing from a chair. Images from the motion

sequences are shown in Figure 4.4. Without modification, the controller works

with chairs ranging from 45 cm to 65 cm, indicating that the control representation

used was abstract enough to work effectively over a range of scenarios. When the

chair height is below the effective range, the character does not generate enough

momentum to stand, and falls backward into the chair. When the chair height is

18

Figure 4.3: Collision primitives for the 3D biped model.

too great, the character does not balance properly sitting in the chair. The colli-

sion primitives of the pelvis are spheres, and without the feet providing support,

the character is unstable, and tends to roll forward or backward, leading to a fall.

More accurate collision handling, a more complex controller, or manual parameter

tuning could likely cope with these failure cases.

19

(a)

(b)

(c)

Figure 4.4: Sit to stand controller used unmodified on chair heights of 45, 50,
60 cm. The duration of all three motions is approximately 2 s.

20

Chapter 5

Quadruped Controllers

Being able to sit, lie down and get back up are important skills necessary to sim-

ulate realistic common interactions with dogs. As such, the controllers described

in this section are designed to augment a skillset that includes a wide range of lo-

comotion styles, hops and leaps for a simulated quadruped. Using the the compo-

nents described in Chapter 3, controllers are designed for sit-to-stand, lie-to-stand,

and lateral decubitus to stand motions. The simulations are again performed using

Open Dynamics Engine with the quadruped model shown in Figure 5.1.

(a) Display mesh (b) Collision primitives (c) Joint hierarchy

Figure 5.1: Quadruped display and collision geometry.

21

5.1 Approach

5.1.1 Controller Structure

The controllers developed in this chapter are part of a large suite of controllers

developed for the control of an agile simulated dog [4]. Many features of the

controller are not used in this thesis, so we will describe only the pertinent aspects

and refer the reader to Coros et al. [4] for the full details on the control of other

capabilities, including a variety of gaits and leaping. The controller structure is

based on a gait graph, which describes the desired height and orientation of the

character’s leg frames over time as well as a description of when each leg should

be swinging or supporting the character and several other parameters of stepping.

Based on the characters state, the controller translates a gait graph into a desired

pose and a set of virtual forces at each timestep. The gait graph for one phase of

the stand-to-lie motion is shown in Figure 5.2, indicating step timings and hip and

shoulder height trajectories.

Figure 5.2: The gait graph for one phase of the stand-to-lie motion. The bars
represent step timings, while the lines above represent hip and shoulder
height trajectories.

The controller views the quadruped as two leg frames connected by a flexible

spine, as shown in Figure 5.3. The front leg frame consists of the front legs and

the spine link they are attached to, while the rear leg frame consists of the rear legs

and pelvis. Using pose tracking, root orientation correction and virtual forces, and

planted legs drive the spine links toward their desired orientations and heights. The

22

spine links in between the pelvis and shoulders are also actuated to maintain the

proper relative orientation between the pelvis and shoulders.

Figure 5.3: Abstract representation of the quadruped model as two leg frames
connected by a flexible spine [4]. Used with permission.

Using this framework, the controllers described here were developed by speci-

fying step timings for the legs and hip and shoulder height trajectories. Additional

parameters such as shoulder orientation are also adjusted to make the motions more

natural and robust.

5.1.2 Sitting

The sitting motion is composed of two components: stand-to-sit, and sit-to-stand

controllers. The stand-to-sit controller has two phases with a timed transition be-

tween them. The gait graphs for each phase are:

1. Step forward (0.9 s)

• Step rear feet forward, one at a time to 15 cm behind front feet, 6 cm

wider than hips. Each step takes 0.3 s.

• Decrease desired hip height linearly from 44 cm to 14 cm over 0.7 s.

2. Rest buttocks (0.3 s)

• Decrease desired hip height linearly to 9 cm over 0.3 s.

23

Figure 5.4: Stand-to-sit motion for the simulated quadruped.

Figure 5.5: Sit-to-stand motion for the simulated quadruped.

The stand-to-sit motion is shown in Figure 5.4.

The sit-to-stand component steps forward with the front feet and lifts hips to

standing height. Since the center of mass is so far back at the beginning of the

motion, an extra virtual force and dipping motion at the shoulders is required to

generate forward momentum. The gait graph for the sit-to-stand motion is:

Sit-to-stand (0.9 s)

• Step front feet forward to initial position relative to the rear feet. Each

step takes 0.3 s.

• Lower desired shoulder height by 2 cm. Increase desired shoulder

frame pitch in the sagittal plane linearly from 0◦ to 15◦ over 0.3 s.

• Apply a horizontal virtual force in the sagittal plane increasing linearly

from 0 N to 100 N over 0.2 s, then decreasing to 0 N over 0.6 s.

• Increase desired hip height from 9 cm to 44 cm linearly over 0.4 s.

The sit-to-stand motion is shown in Figure 5.5.

To develop these controllers, we determine approximate step lengths and tim-

ings from videos of dogs performing these motions. For stand-to-sit, specifying

a gait pattern with these stepping patterns is sufficient to create robust sitting mo-

tions. Because the controller automatically computes balance feedback, this pro-

cess is similar to authoring a motion using keyframes. The beginning and end of

each step must be specified as well as hip and shoulder height positions at key

times. When the balance feedback fails, as it does during the sit-to-stand motion,

24

Figure 5.6: Stand-to-prone motion for the simulated quadruped.

this naive approach is insufficient. For the sit-to-stand motion, the naive gait graph

results in the dog falling backward because the center of mass is too far behind the

rear feet. Dipping the shoulders and applying an extra virtual force provide enough

forward momentum to return the dog to standing. These situations require an extra

manual balance specification on top of the keyframe-like specification.

5.1.3 Lying Down

The lying controller consists of a stand-to-prone and a prone-to-stand compo-

nent. The stand-to-prone controller has three phases with timed transitions between

them. The first two are identical to the stand-to-sit controller. From the sitting state,

the following gait graph is used to transition to the prone position:

Sit-to-prone (0.8 s)

• Step front feet forward to 45 cm in front of and 4 cm to the side of the

shoulders. Each step takes 0.3 s.

• While stepping the second foot, twist the shoulders in the coronal plane,

lifting the shoulder of the stepping foot. Twist from 0◦ to 30◦ over 0.1 s,

then return to level orientation over 0.2 s.

• While stepping, shift the desired center of mass position away from the

swing leg by 5 cm in the coronal plane.

• Decrease desired shoulder height from 44 cm to 22 cm over 0.4 s.

The stand-to-prone motion is shown in Figure 5.6.

Once prone, the relative positioning of the feet is approximately the same as

for quiescent standing. Therefore, the prone to stand component does not use any

stepping, but just returns the desired hip and shoulder heights and orientation to

their standing values. The gait graph is as follows:

25

Figure 5.7: Prone-to-stand motion for the simulated quadruped.

Prone-to-stand (1.0 s)

• Increase desired shoulder height from 22 cm to 44 cm over 0.9 s.

• Increase desired hip height from 14 cm to 44 cm over 0.9 s.

• Increase the desired shoulder frame pitch angle in the sagittal plane

from 0◦ to 15◦ over 0.3 s. Then, return is to horizontal over 0.7 s.

The prone-to-stand motion is shown in Figure 5.7.

Development of these controllers is analogous to the development of the sitting

controllers. When stepping forward with the front legs, the character tends to tip

over while stepping forward with the second front leg. To combat this, we add

a shift of the coronal component of the desired center of mass and a twist of the

coronal component of the desired shoulders orientation. These modifications lift

the shoulder of the swinging leg enough to move the foot to the desired position.

Like in the sitting controller, extra forward momentum is required to return to

standing, so the same shoulder dipping strategy is employed.

5.1.4 Lateral Decubitus-to-Stand

To recover from unexpected falls, a get-up controller that enables the dog to get up

from a lateral decubitus position, i.e., lying on one side, is also developed. When

the dog has its feet under it, the trotting controller is extremely robust, and can

recover gracefully from a wide range of scenarios. The strategy for this motion is

therefore to position the feet under the character so that the trotting controller can

be engaged.

Development of this controller is extremely difficult due to several factors.

First, modeling a dog as a set of rigid capsules is not accurate in this case, causing

bizarre simulation artifacts. Motions that a real dog is capable of are difficult or

impossible to control using our simplified character model. Second, almost all of

26

the feedback loops in the controller used for other quadruped motions expect the

feet to be well planted below the character. This assumption is clearly not met in

this case, and requires a different approach from the other motions. The controller

for this motion is therefore heavily modified, and relies mainly on explicit pose

tracking and hand specified virtual forces.

Much of the control comes from control of the character’s spine. The desired

orientations of the shoulders and pelvis are specified in terms of euler angle trajec-

tories over time. The relative orientation between them is equal to the quaternion,

qrel = q−1
pelvisqshoulders. This quaternion can also be represented by a rotation α about

a vector~v. Using this representation, each spine joint is driven by a PD controller

to the orientation defined by a rotation α/n about~v where n is the number of spine

joints (5 for this character).

The motion is divided into two phases. First, the controller attempts to roll

the character into a prone position. The hips and shoulder desired orientations

begin horizontally while the legs are posed using IK such that the feet are as close

as possible to the hip and shoulder joints. Next, the desired orientation of the

shoulders is adjusted to rotate from 0◦ to 100◦ in the transverse plane, lifting the

shoulders off the ground. Next, the shoulders are twisted 50◦ in the coronal plane

toward the feet. Next, the desired orientation of the hips is linearly interpolated

from 90◦ to 0◦ in the coronal plane. At this point, both the shoulders and hips are

oriented correctly, the character’s feet are underneath it, and the spine is curved

to one side. The front feet are then controlled via IK so they make contact with

the ground directly under the shoulders. Once both front feet are planted and the

shoulders are approximately level, the controller proceeds to the second phase.

The second phase of the motion seeks to raise the hips and shoulders off the

ground so that the trotting controller can be engaged. Since the hips and shoulders

may not be completely vertical at this point, their desired orientations are inter-

polated from their orientations at the beginning of this phase to their fully upright

position. For the shoulders, this transition takes 0.2 s, while for the hips, it takes

0.5 s. To straighten the spine, the desired shoulder orientation in the transverse

plane is modified until the shoulders and hips point in the same direction. This

occurs over 0.5 s.

Now that the front feet are planted, they can be used to support the shoulders.

27

Figure 5.8: Fall recovery controller transition from lateral decubitus position
to standing.

The desired shoulder and hip heights are increased linearly over 0.3 s . As this

happens, the IK targets for the feet are adjusted so that the they are directly beneath

the shoulders, and their effective lengths are equal to the desired height. The virtual

force height correction term used in the controller is also linearly blended back in

over 0.2 s. Finally, to generate forward momentum, virtual force is applied to the

character center of mass in the sagittal plane. These forces are linearly increased to

their maximum value over 0.2 s, and the remain constant until the trotting controller

is engaged. The front feet provide a maximum of 350 N forward, and 100 N

upward, while the rear feet apply 150 N forward and 50 N upward. Once the

shoulders are above 25 cm, the character can transition to trotting returns to its

steady state mode after several cycles.

The lateral decibutus-to-stand motion is shown in Figure 5.8.

5.2 Results
All motions in this chapter were authored by hand with manual tuning of control

parameters. Due to the abstraction of the gait pattern, this was straightforward for

the sitting and lying controllers. Developing the lateral decibutus-to-stand con-

troller, however, was not straightforward, and many different strategies were at-

tempted before the approach described above.

The sitting and lying controllers are extremely robust to disturbances. For in-

stance, both controllers worked effectively while standing on or near an 8cm tall

block as shown in Figure 5.9. The lateral decibutus-to-stand controller is effec-

tive for most falls on flat ground because before starting to rise, the character is

driven to a standard pose. This controller is the least robust, however, often gen-

erating unnatural motions when transitioning to the trotting controller. This is not

unexpected, as the motion is largely open loop, so disturbances are not corrected

28

(a) (b)

Figure 5.9: Generated controllers are robust to environmental disturbances
like this 8cm block.

quickly. Feedback strategies that are effective even without reliable foot placement

are a direction of future work.

29

Chapter 6

Biped Prone-to-Stand Motions

The final scenario we explore is a character rising from the prone position to a

standing pose. In order to simplify the implementation and focus on the core fea-

tures of the problem, this example is implemented in 2D. When falling, human

characters often fall landing in a prone position, or roll to a prone position before

standing up. Hence, this controller is a valuable asset for a more general fall recov-

ery controller. This scenario presents a situation in which multiple support changes

are required, and when performed by humans, produces motions which are not al-

ways statically stable. As a result, this scenario permits a wide range of complex,

dynamic solutions.

The scenario tested consists of a 2D, 9-link character lying prone on flat ground

and attempting to stand up onto two feet. The controller uses a support graph,

similar to the gait graph in Chapter 5, to specify support change timings and the

overall desired pose. An initial statically stable support graph for flat ground is

used as a seed point for an optimization procedure which increases the speed of the

motions. The faster motions output are then used in a continuation procedure to

create a family of motions suitable for sloped ground and varying character size.

This controller is implemented using the JBox2D [8] 2D simulator. The char-

acter is modeled as a 9-link articulated rigid body with one torso link, two two-link

legs, and two two-link arms. It is approximately 1.1 m tall and weighs 25 kg with

most mass concentrated in the torso.

30

6.1 Controller Representation
The core representation of the controllers used in these experiments is an adapta-

tion of the gait graph structure used in Chapter 5, which we refer to as a support
graph[4]. The motion is described as a set of limb patterns and trajectories for the

desired hip and shoulder heights during the motion as a function of the controller’s

phase. Limb patterns encode when a given limb is in stance mode, swing mode,

or idle (limp) mode, and describe where the limb should be placed when stepping.

They also describe whether the foot or the knee should be used as the end effector

during a given period.

The core difference between gait graphs and support graphs is that gait graphs

describe periodic motions, while support graphs describe single shot motions. In

practice, this means that our controllers can’t rely on certain types of feedback

provided by gait graph based controllers, e.g. foot placements during the next step

cycle. Instead, since the motions require lower momentum than fast locomotion,

our controllers can pause phase advancement until it is safe to proceed. In this

context, safe means that stance limbs are in contact with the ground, and swing

limbs are not supporting weight.

The controller using the support graph uses the components described in Chap-

ter 3. The limbs (arms and legs) are controlled using IK pose tracking with kp and

kd equal to 35 N m/rad and 8 N m/rad respectively for all joints. When in stance

mode, the end effector positions are chosen such that the attached body joint (hips

or shoulders) is at its desired height, as evaluated from its height trajectory. When

in swing mode, the desired end effector position is linearly interpolated horizon-

tally from its takeoff position to its desired landing position, while its height is

controlled by a separate trajectory. The landing position is specified in the limb’s

limb pattern as a horizontal offset from its parent joint (hip or shoulder). After

a swing limb passes through half of its swing phase, its target landing position is

recomputed to account for motion of the hip or shoulder joint while the limb is

moving. It is common in prone-to-stand motions to use the knees as a support

while rising. To exploit this, limb patterns track when limbs should be in kneel

mode, using the knee as the end effector. The desired lower leg orientation is hor-

izontal while in kneel mode. Since the distance from hip to knee is fixed, there is

31

only one degree of freedom in the knee position, so the controller can guide the

hip position in either the horizontal direction or the vertical direction, but not both.

Our controller uses the desired hip height to determine the target angle at the hips,

ignoring the desired horizontal hip position.

Root orientation correction is also used to ensure proper torso orientation.

When arms and legs are both grounded, the root error is small, as the limb poses

orient the root approximately correctly. However, once the arms stop supporting

the character, root orientation correction must be used to maintain control. Because

the pose tracking component is vital to height tracking, we do not replace the stance

hip torques with the root error torque like described in section 3.2. Instead the root

error torque is computed as

τerror = τroot − ∑
hips,

shoulders

τi.

This error torque is clamped, τclamped ∈ [−τmax,τmax]. Each stance hip torque is

modified

τhip← τhip− τclamped/nstance.

This approach balances the competing goals of regulating torso position and torso

orientation.

Virtual forces are also used to provide feedback to the motion. To avoid large

PD tracking gains, gravity compensation virtual forces are applied to each link of

swing limbs. To control hip and shoulder height, a virtual force, computed via

PD control, is added to planted limbs to push the hips or shoulders to the desired

height. Finally, a corrective virtual force acts on the torso to drive its center to a

weighted sum of the center of the lower limb for planted all planted limbs,

xdes =

∑
planted
limbs

wixlower,i

∑
planted
limbs

wi

as shown in Figure 6.1. Initially all supporting limbs are weighted equally, but to

avoid discontinuities, limbs that will be lifted soon have reduced weights. Limb

32

x
lower, 1

x
lower, 2

x
lower, 3

x
des

Fcorrection

Figure 6.1: Sagittal corrective force to maintain balance.

weights are linearly interpolated from 1 to 0 over the 0.5 s before their expected

lift time. The corrective force is distributed between the planted limbs according to

these weights. Additionally, the desired vertical position of the lifting limb’s end

effector is increased from 0 cm to 4 cm over the 0.5 s before lifting. These modifi-

cations help ensure that limbs are not supporting weight when they are expected to

lift.

This structure allows for intuitive design of controllers for relatively slow mo-

tions, however, faster motions are often desired. To automatically speed up slow

controllers, we add a new structure, which we have named a time warp which con-

trols the rate at which the support graph phase advances. It provides a one to one

mapping of time to phase. Initially, time and phase are equal, however through the

optimization procedure described below, this is adjusted so that the phase can ad-

vance faster or slower than time at during the motion. The time warp is represented

as a piecewise linear trajectory of phase velocity, the time derivative of phase. This

creates a piecewise quadratic mapping from time to phase. This representation al-

lows motions to be sped up while preserving relative occurrences of events in the

support graph.

Initial Support Graph

Using the support graph framework, we manually designed a controller for the

prone-to-stand motion. The character begins lying with its arms stretched directly

33

Figure 6.2: Selected frames from prone to stand sequence which requires
13.5 s to perform.

ahead. First, the hands are planted, one at a time 10 cm in front of the shoulders,

each requiring 1 s. The legs transition from idle mode to kneeling stance mode,

supporting the character with the knees. Using the hands and knees, the desired

hip and shoulder heights are increased to 35 cm and 25 cm respectively. Then,

the arms are lifted one at a time, and placed directly under the current shoulder

position. Again, each step takes 1 s. Next, the character’s right leg is lifted and

planted 30 cm in front of the hip, now using its foot as the end effector. Finally, the

left leg is also transitioned to standing mode, supporting the character with its foot.

The desired hips and shoulder positions are increased to standing height while the

arms transition into idle mode. The complete motion requires 13.5 s to achieve

standing height. Selected frames from the motion are shown in Figure 6.2.

6.2 Optimization
Starting with initial hand designed support graphs, we use an optimization proce-

dure to improve with respect to a given cost function (e.g. motion duration) and to

adapt the controller to new terrains and characters. We employ a greedy stochastic

search technique in the space of control parameter of a particular support graph.

Because the parameterization is abstract and feedback loops are built into the con-

troller, the simple optimization strategy works well.

The parameterization consists of the timings of all limb status changes, limb

placement horizontal offsets, hip and shoulder height trajectory knot times and val-

ues (7 of each), and time warp control point values(10 total). The number and type

34

of limb status changes is not changed during optimization. In total, there are 67 pa-

rameters modified during optimization. All optimizations begin with a single seed

parameter vector, either hand designed or output from a previous optimization. At

each iteration, several evaluations are performed (in practice, 16). Each evaluation

consists of the character performing the motion described by the support graph

with the given parameters, and returns a single cost value. Computing the cost

value varies by the optimization type, and the cost functions used are described

below.

Before each evaluation, a random subset of the parameters are perturbed with

gaussian noise. The magnitude of noise for each parameter type is chosen by hand

(e.g. time values all share σ = 0.01 s). In practice we found them simple to choose

due to the intuitive nature of the parameterization. After the evaluations, if one of

the evaluations yields a lower cost than previously seen, it replaces the current seed.

Because the parameterization used to represent the controllers is very abstract, the

parameter space is smooth enough that a greedy, stochastic algorithm can be used.

The optimization procedure is outlined in Algorithm 1.

6.2.1 Static-to-Dynamic Optimization

The first optimization seeks to increase the speed of the rising motion. The cost of

an evaluation is defined as the time the character’s shoulders are above a thresh-

old height of 80 cm. To ensure that the character is still standing at the end, the

shoulders are checked again several seconds after the expected completion time.

We penalize motions if the shoulders are not above the threshold at this time.

Using this cost metric, the stochastic optimization procedure was able to shorten

the motion from the original 13.5 s to 1.2 s. A comparison of the original and

an intermediate optimized support graph is shown in Fig. 6.3. The optimization

significantly increases the time warp phase velocity, accounting for most of the

motion speedup. The four bars in the top section describe when each limb is in

swing, stance, and idle mode. The red and blue curves indicate the desired hip and

shoulder height trajectories. The vertical white line represents the current phase,

while the vertical gray line shows the current time. The bottom section plots the

phase velocity where the horizontal lines indicate 0 (phase stopped) and 1 (phase

35

input : Parameter vector seed
output: Parameter vector optimized for cost
nevaluations← 16
bestCost← ∞

parameters← Array of parameter vectors size nevaluations
costs← Array of floats size nevaluations

while not finished do
for i ∈ nevaluations do

parameters[i]← perturb(seed)
cost[i]← evaluate(parameters[i])

end
bestIndex = argmin(cost)
if cost[i] < bestCost then

seed = parameters[i]
end

end
return seed

function perturb(vec : Parameter vector)→ Parameter vector
begin

Constant Sigmas = Array of floats size of vec. Contains σ for each
index of vec.
nperturbations← integer(sampleGaussian(µ = 0.2, σ = 0.15)* len(vec))
for nperturbations randomly selected indeces, i, of seed do

vec[i]← vec[i] + sampleGaussian(µ = 0, σ = Sigmas[i])
end
return vec

end
Algorithm 1: Optimization procedure

and time are equal).

While most of the generated motions are reasonable, the fastest motions gener-

ated are quite unnatural and include violent collisions with the ground. Returning

an infinite cost for evaluations with extreme contact forces would help mitigate

these cases. Also, while the joints to have maximum torque limits, adding a torque

minimization term to the optimization may also produce smoother motions at the

expense of raw speed. The optimization increases phase velocity significantly to

speed up the motion. A plot of motion completion time at each iteration is shown

36

(a) (b)

Figure 6.3: Comparison of support graphs before and after time optimization.

in Figure 6.4.

The optimization may encounter local minima in the cost function, and require

hundreds or thousands of evaluations to find an improved set of parameters. To

guide the optimization away from these minima, after 80 evaluations with no im-

provement, the magnitude of noise is increased slightly every 16 evaluations until

an improvement is found. A plot of the number of evaluations required per param-

eter improvement for one optimization run is shown in Figure 6.5.

6.2.2 Generalization for Terrain Slope

In order to generalize our controllers, a continuation optimization technique is

used, gradually varying the ground slope. At each ground slope, we seek the most

robust parameter vector, which we approximate by evaluating how many nearby

controllers are also successful. The evaluation function is described in Algorithm 2.

Using this cost function, the optimization procedure is run until one parameter

vector has an 80% or higher success rate. Then, the ground slope is increased by

1◦, and the best cost is reset to infinity. Using a time optimized set of parameters as

the initial seed, the procedure output controllers capable of getting up from terrains

ranging from -12◦ to +17◦. Frames from the uphill and downhill optimized motions

are shown in Figure 6.6 and Figure 6.7, respectively. The initial seed, an output

from a time optimization, does not meet the 80% threshold, but the optimization

quickly improves robustness for the flat ground case until almost all perturbations

are successful. For shallow slopes, few evaluations are necessary. For the steepest

37

Figure 6.4: Prone to stand motion completion time compared to optimization
iteration.

function evaluate(vec : Parameter vector)→ R
begin

nperturbations←16
nsuccesses← 0
for i ∈ nperturbations do

if performMotion(perturb(vec)) == success then
nsuccesses← nsuccesses +1

end
end
return -nsuccesses/nperturbations

end
Algorithm 2: Cost function evaluation for continuation methods.

38

0 50 100 150 200 250 300 350 400 450
0

500

1000

1500

2000

2500

Iteration

Ev
al

ua
tio

ns
 R

eq
ui

re
d

fo
r I

m
pr

ov
em

en
t

Figure 6.5: Number of evaluations required to find an improved set of pa-
rameters at each iteration of time optimization for the prone to stand
motion.

slopes, thousands of evaluations are required to find an improvement.

6.2.3 Generalization for Character Size

Using the same procedure used for sloped terrain, our optimization procedure can

generate parameters for characters of different body size. Instead of modifying the

ground slope, the character’s torso dimensions are scaled. The torso width and

height are both multiplied by a factor, α , which is initialized at 1, and increased

by 0.05 at each iteration. The torso is assumed to have a constant density, so

this increases its mass and moment of inertia as well. This procedure generates

controllers capable of prone-to-stand motions for characters with torso width and

height 1.45 times larger, and torso mass 1.452 = 2.10 times larger. Selected frames

from the prone to stand sequence for a larger character are shown in Figure 6.8. The

39

Figure 6.6: Selected frames from prone to stand sequence with parameters
optimized for a steep, uphill slope.

Figure 6.7: Selected frames from prone to stand sequence with parameters
optimized for a steep, downhill slope.

computation effort required is similar to that of slope optimization, requiring few

evaluations for small modifications, and thousands of evaluations for the largest

characters.

40

Figure 6.8: Selected frames from prone to stand sequence with parameters
optimized for a character with 1.45 times greater dimensions and 2.10
times greater torso mass.

41

Chapter 7

Conclusions

Generating physics based rising motions is a difficult problem because it requires

careful control of a character’s body while simultaneously controlling set of dis-

continuous contact forces. This necessitates planning of supports and maintaing

balance while leading the character toward a goal pose, all with a constrained set

of control inputs. In addition, these motions contain a mix of discrete aspects,

such as whether a limb is planted, and continuous aspects. Some dynamic motions

motions, such as a kip, are not closely related to statically stable strategies, and

are difficult to discover and perform. The controllers presented in this thesis solve

some of these problem for a variety of characters and motions.

7.1 Discussion
The controllers developed in this work demonstrate that pose tracking, root orien-

tation correction and virtual forces can be combined to generate robust and flexible

controllers for rising motions. They are intuitive enough to admit controllers to

be designed by hand, and are stable enough to be modified via optimization. In

addition, an abstraction layer, such as gait graphs or support graphs, on top of

these components makes it easier to design a broad range of controllers by sharing

balance feedback rules that are common across actions.

42

7.1.1 Modeling Issues

All simulations in this work use an articulated rigid body model of characters,

actuated by internal joint torques. However, especially for contact-rich motions,

this approximation is flawed. When designing the controllers, especially for the

quadruped, dealing with these simulation flaws was a major obstacle. Performing

a more accurate physical simulation, however, is computationally taxing, and it

unclear if it allows for simpler control strategies. Simulating the activation of all

the muscles that act on each joint likewise adds additional control parameters, but

may provide insight into how humans and animals move and balance.

7.1.2 Key Control Components

The main challenge for most controllers, whether for locomotion, standing up, or

other skills, is controlling the center of mass position and orientation. Given the

parent joint location, IK and pose control can effectively control limbs to perform

most tasks, correcting for disturbances without trouble. Root control, however,

requires coordination between many limbs, and correcting from errors is nontrivial,

e.g. requiring a recovery step to maintain balance. Therefore planning support

points is one of the most important aspects of any controller. For the controllers

developed in this thesis, plant positions are mostly specified by hand as a relative

offset to the torso, which works for these examples because reasonable support

positions can be reliably estimated.

Balancing once support locations are known is another key aspect of designing

robust controllers. Contact changes are necessary and frequent for the types of

controllers in this work, so being able to balance in arbitrary configurations is a

requirement of flexible controllers. We use simple feedback models, but other

optimization based approaches may provide more robust balancing behaviors [5].

Especially for dynamic motions, a balance strategy must be anticipatory, planning

for future contact configurations and considering character momentum.

7.2 Limitations and Future Work
The support graph implementation described was developed for two dimensional

characters. The most immediate direction for future work is to extend the frame-

43

work to a three dimensional character. This would likely require little more than

an additional lateral balance feedback strategy, perhaps similar to the one used on

the quadruped character.

A more significant limitation is that authoring these motions is still currently

a manual process. Even when optimization is used, an initial seed point must be

created by hand. While the controller abstractions described do help make the

process easier, the controllers we generated were the product of manual trial and

error. A question that commonly arises in animation is how can motion be gener-

ated automatically, while providing artists with ample stylistic control? For physics

based characters, this is especially challenging, since physics imposes an extra set

of constraints on possible motions. The optimization approach described in Chap-

ter 6 could be adapted to find parameter vectors which match an artist’s vision,

similar to the approach used by Liu et al. [15], but this would require an expensive

offline computation. Finding a balance between the ease of authoring motions and

the control to stylize them remains an open problem.

For robotics applications, the style of motion is less important, and a com-

pletely automated approach to generation of motions is therefore another interest-

ing avenue of future work. Heuristics might be developed which can generate a

suitable sequence of supports or key poses, which would then be connected. Start-

ing with an initial solution of connected, statically stable poses, the time warp based

optimization method may be able to generate faster, dynamic motions or minimize

expended energy among other goals.

The optimization strategy described here likewise has several limitations. The

current strategy cannot modify the number and type of support changes for the

limbs. For example, while timings and relative orderings can change, the left arm

in the motions from Chapter 6 always begins in the idle state, transitions to swing

state twice, stance state twice, and idle state once. This means that the optimization

procedure described in this work cannot generate new motion strategies. The opti-

mization could be extended to consider the addition or deletion of contact changes

during the motion.

In addition, the optimization pipeline has potential improvements both in gen-

erality and efficiency. Currently, only one dimension of continuation can be com-

puted at a time, e.g. slope or character size. However, applications will likely

44

require a much higher degree of flexibility, so being able to efficiently explore the

multidimensional space of controllers is an important direction for future work.

The current naive, greedy, stochastic descent strategy could likely be improved to

include the information from previous evaluations to guide the search.

45

Bibliography

[1] H. Asada and J. Slotine. Robot analysis and control. Wiley-Interscience,
1986.

[2] P. Beaudoin, S. Coros, M. van de Panne, and P. Poulin. Motion-motif graphs.
In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 117–126. Eurographics Association, 2008.

[3] S. Coros, P. Beaudoin, and M. van de Panne. Generalized biped walking
control. ACM Transctions on Graphics, 29(4):Article 130, 2010.

[4] S. Coros, A. Karpathy, B. Jones, L. Reveret, and M. van de Panne.
Locomotion skills for simulated quadrupeds. ACM Transactions on
Graphics, 30(4):Article TBD, 2011.

[5] M. de Lasa, I. Mordatch, and A. Hertzmann. Feature-Based Locomotion
Controllers. ACM Transactions on Graphics, 29(3), 2010.

[6] P. Faloutsos, M. van de Panne, and D. Terzopoulos. Composable controllers
for physics-based character animation. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, pages
251–260. ACM, 2001. ISBN 158113374X.

[7] H. Hirschfeld, M. Thorsteinsdottir, and E. Olsson. Coordinated ground
forces exerted by buttocks and feet are adequately programmed for weight
transfer during sit-to-stand. Journal of neurophysiology, 82(6):3021, 1999.
ISSN 0022-3077.

[8] Jbox2D. Jbox2d. http://www.jbox2d.org.

[9] F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, S. Kajita, K. Yokoi,
H. Hirukawa, K. Akachi, and T. Isozumi. The first humanoid robot that has
the same size as a human and that can lie down and get up. In Robotics and

46

Automation, 2003. Proceedings. ICRA’03. IEEE International Conference
on, volume 2, pages 1633–1639. IEEE, 2003.

[10] L. Kovar, M. Gleicher, and F. Pighin. Motion graphs. In ACM SIGGRAPH
2008 classes, pages 1–10. ACM, 2008.

[11] A. Kralj, R. Jaeger, and M. Munih. Analysis of standing up and sitting down
in humans: definitions and normative data presentation. Journal of
biomechanics, 23(11):1123–1138, 1990. ISSN 0021-9290.

[12] Y. Kuniyoshi, Y. Ohmura, K. Terada, A. Nagakubo, S. Eitoku, and
T. Yamamoto. Embodied basis of invariant features in execution and
perception of whole-body dynamic actions–knacks and focuses of
roll-and-rise motion. Robotics and Autonomous Systems, 48(4):189–201,
2004.

[13] Y. Lee, K. Wampler, G. Bernstein, J. Popović, and Z. Popović. Motion fields
for interactive character locomotion. In ACM Transactions on Graphics
(TOG), volume 29, page 138. ACM, 2010.

[14] W.-C. Lin and Y.-J. Huang. Rising from various lying postures. In Computer
Graphics International 2011 papers. CGI, 2011.

[15] L. Liu, K. Yin, M. van de Panne, T. Shao, and W. Xu. Sampling-based
contact-rich motion control. ACM Transctions on Graphics, 29(4):Article
128, 2010.

[16] J. Pratt, C. Chew, A. Torres, P. Dilworth, and G. Pratt. Virtual model control:
An intuitive approach for bipedal locomotion. The International Journal of
Robotics Research, 20(2):129, 2001.

[17] M. Raibert and J. Hodgins. Animation of dynamic legged locomotion. In
ACM SIGGRAPH Computer Graphics, volume 25, pages 349–358. ACM,
1991.

[18] P. Roberts and G. McCollum. Dynamics of the sit-to-stand movement.
Biological cybernetics, 74(2):147–157, 1996. ISSN 0340-1200.

[19] M. Roebroeck, C. Doorenbosch, J. Harlaar, R. Jacobs, and G. Lankhorst.
Biomechanics and muscular activity during sit-to-stand transfer. Clinical
Biomechanics, 9(4):235–244, 1994. ISSN 0268-0033.

[20] R. Smith. Open dynamics engine. http://www.ode.org.

47

[21] J. Stückler, J. Schwenk, and S. Behnke. Getting back on two feet: Reliable
standing-up routines for a humanoid robot. In Proc. of The 9th International
Conference on Intelligent Autonomous Systems (IAS-9), Tokyo, Japan, pages
676–685. Citeseer, 2006.

[22] J. Wang, D. Fleet, and A. Hertzmann. Optimizing walking controllers for
uncertain inputs and environments. In ACM Transactions on Graphics
(TOG), volume 29, page 73. ACM, 2010.

[23] K. Yin, S. Coros, P. Beaudoin, and M. van de Panne. Continuation methods
for adapting simulated skills. ACM Trans. Graph., 27(3), 2008.

48

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Contributions
	1.2 Organization

	2 Related Work
	2.1 Kinematic Methods
	2.2 Physically Simulated Character Animation
	2.3 Robotics
	2.4 Biomechanics

	3 Controller Components
	3.1 Pose Tracking
	3.2 Root Orientation Correction
	3.3 Virtual Forces

	4 Biped Sit-to-Stand Motions
	4.1 Character Description
	4.2 Controller
	4.3 Results

	5 Quadruped Controllers
	5.1 Approach
	5.1.1 Controller Structure
	5.1.2 Sitting
	5.1.3 Lying Down
	5.1.4 Lateral Decubitus-to-Stand

	5.2 Results

	6 Biped Prone-to-Stand Motions
	6.1 Controller Representation
	6.2 Optimization
	6.2.1 Static-to-Dynamic Optimization
	6.2.2 Generalization for Terrain Slope
	6.2.3 Generalization for Character Size

	7 Conclusions
	7.1 Discussion
	7.1.1 Modeling Issues
	7.1.2 Key Control Components

	7.2 Limitations and Future Work

	Bibliography

