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ABSTRACT

We present CAPNET, a capability-based network architecture de-
signed to enable least authority and secure collaboration in the
cloud. CAPNET allows fine-grained management of rights, recur-
sive delegation, hierarchical policies, and least privilege. To enable
secure collaboration, CAPNET extends a classical capability model
with support for decentralized authority. We implement CAPNET
in the substrate of a software-defined network, integrate it with
the OpenStack cloud, and develop protocols enabling secure multi-
party collaboration.
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1 INTRODUCTION

Despite numerous advances in cloud security, modern clouds re-
main vulnerable to targeted attacks [10]. Traditionally, cloud secu-
rity concentrates on perimeter protection. Network firewalls and
advanced intrusion-detection systems are designed to keep attacks
outside of the cloud network. Today, however, well-sponsored, co-
ordinated, targeted attacks continue to penetrate the cloud perime-
ter [20, 51]. Once inside, an attacker can leverage an excessive
network authority of the cloud network, enabling the discovery
and exploitation of other subsystems. In a modern cloud, the cloud
network is the main attack amplifier, turning the initial compromise
of a single account or a network host into a platform for launching
a broad, cloud-wide attack.
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The fundamental reason is that the cloud network is built on
legacy network-isolation primitives: VLANs, ACLs, and security
groups [1, 37, 40]. Taking their roots in the context of enterprise
networks, these mechanisms are designed to isolate coarse-grained,
largely static networks controlled by centralized administrators.
Clouds, on the other hand, embrace dynamic allocation of fine-
grained resources, extensive use of third-party services, and col-
laboration among tenants. Existing network security mechanisms
provide no support to minimize the authority of cloud workloads
in the face of composable services and collaborating parties. For
example, it is not possible for a tenant to safely isolate a subset of
his or her nodes and pass them to a third-party service provider to
perform setup and configuration of the service, e.g., a distributed
file system. Instead, the deployment of a third-party service requires
updates to tenant-wide security rules and can break the security
of the entire system [23, 24]. Similarly, having no control over the
consumer’s network, a third-party service provider that deploys
its service as a collection of virtual machines inside a consumer’s
network is required to trust the consumer’s environment, i.e., trust
that the service will not be attacked [54].

We suggest a new network architecture, CAPNET, aimed at im-
plementing least authority and secure collaboration in the cloud
network. At its core, CAPNET is an object capability system that
represents the resources of a traditional network as a graph of
objects that have unforgeable pointers (or capabilities) to other
objects. In CAPNET, objects represent two kinds of resources: (1) re-
sources of the cloud network itself (hosts, network flows, etc.) and
(2) primitives that control mutation of the object graph. Capabilities
in CAPNET allow principals to perform operations on objects: e.g.,
a capability to a “flow object” allows packets to be sent along the
flow, and a capability to a “node object” can control a virtual or
physical device in the cloud. Principals have no authority beyond
capabilities: all network operations are accessible only through
capability invocations.

By controlling the capability graph, CAPNET enables powerful
security constructs in the cloud network. (1) Least authority. The
key principle enabling security in CAPNET is the ability to con-
struct small, isolated cloud subsystems that operate on a minimal
number of isolated resources. By minimizing the authority of in-
dividual subsystems, CAPNET guarantees that even if a part of a
computation is compromised, the possible effect of the attack is
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minimal and limited to a set of objects reachable through capabili-
ties. (2) Mutual isolation. CAPNET develops mechanisms enabling
mutual isolation of principals irrespective of the ownership of the
network nodes and their past. In CAPNET, the providers and con-
sumers of third-party cloud services can interact without requiring
trust. For example, even if a service is configured by a third-party
provider, the consumer of the service has guarantees that the ser-
vice is completely isolated from the provider after deployment. On
the other hand, the provider can protect its proprietary service
from the consumer by isolating the service from the consumer
itself, inside the consumer’s network. (3) Decentralized access
control. CAPNET develops primitives that enable decentralized
access control [32] in the cloud network. Cloud workloads that
involve multiple parties combining their sensitive datasets for joint
processing (e.g., [7, 13, 14]) require isolation for each dataset and
the ability to reason about information flow across the joint com-
putation. CAPNET allows mistrusting tenants to assemble tightly
controlled cloud networks in a decentralized manner, i.e., without
trusting each other, yet enforcing their own network-wide isolation
and information-flow properties.

We make the following contributions. First, we design an ob-
ject capability access-control model for the cloud network. While
enabling radically new security capabilities, CAPNET retains back-
ward compatibility with existing network stacks and requires no
modification of the hosts. We implement CAPNET with an SDN
network fabric and demonstrate how CAPNET can be integrated
with the OpenStack cloud platform. Second, we extend classical
object capability models [29] with support for mutual isolation
and decentralized authority. We apply three capability primitives—
reset, membranes, and sealer/unsealers—to control mutation of the
capability graph. Based on these primitives, CAPNET enables mis-
trusting cloud tenants to develop decentralized capability protocols
that enable constructing general network topologies and complex
cloud workflows with guarantees of isolation and information flow.
Finally, we develop protocols of secure collaboration between un-
trusted parties in a cloud environment.

CAPNET is open-source software and is available for download
at https://gitlab.flux.utah.edu/tcloud/capnet. It can be test-driven
via a CloudLab [43] profile (https://www.cloudlab.us/p/TCloud/
OpenStack-Capnet) that automatically instantiates a private Open-
Stack cloud for the user, preconfigured with CAPNET.

2 BACKGROUND AND RELATED WORK

The industry-standard AWS and OpenStack clouds implement isola-
tion and access control at two conceptual levels. First, a role-based
access control (RBAC) model [2, 38] is used to control the boundary
of cloud-service APIs that provide access to core cloud functionality,
e.g., creating virtual machines, configuring and accessing storage,
configuring cloud networks, etc. RBAC allows tenants to control
how intra-tenant principals—cloud users and VMs—access cloud
APIs within the slice of a tenant’s resources. Second, to isolate cloud
applications within the network, modern clouds provide tenants
with classical network-isolation primitives: VLANs, ACLs, and se-
curity groups [1, 37, 40]. Security groups [37], which have become
a de facto standard, are responsible for providing fine-grained isola-
tion in the cloud network. CAPNET aims to replace security groups
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as the network access-control mechanism. We argue that security
groups fail to provide a consistent framework for manipulating
the security state of the system, e.g., splitting a group into isolated
subgroups, delegating connectivity to a subset of group nodes, re-
voking previously granted resources, etc. The lack of delegation in
security groups results in excessive network authority and limits
the ability of mistrusting tenants to collaborate. Finally, changes
to the security-group configuration are always global (and hence,
require system-wide reasoning that is prone to error [23, 24]). In
CAPNET, capabilities enable local and compositional changes, sup-
port fine-grained delegation, and allow recursive revocation of any
authority in the network.

OAuth 2 [18] and similar authorization systems [6] implement
a capability-like protocol that allows cloud services to grant their
users certain access to other services (i.e., implement delegation).
In contrast to CAPNET, these systems rely on cryptographic primi-
tives to protect the credentials of each principal. One limitation is
that, based on cryptography, they can implement only the simplest
capability protocols: delegation [18] and attenuated delegation (del-
egation of the subset of rights) [6]. Second, OAuth operates at the
level of cloud applications: i.e., the application is responsible for
checking the cryptographic token. Hence, OAuth leaves the cloud
network open and vulnerable to attacks. Packets from compromised
hosts can reach other hosts on the network and exploit vulnerabil-
ities in the network protocols [35] and other parts of the system
reachable from the network [21].

The original work on software defined networking (SDN) was
motivated by the goal of providing control over enterprise net-
works [8, 9]. While achieving a global view of the network, and
hence a possibility of enforcing fine-grained network-wide security
policies [8, 9], these approaches still largely view the network as
an entity with a single administrative root. In practice, enterprise
and cloud networks consist of numerous, mutually mistrusting
workflows and tenants that are governed by many principals with
conflicting security goals. Network slicing [25, 47] addresses the
problem of isolation among mistrusting principals by virtualizing a
single SDN network, but it still fails to provide mechanisms allow-
ing decentralized authority and security in the face of collaboration
among mistrusting parties. Numerous systems try to extend SDN
with access-control primitives aimed at enabling some forms of
controlled cross-tenant communication and collaboration. The Fort-
NOX Enforcement Kernel [42] and its extensions Fresco [48] and
SE-Floodlight [41] point out the problem that multiple (possibly
malicious) SDN controller applications can install conflicting flow
rules that violate network-wide security policies. In contrast, Cap-
NET builds on the principles of object capability systems that allow
the composition of security rules by design, and hence make it
impossible to install rules that contradict an initial policy.

Initially formulated by Dennis and Van Horn [12], capability sys-
tems became a popular mechanism for constructing secure, least-
privilege environments in the areas of operating systems [19, 27, 33,
45, 46] and programming languages [28, 29]. The development of
the object capability model [29] revived capabilities as a viable ab-
straction for constructing least-privilege security environments [27,
52]. Miller et al. [30], and later Watson et al. [52], provide a good
discussion of the advantages of the capability model for construct-
ing practical security environments. CAPNET’s model builds on the
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design principles of capability-based microkernels [15, 19, 34, 46]
and object capability languages [29]. Similar to seL4 [15], CaP-
NET (1) uses send and receive [31] to model the grant operation
and (2) implements capability spaces and derivation trees. CAPNET
builds on the work of Miller [29] on capability design patterns
that extend the capability model with principles for constructing
secure systems in the face of mutually mistrusting parties and di-
verse security requirements. CAPNET further extends the object
capability model with design patterns that provide support for de-
centralized authority through the novel use of membranes, reset,
and sealer-unsealers.

Capability concepts have been applied to networking in pre-
vious work, but in the context of denial-of-service (DoS) attacks.
For example, capability tokens have been suggested as a means to
prevent DoS attacks [3]. Tokens implement a capability-like autho-
rization mechanism allowing communication in the network, but
are limited to expressing only this simple property. More recent
work also proposed to deal with unwanted traffic through capa-
bility mechanisms, but instead of issuing capabilities, proposed to
use dynamically changing IP addresses as the capabilities [49]. In
CAPNET, no network communication is possible unless explicitly
allowed by a capability. As such, our work is related to earlier “off
by default” approaches [5].

3 THREAT MODEL

CAPNET is an access-control infrastructure that controls connectiv-
ity in a cloud network. A CAPNET configuration is a security policy
that identifies a set of principals (i.e., physical or virtual hosts), the
communication paths between those principals, and the ways in
which the policy can be modified by those principals. The goal of an
attacker is to violate the policy defined by a CAPNET configuration
by (1) causing unauthorized communication to occur, (2) preventing
authorized communication, or (3) causing an unauthorized change
to the policy.!

We make the following assumptions about threats to a CAPNET
implementation. We assume that the cloud provider is trustworthy
and the provider’s network infrastructure (switches, routers) is
secure and free of vulnerabilities. Further, we assume that the cloud
tenants and providers of third-party cloud services are untrusted.
We assume that an attacker controls an endpoint device attached
to the network managed by CAPNET, i.e., a physical or virtual host.
The only actions available to the attacker are to send and receive
network packets, including packets to or from nodes known to
CaPNET, nodes unknown to CAPNET, and the CAPNET controller.
While an attacker may try to forge packets, as it fully controls its
host, it cannot hide its location. Because the network infrastructure
is trustworthy, CAPNET can reliably identify the (switch, port) pair
at which the attacker is attached to the network.

4 CAPNET ARCHITECTURE

Logical level. CAPNET represents a traditional cloud environment
as a graph of objects connected with edges that represent rights,
or capabilities (Figure 1). An object represents an entity within

! An extended low-level threat model would also consider quality-of-service attacks,
including attacks that exhaust resources such as SDN flow-table rules. We do not
consider QoS attacks in this paper.
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Figure 1: Internals of the CAPNET capability system

CAPNET, such as a specific virtual or physical network device or a
communication endpoint. Objects “live” within the CAPNET con-
troller, and thus they are like objects in an object-oriented program-
ming language. Objects have types, state, and methods; methods
accept parameters and return results. A capability is a reference to
a particular object. Capabilities are unforgeable: one cannot “make
up” a capability to an object. The only way to receive capabilities
is through the traditional rules of object capability systems [29]:
initial conditions, parenthood (creating new nodes), endowment
(receiving from own creator), and introduction (receiving through
communication channels). The users of a CAPNET network use
capabilities to invoke operations on objects: in this way, users com-
municate with each other and implement the security policies they
require. In a capability system, the only way to access a resource is to
invoke a capability that enables access to the object that represents
that resource in the capability system. Network communication,
host management, and the exchange of rights are mediated and
controlled by the rules of the CAPNET capability system.

Physical level. To ensure isolation, CAPNET operates in the con-
text of a cloud environment where hosts (physical and virtual) are
connected to a software defined network (SDN) (Figure 1). The
CAPNET SDN controller prevents all communication until explicitly
allowed. CAPNET is responsible for ensuring consistency between
the logical and physical state of the system. When a state of the
capability system requires a change in the physical network, the
CAPNET controller uses SDN mechanisms to implement the change,
e.g., push a new flow-table entry into the network.

Hosts invoke capabilities via the CAPNET capability API (Figure 1).
The API maps onto a simple, reliable network protocol that conveys
API invocations to the CAPNET controller. CAPNET manages the
serialization of capability operations. Each capability protocol mes-
sage contains a capability that identifies an object, an operation to
perform on the object, and zero or more arguments. Most capabili-
ties are held by Nodes, objects that represent a virtual or physical
host, and that are the only “active” objects in our system. Software
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Table 1: CAPNET object types and their methods

Node

grant reset()

object create(object_type type, specification spec = ())
Flow
RendezvousPoint

void send(cap c, string msg)

(cap, string) recv(int timeout)
Grant

any invoke(cap c, method m, args args)
Membrane

cap wrap(cap c)

void clear()
SealerUnsealer

cap seal(cap c)

cap unseal(cap c)
Operations on capabilities

cap mint(cap c, specification spec = ())

void revoke(cap c)

void delete(cap c)

on the host refers to capabilities by their local names—64-bit capa-
bility identifiers that have no special meaning outside of the host
(Figure 1). For each host, the CAPNET capability system maintains
a capability space (or a CSpace), a fast data structure that resolves
local capability identifiers into capability references that contain
specific rights to a specific object in the capability system. Cap-
NET relies on the SDN substrate to provide a unique (switch, port)
mapping for all network communication. This mapping is used to
identify the correct CSpace, thus ensuring that capability identifiers
cannot be forged.

4.1 Object Types

CAPNET uses a small number of object types, summarized in Table 1,
to define the configuration of a network.

ANode represents a network-attached virtual or physical device—
i.e., a virtual machine instance. Nodes are the only objects allowed
to create other objects and initiate capability operations. When
the software running on a device interacts with CAPNET, e.g., by
making API calls, it acts “on behalf of” the Node object that is cur-
rently associated with the device. In other words, the Node is the
principal associated with the software running on the device. A
newly created Node object is “born with” one capability to a special
RendezvousPoint, rp0, that connects it to its creator and allows it to
perform the boot protocol. The Node may acquire or lose capabili-
ties over time as the software interacts with the CAPNET APIL Nodes
are allowed to create other objects by invoking create(Type), where
Type is one of the object types. Nodes are allowed to create Flows
to themselves, RendezvousPoints, Membranes, and SealerUnsealers
(discussed below). Grant objects are only created as the result of
the reset() operation (see Section 4.3).

A Flow represents a unidirectional communication channel: the
ability to send packets to a particular network endpoint. In Cap-
NET, the endpoints that send and receive packets are Nodes, so
Flows are strongly tied to Nodes. If node is a capability to a Node,
node.create(Flow, flow_spec) creates a new Flow that allows commu-
nication to node. The optional flow_spec adds restrictions to the
flow, e.g., specifying TCP, UDP, or source or destination port. The
method returns a capability to the Flow object.
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If a Node holds a capability to a Flow, then the device that the
Node represents can send packets along that Flow to the Flow’s des-
tination. CAPNET does not model packet transmission and receipt
explicitly. Instead, nodes send and receive packets using traditional
network stacks, and the CAPNET controller enforces the rules about
who can talk to whom through SDN flow-table entries. Sending a
packet to an IP address is an implicit method invocation on a Flow
object whose target Node is associated with that IP address. For the
transmission to succeed, the source Node must hold a capability
to a suitable Flow. A Node that holds a capability f to a Flow can
invoke mint(f, spec) to create a “subflow.” This makes it possible for
one Node to delegate a more restrictive subflow to another Node.

A RendezvousPoint allows Nodes to exchange capabilities, e.g.,
exchange a pair of Flow capabilities to establish connectivity. A
RendezvousPoint implements a queue in which each element car-
ries a capability and a string. If a Node holds a capability rp to a
RendezvousPoint, it can invoke rp.send(cap) to insert cap into the
RendezvousPoint’s queue. The RendezvousPoint now holds a copy
of the capability that was passed to send(); the sender does not lose
its capability. A Node can invoke rp.recv() to retrieve the element
at the head of the RendezvousPoint’s queue. After an element is
returned by recv(), the RendezvousPoint deletes its copy of the re-
turned capability. The recv() call blocks until an element can be
returned; an optional timeout argument forces recv() to wait for a
defined period and return an error if no element is available.

Capability operations. CAPNET defines three operations on capa-
bilities themselves (Table 1). Mint returns a new capability that is
a copy of the given capability, perhaps with a restricted subset of
rights defined by the spec argument. Delete removes a capability
from the collection that the caller holds. Revoke allows the caller
to recursively delete a previously-granted capability, removing the
authority conferred by the capability to any principal the owner
granted it to, and so on. The owner’s capability is not destroyed.
Similarly to seL4 [27], we implement recursive revocation with
capability derivation trees (CDTs). A capability to a new object
becomes a root of a CDT. When a capability is sent through a Ren-
dezvousPoint to another Node, the capability that is inserted in the
receiver’s CSpace is added to the CDT as a child of the capability
of the sender. Similarly, every minted capability is derived from its
parent. When a capability is revoked, CAPNET walks the CDT and
removes all children of the revoked capability linked by the CDT
from every CSpace.

4.2 Support for Unmodified Hosts

A Grant object is designed to include unmodified legacy nodes with
no knowledge of the capability system in a capability-enabled net-
work. Capability-aware network nodes use Grant objects to operate
on behalf of passive legacy nodes, i.e., create objects on their behalf,
enable network connections, etc. Every Node has a Grant object
associated with it. The Grant implements the invoke(cap, m, args)
method that allows the owner of a Grant capability to invoke a
method m of the object referenced by cap with arguments args as if
the caller was the Node associated with the Grant object. CAPNET
provides other operations for manipulating Nodes through the grant
interface as well. Grant.grant(cap c) allows the caller to insert a ca-
pability into the CSpace of the Node pointed to by the Grant object.
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Similarly, Grant.take(capability_id cap_id) inserts a specific capabil-
ity, identified by cap_id in the CSpace of the Grant object’s Node,
into the CSpace of the caller. Finally, Grant.create(object_type type)
creates a new object, inserts a capability to that object into the
CSpace of the Grant’s Node, and conveniently also “takes” this
capability to the caller’s CSpace. For example, grant.create(Flow)
creates a Flow to the Node pointed to by the grant capability. Simi-
larly, the following code connects two Nodes A and B pointed to
by the grantA and grantB capabilities.

flowA = grantA.create(Flow)
flowB = grantB.create(Flow)
grantA.grant(flowB)
grantA.grant(flowA)

While Grant is primarily intended to support legacy nodes, it
also implements a convenient programming paradigm that allows
one to configure multiple network hosts in a “passive” manner. In
this style, Nodes themselves do not invoke capability operations;
instead, all configuration is done by an “active” node that has grant
capabilities. This allows us to implement general security protocols
as functions that operate on grants provided as arguments.

4.3 Decentralized Authority and Collaboration

Three mechanisms extend CAPNET’s capability model to enable
decentralized authority and secure collaboration among mistrusting
cloud tenants: a reset operation, membranes, and sealer-unsealers.

The Reset operation (Node.reset()) allows the owner of a Node
capability to reset the node to a clean, isolated state irrespective of
its prior state and ownership. Reset effectively re-isolates the Node
in the capability system by “cleaning up” all capabilities throughout
the system that enable any authority on the node other than own-
ership. For example, if a service provider receives a capability to a
Node as a part of the request to configure its service, the service
provider can reset the node, ensuring that the consumer cannot con-
nect to the node unless explicitly authorized by the provider. The
consumer still “owns” the node after reset, as reset does not affect
the consumer’s Node capability. Thus, it can claim the node back
by revoking all capabilities it previously granted to the provider,
and then resetting the node back into the clean state, but does not
have any other authority on the node.

The state and authority of the Node consists of three parts: (1) ca-
pabilities that the Node holds to the rest of the system that might
enable future communication with other Nodes, and exchange of
rights; (2) other Nodes in the network might hold capabilities al-
lowing them to establish future connections to the node using the
Flow capabilities to the Node, and capabilities to the Node’s Grant
interface; and (3) the execution state of the Node’s associated de-
vice, which may contain sensitive information. Reset cleans up a
Node’s state through the following three steps: (1) To remove all
authority from the Node, reset() invokes delete() on each capability
held by the Node. This ensures that the Node can no longer access
any objects in the system. (2) CAPNET cleans up all resources in the
network that might provide any authority on the node. To track
this authority, when a node is created or reset, a new Grant object
is created and a capability to it is inserted in a private CSpace con-
trolled exclusively by the CAPNET controller. This capability acts
as the root of the CDT for every Flow capability created for the
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reset node. When the network state needs to be reset, a revoke()
operation is performed on the Grant capability, which recursively
deletes all flows to the reset node. (3) Finally, reset() reboots the host
associated with the Node, wipes its persistent storage, and copies
a pristine OS onto it. Reset leaves the Node with the capabilities
to itself and to a fresh rp0. Reset returns a capability to a fresh
Grant object, which allows the caller to reconnect with the node
by invoking take().

grnt = node.reset()
rp0 = grnt.take(RP0)

Membranes. CAPNET provides recursive revocation of capa-
bilities with the revoke() operation. Revocation alone, however,
does not guarantee isolation of capability graphs. For example, if
two otherwise isolated graphs are allowed to access the same Ren-
dezvousPoint, rpA, they can immediately exchange a capability
to another RendezvousPoint, rpB. Hence, even if rpA is revoked,
the graphs stay connected via rpB, which allows an uncontrolled
exchange of rights, i.e., capabilities to flows, grants, nodes, etc.

To provide transitive isolation of capability graphs, CAPNET re-
lies on membranes [29, 50]. A Membrane object guarantees that all
capabilities exchanged through it will be revoked when the mem-
brane is “cleared” One can think of a Membrane as setting up an
elastic “wall” in the capability graph. To define the behavior of mem-
branes, we rely on labels: every capability may have an attached set
of labels. Exchanging a capability through a membrane causes the
received capability to be labeled with that membrane (“wrapped”),
or have that membrane’s label removed (“unwrapped”), as described
below. For example, let m be a capability to a Membrane object M.
One passes a capability through this membrane by calling m.wrap().
If rp is a capability to a RendezvousPoint, w_rp = m.wrap(rp) sets
w_rp to a new capability that is a copy of rp, except that it is inter-
nally labeled with M, i.e., W_rppy- This encodes that it is “on the
other side of M” Moreover, all capabilities that are sent or received
by accessing the RendezvousPoint through the capability w_rp sy,
will also “pass through” M. In the example below, the Node capa-
bility node is sent through the unlabeled capability rp, but received
via w_rp.

rp.send(node)
w_node = w_rp.recv()

Because w_rpislabeled with M, the capability returned by w_rp.recv()
is also labeled with M, indicating that it has passed through M: ie.,

w_nodeyry. If this capability is again sent through w_rp, it passes

back through M, and the received capability will not be labeled

with M. Consider the following code:

w_rp.send(w_node)
node = w_rp.recv()

On the first line, because W_rp () is labeled with M, CAPNET
causes the RendezvousPoint to receive a capability that is exactly
like w_node{ M) except that its M label has been removed. The
capability that is inserted into the RendezvousPoint thus has no
label. When that capability is received via w_rp (M} on the second
line, the received capability is again wrapped: node ).
Membranes are composable with the rest of the capability sys-
tem. The rules for labeling ensure that all “derived capabilities”—
capabilities that are obtained from capability operations that take
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a labeled capability as an argument—are also labeled. For exam-
ple, if the holder of a labeled node(,) capability resets the node
(grant = node.reset()), the newly created grant will follow the rules
of labeling and will be labeled as grant ).

Intuitively, the addition of the label records that the capability has
“crossed through M,” and its removal records that it has crossed back.
When a labeled capability passes through the same membrane again,
returning to its original side, it is unlabeled. A capability is usable
until any of the Membranes in its label set is cleared. When a Mem-
brane is cleared, CAPNET revokes all capabilities that are labeled
with that Membrane, hence re-isolating the graphs. This allows a
powerful security template in which one principal, e.g., a third-party
service provider, can configure the system of another principal, e.g.,
a cloud service consumer, through the membrane, but then be com-
pletely isolated when the membrane is cleared (Section 5.1). Finally,
membranes compose with themselves. CAPNET ensures the capa-
bility that crosses multiple membranes is annotated correctly, e.g.,
cap (M, My, M;} = Mi.wrap(Mz.wrap(Ms3.wrap(cap(})))

SealerUnsealers. SealerUnsealer objects provide a way to pro-
tect a capability while it is being passed through a chain of untrusted
principals. A SealerUnsealer is an object with two methods: seal()
and unseal(). The seal method seals a capability passed as an ar-
gument, i.e., sealed_c(syy = su.seal(c). The returned capability is
labeled as being “sealed”, i.e., sealed_c(sys}, changing its behavior
with respect to other capability operations. It is still possible to mint,
revoke, delete, send, and receive a sealed capability; these operations
return another sealed capability. However, a sealed capability does
not give authority to use or change (i.e., invoke methods upon) the
object it points to. For instance, a sealed capability to a Flow does not
allow packets to be sent along the Flow. The unseal method takes
a capability sealed by the same SealerUnsealer object and returns
the original unsealed capability, i.e., c(} =su.unseal(sealed_c(syr})-
The unseal() operation fails if the label does not match the Seal-
erUnsealer object.

SealerUnsealer objects have a special feature: CAPNET mem-
branes allow capabilities to SealerUnsealer objects to pass through
unlabeled. Thus, when a membrane is cleared, the capabilities to
SealerUnsealer objects are not revoked. In the example below, the
capabilities rp (a capability to a RendezvousPoint) and su (a ca-
pability to a SealerUnsealer), are wrapped by the membrane m.
After the membrane is cleared via m.clear(), the wrapped capability
w_rp is invalid, as it crossed the membrane and is revoked, but the
capability w_su remains valid.

w_rp = m.wrap(rp)

Ww_su = m.wrap(su)

m.clear()

w_rp.send(cap) # error, w_rp is revoked

s_cap = w_su.seal(cap) # ok, w_su is valid

CaPNET allows capabilities to SealerUnsealers to cross membranes
unrecorded, because SealerUnsealers themselves do not enable
communication nor the exchange of capabilities. They can only seal
and unseal other capabilities. Thus, capabilities to SealerUnsealers
do not violate isolation of object graphs enforced by membranes.
In fact, SealerUnsealer objects allow us to reconnect otherwise
isolated graphs in a controlled manner, by protecting capabilities
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with seals while they are passed through a chain of untrusted parties
(Section 5).

5 SECURE COLLABORATION PROTOCOLS

CAPNET utilizes the above abstractions—reset, membranes, and
sealer-unsealers—to create composable collaboration patterns: gen-
eral security protocols that enable construction of complex cloud
systems assembled by mistrusting tenants.

5.1 Secure Provider

CaPNET allows the implementation of a secure provider protocol
in which the consumer and provider of a third-party service in a
cloud are not required to trust each other, can both protect their
private data, and the provider can protect her proprietary service
implementation. We assume that a cloud tenant has a sensitive data
set in a cloud and wishes to analyze it using a third-party cloud
service (e.g., a large-scale data-analytics platform like Hadoop [4]).
Several security constraints guide the design of this protocol. The
tenant wants the service provider to install and configure the ser-
vice, and requires that (1) during installation, the provider should
have potentially unlimited access to the hosts dedicated for the
service, but should be isolated from the rest of consumer’s cloud en-
vironment; and (2) once installation is complete, the guarantee that
the provider is completely isolated from the service. The provider,
on the other hand, requires (1) full unrestricted access to a subset
of the consumer’s cloud resources to deploy the service (e.g., copy
disk images, run performance tests); and (2) a mechanism to protect
the service from the consumer after installation is completed and
the consumer starts using the service.

Mutual isolation of principals. The “secure provider” protocol
builds on the ability of CAPNET to provide mutual isolation of prin-
cipals with reset and membranes. Reset creates a trusted, isolated
execution environment inside a potentially untrusted environment.
Hence, when the service provider obtains capabilities to the nodes
from the consumer, it can reset the nodes in a clean, isolated state
even though the consumer still owns the node.

Membranes, on the other hand, provide a symmetric isolation
guarantee for the owner of a node. If the consumer initially shares
a capability to the nodes with the service provider through a mem-
brane, despite the fact that the provider is allowed unlimited con-
nectivity to the node, the node will be isolated from the provider
after the membrane is destroyed. We illustrate these ideas by devel-
oping a complete example of the secure service provider protocol: a
general protocol that allows deployment of complex cloud services
consisting of proprietary software and sensitive state and data sets.

Secure provider protocol. Step 1. Consumer: membranes, iso-
lating the object graphs. The consumer initiates the protocol by
requesting installation of a service with the secure_provider() func-
tion (Listing 1). The function takes two arguments: provider_rp, a
capability to the rendezvous point connecting the consumer with
a third-party service provider, and nodes, an array of node capa-
bilities on which the service will be installed. To ensure isolation
from the provider, the consumer creates a membrane (membrane)
and a rendezvous point (rp) (Listing 1, lines 2-3). It then wraps the
rendezvous point (Listing 1, line 4) and shares it with the provider
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cap secure_provider(cap provider_rp, cap nodes[])
membrane = create(Membrane)
rp = create(Rp)
wrapped_rp = membrane.wrap(rp)

for node in nodes {
rp.send(node)
}

1

2

3

4

5 provider_rp.send(wrapped_rp)
6

7

8

9 srv_rp = rp.recv()

10 membrane.clear()

11 return srv_rp

Listing 1: Secure provider protocol, consumer’s code

through a regular rendezvous point provider_rp (Listing 1, line 5).
The consumer then uses the unwrapped rendezvous point to send
capabilities to the nodes that will be used to install the service
(Listing 1, lines 6-8). Since node capabilities are sent through the
unwrapped capability rp on the consumer’s side, but received by the
provider through the wrapped capability wrapped_rpary (where
M is the membrane object created by the consumer in Listing 1,
line 2), the capability system labels all node capabilities on the
provider’s side as node[i] (5. The consumer waits for the provider
to finish the installation by performing a blocking receive on the
rp rendezvous (Listing 1, line 9).

Step 2. Provider: receiving and isolating the nodes. The
provider starts the protocol by waiting on the consumer_rp ren-
dezvous point connecting it to the consumer (Listing 2, line 2). It
receives a wrapped rendezvous point (wrapped_rp) from the con-
sumer and then uses it to receive node capabilities to install the
service (Listing 2, lines 3—4). To ensure that the nodes are isolated
from the consumer, and are in a clean state, the provider resets each
node it receives (Listing 2, line 4). Note that while mediated by the
membrane, the provider can freely exchange capabilities with the
nodes it received from the consumer, establish connections to its
internal services (e.g., image and storage servers), and configure
connectivity between the nodes.

Step 3. Provider: service install. The provider continues with
installation by invoking a custom function specific to the service
(install_service(), Listing 2, lines 8—11). The provider creates a ren-
dezvous point (srv_rp) that will serve as an interface to the service
(e.g., exchanging flow capabilities to establish connectivity with
consumer’s nodes using the service). After installation finishes, the
provider returns this capability to the consumer. Note that while
srv_rp is created by the provider, it will be labeled as srv_rp(yy,
where M is the membrane object created by the consumer in List-
ing 1, line 2. Therefore, when sru_rpy) is sent back to the con-
sumer through the wrapped_rp (1) capability that is also labeled
with M, the consumer receives an unwrapped rendezvous capability
srv_rpyy which therefore will remain intact after the membrane
is destroyed. The same is true for all internal Flows, Rendezvous-
Points, and other capabilities configured by the provider through
the membrane on the nodes it received from the consumer.

Step 4: Consumer: destroying the membrane. After service
installation completes, the appliance consumer destroys the mem-
brane (Listing 1, line 10). At this point, all capabilities that carry the
M label are revoked and therefore the service is isolated from the
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=l

SoCC ’17, September 25-27, 2017, Santa Clara, CA, USA

void do_secure_provider(cap consumer_rp)
wrapped_rp = consumer_rp.recv()
while (nodes[i] = wrapped_rp.recv())
grants[i] = nodes[i].reset()
srv_rp = install_service(grants)
wrapped_rp.send(srv_rp)
return

cap install_service(cap grants[])

O 0 N N U R WY =

srv_rp = grants[j].create(Rp)

return srv_rp

Listing 2: Secure provider protocol, provider’s code

consumer. Any connectivity that was created between the nodes
and the provider is gone.

5.2 Trees and General Graphs

Membrane wrap() and Node reset() are composable operators. They
can be invoked recursively among multiple cloud tenants to con-
struct complex services assembled from components provided by
each tenant. Specifically, a combination of membranes and reset
enables construction of any cloud topology that is a tree (Figure 2a).
For each parent node in the tree, a tenant asks one or more service
providers to deploy their cloud services, assembling an isolated sub-
tree. The tenant then assembles subtrees into a service and returns
to its own parent. At each level, the consumer and provider com-
municate through a membrane; thus, the consumer has a guarantee
that each subtree is isolated from the rest of the system, irrespec-
tive of any capability operations performed inside the recursive
invocations. Moreover, at each level, service providers can deploy
their services in isolation by re-isolating the nodes with reset().

From trees to general graphs. Membranes and reset allow the
construction of trees in capability graphs. SealerUnsealer objects
extend these mechanisms with a means to securely construct cloud
topologies that are general graphs (Figure 2). CAPNET relies on the
special property of the capabilities to an SealerUnsealer object to
pass through membranes unlabeled. Hence, it is possible to con-
struct a tree with a node that has a capability to a SealerUnsealer
shared with a principle outside of the tree (in Figure 2b, unseal
is a capability to a SealerUnsealer, su4, shared with A). Later, A
can leave the capability to the same SealerUnsealer object, suy, in
another part of the tree. The sealy capability can be used to seal
other capabilities (e.g., a capability to a RendezvousPoint, rp4). The
sealed capability seals(rpa) can be sent through the tree to the
point where it can be unsealed, thus reconnecting the trees.

5.3 Joint Computation

We illustrate the use of SealerUnsealer objects with the “joint compu-
tation” protocol that allows mistrusting tenants to process federated
datasets in a secure manner. In our example, tenants A and B would
like to process their combined data sets Apg;q and Bpgyq, but in
such a way that data sets cannot be leaked to either of the ten-
ants (Figure 3). Both tenants require unlimited access to each data
set from their compute environments (Acompute and Bcompute)s
but would like to control how results of the computation are re-
leased to each tenant via validation proxies (Ay gjidation Proxy @nd
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(a) Tenant U uses membranes and reset recursively to construct a
general tree of isolated services.
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(b) While constructing its services the service provider A leaves the
unseala capability in one of the services (Asc,v,), and the sealy
capability in another(Ase;o,)-
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(c) Asero, seals the RendezvousPoint capability rp to pass through
the system in a protected manner.
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(d) A’s services Asero, and Agero, are now connected.

Figure 2: Example of constructing of a general service graph
with SealerUnsealer
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Figure 3: Joint computation

Bvalidation Proxy)- In other words, the joint computation must be
constructed in such a manner that the two parties are guaranteed
that: (1) both data and compute components are completely iso-
lated from the outside world; and (2) the only access to compute
environments is via validation proxies (Figure 3).

At its core, the protocol consists of three steps. First, the data
sets Apgrq and Bpgyq are deployed by A and B in isolation. Second,
“compute chains” for both A and B are constructed as a two-step
recursive application of the “secure provider” protocol. Third, “com-
pute chains” are re-connected to the data sets via sealed capabilities.
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(a) Step 1: A completed the “secure provider” protocol for B and in-
stalled its dataset.
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(b) Step 2: B completed the second step of the two-step recursive
protocol by installing its proxy and returning to A.

Figure 4: Steps 1 and 2 of the “joint computation” protocol

Step 1. Installing data sets. To deploy its data set in isolation
to B, A executes the “secure provider” protocol for B (Figure 4a
shows the result of this step). B is guaranteed that the dataset is
completely isolated from A. Note that A returns a sealed capability
seala(data_rpy) that can be unsealed by a SealerUnsealer object
that is accessible to A through its unseals() capability. A plain
unsealed capability data_rp4 would allow B to access A’s dataset.

Step 2. Assembling compute chains. To assemble the A com-
pute chain, A first requests B to perform the “secure provider” pro-
tocol. B deploys its validation proxy By ajidation Proxy and recur-
sively requests A to deploy its compute environment Acompute-
Inside Acompute, A leaves a capability unseals (Figure 4b) that
will allow the isolated compartment of A’s compute environment
to reconnect to both data sets in Step 3. A returns to B two capa-
bilities (Figure 4b): 1) a capability proxy_rpa to a request proxy
RendezvousPoint, that will allow establishing connections with
the compute cluster, and servicing requests; and 2) a capability to
a rendezvous point comp_rp 4 that will be used to reconnect A’s
compute environment with both A and B’s datasets in Step 3.

From inside the “secure provider” protocol initiated by A, B
installs its validation proxy that mediates all communication to
A’s compute environment. B returns to its caller A two capabil-
ities (Figure 4b): 1) a rendezvous capability proxy_rpp to allow
connections to B’s validation proxy; and 2) a sealed capability
sealg(comp_rp ). Tenant B seals the second capability to prevent
A from obtaining unmediated access to A’s compute environment.

Step 3. Connecting compute and data nodes. Finally, to con-
nect both compute environments to each of the datasets, both A and
B leave SealerUnsealer capabilities inside Apgrq and Bpgrq. We
illustrate how Apgtqis connected to the Beompute environment
(Bpata is connected in a similar manner). Because of the result
of Step 1, B has access to the sealed capability seals(data_rpa). B
knows that this capability originates from a completely isolated
environment (by the guarantees of the secure provider protocol),
and can only point to something inside that compartment. B cannot
share this capability directly with A, since A will gain access to the
A dataset and can establish communication channels to exfiltrate
sensitive data from the joint computation later. However, it is safe
for B to share with A a sealed capability sealg(seals(data_rpa)).
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This capability can be unsealed only inside B’s compute environ-
ment, since this is where B left the unsealp capability. B therefore
shares sealg(seals(data_rp4)) with A. A cannot use this capability
directly, but A passes it to B’s compute environment. Note that B’s
computation has the unsealg capability to remove its seal, but will
not be able to remove the seal seal. In CAPNET, seals commute. It
is safe for A to remove sealy seal from the sealg(seals(data_rpa))
capability before passing it to Bcompute, Since Bcompute has no
access to other capabilities protected with seal4. Therefore, A first
removes its seal and then shares sealg(data_rpa) with Bcompute-

6 CAPNET IN OPENSTACK

We implemented the CAPNET capability-controlled network and
integrated it into the OpenStack cloud platform. Figure 5 depicts our
implementation in the context of OpenStack. We expose CAPNET
as a virtual network type in OpenStack—meaning administrators
and tenant users can allocate CAPNET networks and ports, attach
VMs to them, and use the capability API to create data-plane flows.

6.1 CapPNET SDN Capability Controller

The CAPNET SDN control application is a multi-threaded C pro-
gram, built on the OpenMUL SDN controller [36], that manages the
flow tables of one or more OpenFlow-enabled switches. The con-
troller maintains all capability state and enforces secure capability
invocation and exchange.

Capabilities. CAPNET uses libcap [22], a general-purpose ca-
pability library we created that implements CSpaces, CDTs, and
the core capability operations (i.e., mint(), revoke(), and delete()) de-
scribed in Section 4.1. It can be extended with new capability object
types and operations on those objects; this is the basis for the Cap-
NET objects (e.g., Node and Flow). The design and implementation
of libcap is further described in Jacobsen’s thesis [22].

Data-plane management. CAPNET’s controller enforces the
network-access policy described by the current set of flow capabili-
ties. CAPNET proactively pushes and removes flows to and from its
switches, as capabilities are granted and revoked, so the forwarding
tables in these switches reflect the current policy. The CAPNET
controller incurs almost no data-path overhead as its enforcement
is done purely via control-plane mechanisms (other than to sup-
port non-capability-aware legacy nodes and to emulate broadcast
traffic). Node metadata—e.g., MAC and IP addresses, provided by a
trusted administrator—is used to restrict flows according to flow
capabilities and to prevent spoofing attacks. The CAPNET controller
does not currently handle controller-switch network partitions;
we assume that the cloud infrastructure switch fabric and control
plane are reliable. We leave robust CAPNET behavior in the face of
network partitions and other infrastructure failures as future work.

Capability protocol. Nodes in a CAPNET-controlled network
interact with the controller using a simple, reliable capability proto-
col. Capability protocol messages are intercepted using OpenFlow
rules and handled in the controller; responses are injected back
onto the network. CAPNET uses metadata provided by the admin-
istrator to associate a (switch, port) pair with a particular Node
object. The controller performs the requested action in the context
of the Node object’s CSpace, ensuring that only legal operations
are performed. This snooping-based protocol ensures that devices
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Figure 5: CAPNET integration with OpenStack

cannot impersonate each other. The protocol is built atop Google
protocol buffers [17]; CAPNET provides Python bindings to build
capability applications.

Performance. The CAPNET controller is multi-threaded and
safely parallelizes the handling of OpenFlow events and capability
protocol messages via fine-grained locking. Multiple hosts might
issue conflicting capability operations. To serialize and guarantee
the atomicity of capability operations, we rely on the 1ibcap library
and CAPNET controller. All operations that manipulate capabilities
acquire locks to the nodes of the CDT and CSpace data structures.

Legacy support. To allow unmodified host networking stacks
to function, CAPNET enables several protocols that rely on layer 2
ambient authority to broadcast in order to locate endpoint informa-
tion (e.g., ARP, DHCP, etc.). The CAPNET controller services ARP
requests and preemptively pushes flows to enable DHCP broadcast
requests between a DHCP agent and a known server.

6.2 OpenStack Integration

We added CAPNET to OpenStack Liberty by exposing it as an Open-
Stack virtual network type inside Neutron, OpenStack’s network
service. Figure 5 shows a classic OpenStack deployment. A con-
troller node runs user-accessible, high-level RESTful API services
that create and manage cloud objects such as VMs and virtual
networks. Compute nodes host VMs and virtual network ports. A
network node provides virtual networks and services like DHCP and
cloud-metadata services for booting VMs. The service APIs provide
authentication, handle cloud resource management at an abstract
level, and communicate with distributed agents over internal RPCs
to create specific virtual resources (e.g., a CAPNET network port).
Neutron plugins implement the details of layer 2 and layer 3
virtual networks and ports when created by administrators or ten-
ants [39]. We wrote a CAPNET agent-based driver for the ML2
plugin, making CAPNET networks available to cloud tenants.
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CAPNET networks in OpenStack. The CAPNET driver core
runs within the Neutron API service on the OpenStack controller
node. It interacts via RPC with CAPNET driver agents on network
and compute nodes to create networks and ports. The CAPNET dri-
ver configures the CAPNET SDN controller, running on the network
node, to control the Open vSwitch switches in the infrastructure
(typically one on each of the compute and network nodes). Since
CAPNET provides isolation via capabilities, CAPNET virtual net-
works are marked “shared” in OpenStack, allowing multiple tenants
to connect to the same network—and thus collaborate.

CAPNET controller management. Coupling between Open-
Stack and the CAPNET network occurs via a Metadata Manager
and an SDN Control Manager in the CAPNET ML2 Agent on the
network node. The SDN Control Manager runs the OpenMUL con-
troller and the CAPNET capability control application. The Metadata
Manager communicates OpenStack node and port metadata to the
CAPNET controller, enabling it to enforce flow capabilities. The con-
troller also pushes flows to enable the OpenStack metadata service,
through which VMs obtain configuration (e.g., user public keys).

Workflow agents. In CAPNET, all nodes connected to ports on
CaprNET-controlled switches can send capability protocol messages
to exchange capabilities. However, nodes running legacy applica-
tions may not be capability-aware, or the tenant user may prefer
to centrally coordinate all capability-based data-plane paths by
writing a program that creates data-plane paths by exchanging
capabilities on behalf of the nodes it owns. We call these programs
workflow agents, and we have added support for them in Neutron.
Users create workflow agents (via a simple Neutron API extension)
that run a program of their choosing, and may declare that the
workflow agent is a master for its tenant. Master workflow agents
receive node capabilities to all VMs created in that tenant, which
allows them to manage capabilities on behalf of their nodes. When
a workflow agent is created, the CAPNET ML2 agent runs the work-
flow agent in an isolated Linux network namespace [26], with a
network interface, and connects the interface to the specified switch
(similarly to how Neutron connects DHCP agents to networks).

Collaboration. To allow OpenStack tenants to collaborate, Cap-
NET provides a broker object that exposes two methods, register()
and lookup(). Workflow agents may register a RendezvousPoint
with a service name; other agents may look it up and use it.

6.3 CapPNET in Other Clouds

Although we have only integrated CAPNET with OpenStack, Cap-
NET could be integrated into other clouds as well. First, CAPNET
requires full control of an SDN switch fabric to ensure that nodes
only send traffic according to flow capabilities, and that capability
control-plane messages are securely exchanged. Second, CAPNET
requires the cloud to provide identifying metadata about nodes
plugged into its SDN fabric (e.g., MAC and IP addresses), as well as
the tenant that owns them. CAPNET uses this metadata to populate
the switches with appropriate flow match rules. The cloud trusts
CAPNET to correctly implement its virtual network semantics (e.g.,
plug nodes into the correct switch ports). Finally, CAPNET must
be extended to support network paths that the cloud requires for
infrastructure services, such as VM boot-time self-configuration.
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7 EVALUATION
7.1 Security Analysis

The threat model for CAPNET’s implementation was presented in
Section 3. Here we describe how our implementation addresses
those threats. Recall that the attacker may be located on a device
managed by CAPNET or on an unknown device.

If the attacker is on an unknown device, there is no correspond-
ing Node in the CAPNET controller. Consequently, the attacker
cannot hold any capabilities to Flow objects, and there cannot be
any Flows with the attacking device as their destination. CAPNET
creates SDN flow-table entries only for authorized flows, which are
explicitly represented by Flow objects and capabilities. A packet
that does not belong to any authorized flow is dropped at the SDN
switch. Thus, an attacker at an unknown device can neither send
nor receive packets.

If the attacker is located on a device that is associated with a
Node, it can use the capabilities held by the Node to attempt to
violate the current policy. The attacker can attempt to send packets
to other nodes or to the controller.

Sending a packet to another Node is an implicit method invoca-
tion on a Flow object; it succeeds if and only if the sender has a Flow
capability that matches the packet. If CAPNET correctly implements
the model in Section 4, the attacker is able to send packets only in
accordance with the current policy. Sending a packet along a Flow
never changes the current policy.

Packets sent to the controller encode method invocations on
objects. The attacker cannot invoke methods on objects for which
it does not hold a capability. Thus, the attacker cannot change the
policy (or send packets, or cause packets not to be delivered) by
manipulating those objects. The attacker may change the policy by
invoking methods on objects for which it holds a capability. Any
such change, however, is authorized by the current policy, and thus
is not disallowed. Given a correct implementation of the CAPNET
model, the attacker cannot perform authorized actions in order to
effect unauthorized policy changes, cause unauthorized packets to
be received, or cause authorized packets to be dropped.

Finally, because a flaw in the CAPNET implementation could
allow an attack to succeed, we examine the size of its trusted com-
puting base (TCB). The core of CAPNET is its SDN control applica-
tion, which totals 10,006 SLOC (C, Python, IDL) as of August 2017.
CAPNET depends on libcap [22]), the capability library we wrote,
which totals 2,604 SLOC (C). The CAPNET OpenStack plugins total
3,957 SLOC (Python). CAPNET also depends on OpenMUL, the SDN
controller library we used; OpenStack Liberty (particularly its net-
work and compute components); various C and Python toolchain
components; and the Linux kernel and Open vSwitch module (and
user space configuration tools). CAPNET trusts OpenStack to pro-
vide correct network identity and tenant ownership information
for VMs; trusts OpenMUL to properly insert flow match rules into
Open vSwitch virtual switches; and trusts Open vSwitch to properly
forward traffic according to those rules (and would need to trust
OpenFlow-enabled switches in a hardware deployment). With the
exception of OpenMUL, these components are present in typical
OpenStack deployments and are well-tested. In summary, the size
of the CAPNET components is reasonably small (16,567 SLOC), and
do not add significantly to the overall TCB of an OpenStack cloud.
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7.2 Performance

We evaluate the performance and scalability of CAPNET’s capability
operations in the context of a simple cloud-based, multi-party “se-
cure provider” case study. In contrast to traditional layer 2 networks,
CAPNET requires path construction (flow capability grants) before
the data plane is usable. Once a path has been constructed after a
flow capability grant, the CAPNET controller adds no overhead to
the data plane—data plane traffic flows exist due to flow capability
grants, and CAPNET does not inspect the data plane. Thus, Cap-
NET’s capability operations must add minimal overhead to SDN
flow insertion and removal operations; and when combined into
agents that create typical network data paths, execute quickly rela-
tive to the runtime of an application using the data paths. We focus
our evaluation on capability operations, rather than typical SDN
metrics (OpenMUL has been characterized elsewhere [44]).

We first examine performance of CAPNET’s core capability op-
erations, showing that they are low-cost, and that even the most
expensive operations are fast. Second, we show that the total time to
create a CAPNET network configuration is reasonable by comparing
the execution times of workflow agent data path construction to
the times of a simple Hadoop job. Third, we show that the CAPNET
SDN controller can scale within a multi-tenant cloud by running
multiple concurrent AaaS tenant pair experiments.

Secure provider case study. We built two workflow agents, a
realization of the “secure provider” collaborative CAPNET protocol
described in Section 5.1, each of which is owned and run by a differ-
ent OpenStack tenant. The first workflow agent (the “user WFA”)
receives a list of node capabilities to VMs that were allocated by a
user tenant and attached to the CAPNET network. The second agent
(the “service WFA”), running in a different tenant, registers with
the CAPNET service broker to provide the “Hadoop” configuration
service. The WFAs then execute the “secure provider” protocol to
install Hadoop, revoke the service provider’s access, and execute a
simple Hadoop job (wordcount) on the configured system.

Experiment infrastructure. We conducted our experiments
on the CloudLab testbed [43], in an OpenStack cluster configured
with CAPNET. The cluster contains 26 machines: one node func-
tions as the OpenStack “controller”; another node as the “network
manager” (runs network-wide services such as DHCP and CAPNET
workflow agents); and compute nodes that host VMs. Each machine
is a Dell PowerEdge R430 with two 2.4 GHz 8-core E5-2630 pro-
cessors, 64 GB RAM, and one 200 GB SSD, running Ubuntu 15.10,
Linux kernel 4.2.0-27, OpenStack “Liberty”, and Open vSwitch 2.4.0.
Each node is connected to a 10 GbE LAN (the CAPNET physical
data plane). The network manager and compute nodes each have
a single Open vSwitch bridge (containing the physical Ethernet
device) controlled by CAPNET.

Test setup. We ran the workflow agents on new VMs 60 times:
15 trials each with 50, 100, 150, and 200 worker VMs. Each set of 15
trials operated on an identical input file (approximately 6.4, 12.8,
19.2, and 25.6 GB, respectively).

7.2.1  Capability Operation Benchmarks. Capability operations
fall into two categories: “Soft” operations affect only the state of
objects on the controller, and “Hard” operations that can affect the
network (i.e., that cause flow add or removal). Table 2 shows the
range of observed execution times for Soft operations (as a group)
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Table 2: Capability Operation Times (min to 99th% in us)

Operation Number Worker Nodes
50 100 150 200
Soft 0-1120 0-1160 0-1270 0-1090
create(Flow) 20-650 50-290 30-290 40-300
Grant.grant 120-460 | 100-450 | 100-440 70-460
Node.reset 170-720 | 160-680 | 150-674 | 130-720
Membrane.clear 52880- | 158340- | 319140- | 505650-
72050 202030 364730 594150

50 nodes
100 nodes
08 | 150 nodes 4
200 nodes
0.6 9
04 9
0.2 r 4
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Operation Time (us)

Figure 6: Membrane Clear

and select Hard operations that are important to our case study.
Most Hard operations take only a few hundred microseconds. In
the worst case, clearing a membrane involves deleting hundreds
of flow capabilities that all manipulate the network, but takes only
hundreds of milliseconds.

The operations create(Flow), Grant.grant() are the primary vectors
for flow capabilities. Since network state is updated when a new flow
capability is received, the timings for these operations represent
the expected cost of altering the network connectivity of CAPNET
nodes. Extrapolating from these operation timings, we can see that
our network manipulations take only 100-200us on average.

The complex Node.reset() and Membrane.clear() operations re-
isolate anode and destroy a membrane, respectively. Membrane.clear()
is CAPNET’s most costly operation because it may make many net-
work changes. For example, when a membrane is destroyed, flow
capabilities on the wrong “side” of the membrane will be deleted.
Figure 6 shows a CDF of the time to execute a Membrane.clear()
in each experiment; its cost increases proportional to the large
numbers of wrapped capabilities in larger experiments. In our
largest experiment, Membrane.clear() took less than ~ 600ms. Since
Membrane.clear() will be invoked only a few times in a protocol to
re-isolate exposed nodes, it is unlikely to be a major bottleneck.

When Node.reset() is invoked to re-isolate a node, all flow capa-
bilities pointing “to” the node must be revoked. Its cost depends
on the number of principals that own a flow to the node being
reset. Figure 7 shows a CDF of Node.reset() execution times for each
experiment (only data up to the 99th percentile is shown for clarity).
The cost of Node.reset() is mostly invariant on the number of nodes,
since most nodes have the same number of incoming flows. The
maximum time taken by Node.reset() was 1.3ms.

7.2.2  Workflow Agent and Hadoop Performance. Here we an-
alyze the “macro” performance of the AaaS workflow agents. We
show the overhead of groups of costly capability operations, com-
pared to the time spent configuring and running Hadoop. We do
not show “soft” operations since they are not major contributors to
total WFA times. Note that these workflow agents spend significant
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Figure 7: Node Reset (up to 99th percentile)

Table 3: User WFA time in sec. (columns do not sum to total)

Operation Number Worker Nodes

50 | 100 | 150 | 200
recv-nodes 36.5012 42.8794 49.5650 56.0228
send-nodes 1.1590 2.1302 3.0669 4.2292
membr-wait-recv 71.8752 | 122.3947 | 265.3045 | 260.5325
membrane-clear 0.1005 0.2109 0.3806 0.5902
hadoop-job-run 151.2563 | 246.9126 | 325.0591 | 432.6685
full WFA time 261.7379 | 419.2941 | 654.1214 | 766.4997

Table 4: Service WFA time in sec. (columns do not sum to
total)

Operation Number Worker Nodes

50 | 100 | 150 | 200
membrane-recv 95.0663 | 143.7468 | 192.3154 | 254.1871
recv-nodes 8.3839 16.2502 24.0745 32.1975
all-pairs 8.7366 33.1489 74.0023 | 128.9374
hadoop-setup 56.0935 75.4767 | 170.7995 | 104.2655
full WFA time 168.6481 | 268.8255 | 461.6599 | 519.5675

amounts of time waiting for each other’s operations to complete—
for instance, the user WFA spends significant time simply waiting
for the service WFA to set up Hadoop.

Table 3 shows time spent in key phases in the user WFA, while
Table 4 shows the service WFA. The user WFA receives capabilities
to nodes in its tenant from the controller (“recv-nodes”). It uses
a 30 s timeout to detect when the controller has finished sending,
and this timeout is included in the “recv-nodes” operation time.
Immediately after receiving its node capabilities, the user WFA
sends its nodes across the membrane to the service WFA (“send-
nodes”). After all node capabilities have been sent, it begins waiting
for the service WFA to set up Hadoop (“membr-wait-recv”). We
create the service WFA before creating the user VMs; thus, the
service WFA “membrane-recv” operation is lengthy, because the
time the service WFA spends waiting to receive the membrane
includes VM creation, as well as the “recv-nodes” operation in the
user WFA. The service WFA receives all the node capabilities sent
across the membrane (“recv-nodes”), and sets up an all-pairs flow
mesh amongst the VMs by granting each VM the ability to send
traffic to every other VM. During “membr-wait-recv”, the user WFA
waits for the service WFA to send the capability back through the
membrane, signaling that it has completed Hadoop setup (“hadoop-
setup”); and then clears the membrane to revoke capabilities from
the service WFA. The user WFA loads data into HDFS and runs a
Hadoop job (“hadoop-job-run”).

A. Burtsev, D. Johnson, J. Kunz, E. Eide, and J. Van der Merwe

Table 5: Capability operation times with parallel
Application-as-a-Service (min to 99th percentile in ys)

Operation 2 instances 3 instances 4 instances
‘ 50| 100 ‘ 50| 100 ‘ 50| 100
Grant.grant | 100-430 | 110-440 | 90-450 | 70-450 | 60-430 | 50-460
Membrane 38890- | 162880- | 52090- | 141380- | 40040- | 144600-
.clear 67920 | 206510 | 69480 | 201110 | 69020 | 209840

7.2.3  Multiple Simultaneous AaaS Workflow Agents. In this sec-
tion, we evaluate scalability by running multiple, concurrent AaaS
workflow agent pairs. In this experiment, we do not configure or
run Hadoop, so the execution of the workflow agents consists only
of capability operations, as well as the time required to boot the
VMs. We do this by design to force each workflow agent pairs’ ca-
pability operations to operate nearly simultaneously, to encourage
parallelism and lock contention at CAPNET’s controller—to allow
us to analyze CAPNET’s scalability.

Test setup. We ran an AaaS WFA pair for each tenant, and we
increased the number of concurrent tenants. For each of 2, 3, and 4
concurrent tenants, we ran 5 trials, each with 50 and 100 worker
nodes.This test does not run Hadoop so we set per-worker RAM to
2GB and 1 VCPU to achieve greater packing. We do not use 150-
and 200-worker tests in this experiment for several reasons. For
instance, our tuned Neutron configuration produced errors on large
parallel VM creates; this prohibitively increased the test runtime.
However, the number of worker nodes is much less important than
the number of competing tenants (workflow agents).

Capability operation benchmarks. Table 5 shows the timings
of the Grant.grant() and Membrane.clear() operations depending on
the numbers of nodes and parallel AaaS executions (i.e., 2 instances
means 4 workflow applications running). Execution times scale
similarly to the single instance case (Table 2); there is no significant
slowdown from running multiple tenants in parallel.

8 CONCLUSION

CAPNET is a novel network architecture that enables least authority
and secure collaboration in a modern cloud. CAPNET extends the
classical capability model with primitives that enable decentralized
authority and the realization of secure cross-tenant collaboration
protocols. We implemented CAPNET and integrated it with Open-
Stack. We developed protocols for the secure deployment of cloud
services and federated computations. The evaluation of our pro-
totype demonstrates the feasibility of our approach. CAPNET is
open-source [16] and can be test-driven via a CloudLab [43] pro-

file [11].
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