
Lightweight Capability Domains:
Towards Decomposing the Linux Kernel

Charles Jacobsen Muktesh Khole ∗ Sarah Spall Scotty Bauer Anton Burtsev

University of Utah ∗Microsoft Corporation
Salt Lake City, UT, USA Redmond, WA, USA

charlesj@cs.utah.edu muktesh.khole@utah.edu spall@cs.utah.edu sbauer@eng.utah.edu aburtsev@cs.utah.edu

Abstract
Despite a number of radical changes in how computer systems are
used, the design principles behind the very core of the systems
stack—an operating system kernel—has remained unchanged for
decades. We run monolithic kernels developed with a combination of
an unsafe programming language, global sharing of data structures,
opaque interfaces, and no explicit knowledge of kernel protocols.
Today, the monolithic architecture of a kernel is the main factor un-
dermining its security, and even worse, limiting its evolution towards
a safer, more secure environment. Lack of isolation across kernel
subsystems allows attackers to take control over the entire machine
with a single kernel vulnerability. Furthermore, complex, seman-
tically rich monolithic code with globally shared data structures
and no explicit interfaces is not amenable to formal analysis and
verification tools. Even after decades of work to make monolithic
kernels more secure, over a hundred serious kernel vulnerabilities
are still reported every year.

Modern kernels need decomposition as a practical means of con-
fining the effects of individual attacks. Historically, decomposed
kernels were prohibitively slow. Today, the complexity of a modern
kernel prevents a trivial decomposition effort. We argue, however,
that despite all odds modern kernels can be decomposed. Careful
choice of communication abstractions and execution model, a gen-
eral approach to decomposition, a path for incremental adoption, and
automation through proper language tools can address complexity
of decomposition and performance overheads of decomposed ker-
nels. Our work on lightweight capability domains (LCDs) develops
principles, mechanisms, and tools that enable incremental, practical
decomposition of a modern operating system kernel.

Categories and Subject Descriptors D.2.12 [Software Engineer-
ing]: Interoperability—interface definition languages; D.4.6 [Op-
erating Systems]: Security and Protection; D.4.7 [Operating Sys-
tems]: Organization and Design

General Terms Design, Security

Keywords decomposition, Linux, microkernels

∗ Muktesh Khole contributed to the research described herein while he was a
graduate student at the University of Utah.

c© Charles Jacobsen, Muktesh Khole, Sarah Spall, Scotty Bauer, and Anton Burtsev,
2015. This is the author’s version of the work. It is posted here by permission of ACM
for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 7th Workshop on Pro-
gramming Languages and Operating Systems (PLOS), Farmington, PA, Nov. 2013,
http://dx.doi.org/10.1145/2818302.2818307

1. Introduction
Over the last decade, attacks on computer systems have undergone
major changes in terms of exploit discovery tools, attack complexity,
and targeted parts of the system. Attackers routinely use fuzzing
tools [42, 43], and attack every possible layer of the kernel: de-
vice drivers, the network stack, the stack of USB protocols, file
systems, and virtual machine monitors. Even though a number of
static [2, 10, 18] and dynamic (stack guards [11], address space
randomization [32], executable space protection, control flow in-
tegrity [1, 19], code integrity checks [48]) mechanisms have been
invented to protect execution of the operating system kernel, at-
tackers come up with new ways to bypass these protection tech-
niques [32, 45, 46, 49]. Modern kernels remain vulnerable [8].

Lack of isolation implies that in a modern system, an attacker is
one kernel vulnerability away from taking control over the entire
machine. A successful attack on any of the kernel subsystems pro-
vides the ability to make the threat persistent in the face of reboots,
conceal it from the user and anti-virus security tools and establish a
platform for compromising local applications, collecting sensitive
financial information and user credentials, mounting attacks on the
network hosts, and establishing a distributed, peer-to-peer command
and control infrastructure. In 2014, the Common Vulnerabilities and
Exposures database lists 133 Linux kernel vulnerabilities that allow
for privilege escalation, denial-of-service, and other exploits [13].
This number is consistent across several years [8, 12].

Why do we run monolithic kernels? The reason is twofold. First,
for many years, isolation was prohibitively slow due to architectural
limits of uniprocessor machines. While significant progress in un-
derstanding the costs of inter-process communication mechanisms
has been made (see [4] for a historical overview), context switching
on commodity hardware remains prohibitively expensive [36, 50]
(some embedded CPU architectures are exceptions [4]). For many
years, monolithic kernels remained the only practical design choice
for performance. Second, the complexity of a monolithic, shared-
memory kernel prevents a trivial decomposition effort. Decomposi-
tion requires cutting through a number of tightly-connected, well-
optimized subsystems that use rich interfaces and complex interac-
tion patterns. Several attempts to decompose the kernel code failed
due to a lack of proper abstractions and automation tools [23, 52].

We argue that, despite all odds, modern kernels can be de-
composed. First, decomposition is motivated by recent hardware
progress. Today, we run multi-core CPUs with integrated memory
and PCIe bus controllers, large last level caches, and low-latency
network and storage interfaces. Overheads of traditional kernels
already dominate performance of I/O and compute intensive appli-
cations [3, 37, 38, 44]. The need for unmediated, low-latency access
to both network and PCIe-based flash storage devices, exclusive,

1

mailto:charlesj@cs.utah.edu
mailto:muktesh.khole@utah.edu
mailto:spall@cs.utah.edu
mailto:sbauer@eng.utah.edu
mailto:aburtsev@cs.utah.edu
http://dx.doi.org/10.1145/2818302.2818307

untinerrupted access to CPU cores, the ability to minimize the num-
ber of cache misses and memory accesses, access to receive packet
and flow steering mechanisms, and the ability to avoid overheads of
context switches and scheduling motivate some form of decomposi-
tion, or at least separation between control and data planes [3, 44] in
a commodity kernel. Second, after several decades of engineering
effort aimed at modularization of kernel components, kernel subsys-
tems are less tightly coupled, with relatively clean interfaces, and
most complexity encapsulated inside individual subsystems. With
proper language tools, and a general approach to breaking the code
apart, decomposition into isolated subsystems is feasible.

We develop Lightweight Capability Domains (LCDs), a general
framework for decomposing the Linux kernel. We make the fol-
lowing contributions. First, to enable practical incremental decom-
position, we extend a commodity kernel with a general embedded
microkernel interface. This interface enables an execution of decom-
posed subsystems side by side with the rest of the non-decomposed
kernel, and provides a convenient execution environment for devel-
oping decomposed subsystems. Second, we develop decomposition
patterns—a collection of general principles and abstractions for
decomposing common patterns of code in the kernel. Third, we
design an interface definition language (IDL) aimed at an automatic
decomposition effort with minimal changes to the existing kernel
code. The IDL is designed for emulating a shared-memory, mono-
lithic environment on top of share-nothing isolated susbsystems.
Finally, we make decomposed environments efficient on modern
hardware: We combine fast cross-core aysnchronous communica-
tion with a lightweight execution model that supports composable
asynchronous programming for unmodified kernel code.

2. Decomposition Strategy
An attempt to decompose an entire system at once is an effort
that will result in rapidly aging, obsolete code. Instead, we focus
our work on developing a platform that 1) enables incremental
decomposition isolating one kernel subsystem at a time, 2) can be
applied to a rapidly evolving kernel code base, and 3) provides a
foundation for developing practical, efficient systems.

Incremental decomposition To provide a path for incremental de-
composition and enable execution of legacy monolithic code and
isolated subsystems side by side, we embed a small microkernel
inside the commodity Linux kernel (Figure 1). The LCD microker-
nel is similar to the KVM virtual machine monitor embedded into
the Linux kernel. Our goal however, is to provide a more general
interface suitable for development of semantically rich decomposed
subsystems instead of virtualizing a low-level interface of the CPU
and I/O devices. The microkernel implements a minimal interface:
threads, synchronous communication, capability access control, and
memory management.

Breaking the code apart We develop a set of decomposition pat-
terns—design and development principles aimed at breaking typical
patterns of existing monolithic code into isolated subsystems. Data
structures and the code of a commodity monolithic kernel are de-
signed to run in a shared memory environment. The kernel shares
control information and state of its components by passing refer-
ences to objects across subsystems. In a decomposed environment,
each kernel subsystem operates on its own version of the system
state. This state is synchronized upon cross-subsystem invocations.
We develop techniques for transparently synchronizing objects and
maintaining a view of a global state on top of isolated, share-nothing
domains. Our decomposition patterns cover the commonly used
patterns of kernel code: global variables, exported and imported
functions, function pointers, data structures, and hierarchies of data
structures.

Disk
Driver

VFS

Memory
Mngmt

ext3

NFS

TCP/IP

NIC
Driver

MicrokernelLinux
Kernel

LCD
Domains

Auto-generated
Glue Code

Unmodified
Code

I/
O

 M
M

U

Figure 1. LCDs architecture. LCDs run as a microkernel embedded
into the Linux kernel. Isolated subsystems communicate through a
capability controlled IPC mechanism.

Interface definition language Decomposition patterns provide a
general way to break monolithic code apart. To automate this task,
we rely on an interface definition language (IDL) designed to gen-
erate cross-domain function invocation and object synchronization
code. Our goal for the IDL compiler is to make sure that the major-
ity of code related to crossing the boundaries of isolated domains
is automatically generated, and is backward compatible with un-
modified legacy code, i.e., isolated subsystems do not require major
modifications to their code, and the same code can run in both mono-
lithic and decomposed configurations. The IDL describes interfaces
across LCD domains and non-isolated parts of the kernel. Two goals
drive design of LCDs’s IDL compiler. First, the code generated from
the IDL is designed to be compatible with the kernel source: we
generate proxy and stub code for kernel functions while preserv-
ing function signatures so that it can be linked with the code of
unmodified kernel modules and later loaded inside isolated domains.
Second, LCDs’s IDL provides explicit support for specifying how
kernel data structures are synchronized across isolated subsystems.

Capability access control Our motivation for capabilities is
twofold. First, we use capabilities to selectively limit authority
of isolated subsystems. Each isolated subsystem possesses the
smallest subset of rights required to accomplish its task. Thus,
the effect of the compromise of an individual kernel subsystem
is restricted to the set of resources that the subsystem can access.
LCDs borrow ideas from object capability languages [51] and ca-
pability microkernels [16]. In LCDs, a capability is an entry in a
microkernel-protected data structure, which can be referenced from
isolated code via a local name. Inside the microkernel, each capa-
bility describes one of the objects implemented by the microkernel
or the Linux kernel. Second, in LCDs capabilities implement a
notion of cross-domain pointers allowing us to securely reference
objects across isolated domains. Similar to the LCD microkernel,
each isolated domain implements capability address spaces for the
objects it manages, e.g., a file system domain resolves file objects
through capabilities. At this level, capabilities allow isolated do-
mains to reference objects inside other domains for which they have
authority.

Composable asynchronous I/O Traditionally, kernels use threads
as the main execution model and synchronous procedure calls as
the main communication mechanism. A single thread of execution
moves across kernel subsystems through a series of synchronous
function invocations. Control information and data are passed by
reference across subsystems as a hierarchy of globally shared data
structures. Unfortunately, synchronous function calls do not work
well in a decomposed environment. Despite many improvements in

2

understanding synchronous IPC design [4], the hardware context-
switching mechanisms did not get faster. Synchronous function
invocations are still prohibitively slow. We design LCDs around
the idea of CPU cross-core LCD invocations and an asynchronous
execution model. Each LCD runs on a dedicated set of CPU cores.
We design and build an efficient asynchronous cross-core commu-
nication mechanism, and emulate traditional synchronous function
invocations on top of asynchronous message passing. To integrate
blocking asynchronous messages with existing synchronous code,
LCDs implement a cooperative execution environment capable of
context switching asynchronous threads implemented as native code.

3. LCDs Architecture
3.1 LCDs microkernel
The LCD microkernel follows the design of the L4 microkernel
family [17]. Two parts of the microkernel interface are critical for
the LCDs architecture. Similar to seL4 [15], the LCD microkernel
implements a pure capability-based IPC that explicitly controls
all communication across isolated subsystems. This synchronous
IPC is used for requesting microkernel resources, and specifically
establishing regions of shared memory for future asynchronous
communication. Similar to [34], we implement capability address
spaces (CSpaces) and capability derivation trees.

We make several pragmatic design choices to simplify devel-
opment. While demonstrating extremely slow context switching
performance [36], we still choose hardware-assisted virtualization
for isolation as it is easier to program, e.g., handle low-level hard-
ware conditions inside and outside isolated domains. By developing
LCDs as kernel modules, we are able to reuse linking and loading
functionality provided by the Linux kernel. The module is mapped
at the same location in the guest virtual address space as it was
mapped in the host (in the high address range) so that we don’t need
to relocate symbols in the module. We further rely on Linux ker-
nel threads and the Linux scheduler for scheduling of microkernel
threads.

3.2 Interface Definition Language
The LCDs IDL compiler is responsible for generating inter-domain
communication and synchronization code that ensures transparency
of decomposition for the original monolithic code. The core of
the IDL are definitions for invoking isolated subsystems (remote
function invocations), and disciplines for synchronizing kernel data
structures (Section 3.3).

Functions Our main goal is that the IDL compiler generates
proxy/stub functions with the same signatures as the functions that
are used in a monolithic kernel. For example, to export a function
with the following signature:

int register_filesystem(...);

LCDs require the following IDL definition of an interface:

interface filesystem (capability cap = null) {
rpc int register_filesystem(capability cap, ...);

}

The function definition is extended with a capability that explicitly
names the rendezvous point or asynchronous channel implementing
the interface. To provide compatibility with unmodified code, the
interface is declared to have an optional parameter: a capability to
the rendezvous point that implements an interface of a virtual file
system. The instance of the interface can be declared to take the
capability to the interface:

interface filesystem (vfs);

Glue Code

Container object

capability_t self

super
block

... self

b_dev

Container

super
block

b_dev

CSpace

IPC

Remote
References

File System Block Layer

Unmodified
Code

Figure 2. Isolated object hierarchies in LCDs.

From the interface definition and the above declaration, we generate
the following backward compatible stub:

int register_filesystem(struct file_system_type ∗fs) {
return register_filesystem_callee_stub(vfs, fs);

}

where the vfs is specified during LCD intialization, which is de-
scribed below.

Initializing LCDs The IDL provides support for declaring inter-
faces imported and exported by an LCD. For example, an LCD that
is running a file system and requires access to the virtual file system
and block device interfaces might use the following configuration
file that is supported by the IDL:

module fs {
require capability vfs;
require capability bdev;

}

The IDL generates two functions: one is used by the main kernel
to create a new LCD, and the other function initializes the LCD
internally during boot.

3.3 Decomposition Patterns
LCDs aim to implement an environment in which isolated sub-
systems do not share state (Figure 2). Instead, multiple isolated
subsystems maintain their own private hierarchies of objects and
synchronize them explicitly upon function invocations. This assump-
tion is key for security—one compromised subsystem cannot affect
execution of others through modifications of shared objects.

Object synchronization A typical pattern in the Linux kernel is
to pass objects by reference across subsystems. In case of LCDs,
however, decomposed subsystems do not trust each other. To ensure
isolation, each LCD maintains a private shadow copy of each object.
LCDs allow explicit control over a set of object fields that will be
passed and returned upon function invocation with the mechanism
of projections.

// Projecting two fields of the super_block data structure
projection super_block <struct super_block> {

[out,in] type1 field1;
[out] type2 field2;

}
rpc type0 foo(projection super_block ∗sb);

A projection explicitly defines a subset of fields of the projected
object that will be passed to the callee and returned from it during
the domain invocation. The IDL supports scopes so the same object
type can be projected differently depending on the function.

3

Stateful objects and remote object references In the kernel code
it is common that two or more subsystems go through multiple steps
of a communication protocol that requires that objects are preserved
across a series of cross-domain invocations. Both caller and callee
domains require access to instances of the same private objects
multiple times. We use a mechanism of remote references to lookup
a specific private object across domain boundaries (Figure 2). In
LCDs, remote references are capabilities that point to objects inside
other subsystems. Similar to the LCD microkernel, each subsystem
uses the mechanism of capability identifiers to protects all objects it
exports to its clients. When an object is referred across boundaries of
isolated subsystems, a remote reference (or a capability) is resolved
by the callee subsystem into a private instance of an object through
the mechanism of capability address spaces. To support transparent
referencing of objects across domains, every object that exists in
multiple subsystems is paired with a capability reference that is used
to lookup a corresponding object copy in that subsystem. We rely on
the mechanism of container objects that encapsulate original kernel
data structures to avoid code modifications and leave original kernel
data structures unchanged. (Figure 2). A projection definition below
uses a bind keyword to specify that the projected super_block object
must be resolved using the self capability stored in the container
object (referred as parent) in the callee’s domain.

// Using remote reference to update remote object
projection super_block <struct super_block> {

[bind, in, alloc] capability container−>self;
[in] type1 field1;

}
rpc int fill_super(projection super_block ∗sb, ...);

The IDL provides alloc, bind, and free keywords to control when
remote objects are allocated, looked up, and freed. Similar mecha-
nisms are used for returning objects, i.e., allocating a private copy
in the caller domain, and initializing it with initial values.

Object hierarchies It is common that objects contain pointers to
other objects. When a root of the object hierarchy is passed as an
argument to a cross-domain invocation, the entire hierarchy must
be marshaled and reconstructed on the callee’s side. LCDs rely on
mechanisms of projections that are used to describe marshaling of
object hierarchies:

// Marshaling a hierarchy of objects with projections
projection block_device<struct block_device> {

[in] type1 field1;
[bind] capability container−>self;

};
projection super_block <struct super_block> {

[in] projection block_device ∗s_bdev;
[bind] capability container−>self;

}
rpc type0 foo(capabilty fs, projection super_block ∗sb);

We support synchronization of simple object hierarchies. In practice,
requirements for kernel modularity have already eliminated most
of the cases when a more complicated object hierarchy crosses the
boundaries of kernel subsystems.

3.4 Fast Communication
Asynchronous cross-core communication LCDs’ fast IPC mech-
anism is designed for efficient notification, and zero-copy trans-
fer of data across isolated subsystems in a multicore environment
(Figure 3). In LCDs a caller and callee establish a region of shared
memory through slow synchronous invocations. After that, commu-
nication is exit-less and does not involve the microkernel. Similar to
Beltway Buffers [14], the shared region of memory holds multiple
kinds of buffers and communication rings. Data buffers are used to
hold bulk data, e.g., payload of network packets. Communication

foo(a,b) {
 msg = {FOO, a, b};
 ipc_send(, msg);
 }

{
 ...
 foo(a,b)
 }

msg = ipc_recv();
...
foo_stub (msg);
...

foo(a,b) {
 ...
 }

Shared
Data Buffers

Figure 3. Fast asynchronous IPC in LCDs.

rings serve as lock-free message queues for sending and receiving
messages. To achieve zero-copy transfer of bulk data, messages
contain pointers into shared data buffers.

We optimize a cross-core messaging protocol for optimal uti-
lization of the hardware cache coherency protocol. Each message
channel consists of two rings (outgoing and incoming messages).
Similar to FastForward [24], we avoid shared producer and con-
sumer pointers, as they cause expensive cache contention on every
update. Instead, we utilize an explicit state flag that signals the
end of available messages, and free slots. As we aggressively op-
timize the number of cache transactions involved in each message
transfer, we configure each message to be a size of a single cache
line (64 bytes on our hardware). We use modulo two arithmetic to
avoid expensive division operations on the IPC path. Finally, we
rely on ring polling on both sender and receiver, however the polling
is integrated into our cooperative asynchronous execution environ-
ment (Section 3.5). We use monitor/mwait instructions instead of
polling when sender and receiver become idle.

Inside a single CPU core, modern CPUs implement a version
of a directory based protocol in which the directory is maintained
by the shared last level cache. The directory maintains information
about the state of every cache line in the cache hierarchy of every
core of a single CPU. A snooping cache coherence protocol is used
to synchronize cache lines across CPUs. Two cache transactions
are involved in each part (send and receive) of the IPC. First, the
caller tries to update the cache line sending a message. Its L1 cache
issues a request for ownership to the cache directory. To serve this
request, the directory needs to contact the L1 cache of the callee
core and invalidate the cache line. The directory then replies to the
caller’s L1 cache changing the state of the line from “invalid” to
”modified”, and allowing update of the line with the new message.
Second, immediately, after the cache line is updated by the caller,
it is re-fetched from the callee’s busy-wait loop. To read the cache
line, the callee issues a similar transaction to the cache directory
that in turn reaches the L1 cache of the caller. Based on the BenchIT
CPU benchmark analysis [40, 41]) each of the above transactions
that involves two L1 caches on the same core requires around
80 cycles. This theoretical analysis matches performance of our
IPC implementation (Table 1). We perform a send/reply message
sequence that requires four cache transactions in 384 cycles on our
Nahelem Intel Xeon CPU E5530 clocked at 2.40GHz. In addition
to the cache coherency overheads, we lose around 12-16 cycles in
send and receive code. Our IPC code is written in C with minor
addition of manual assembly, e.g., a pause instruction that saves
around 88 cycles in a busy-wait loop. A full call/reply invocation of
a void function takes 432 cycles (marshaling of six unsigned long
parameters adds 4 cycles). The overhead of using monitor/mwait
on one of the ends of the channel is 342 cycles. When multiple
outstanding messages are queued in the ring buffer, the costs of the

4

Test Cycles (ns)
Send/receive message 384 (160)
Send/receive message (queue of 4) 159 (67)
Call/reply invocation (void function) 432 (180)
Call/reply invocation (6 arguments) 436 (182)
Overhead of mwait (receiver enters halt state) 726 (303)

Table 1. Achieved cross-core IPC performance.

cache coherence protocol goes down. On a queue length of four, a
send/receive sequence takes only 159 cycles.

3.5 Composable Asynchronous Communication
Synchronous procedure calls do not compose well with blocking,
asynchronous communication mechanisms. If a thread sends an IPC
message (e.g., implementing a remote procedure call into another
isolated subsystem), it needs to wait for a reply from the callee.
Several strategies are possible. First, the caller can remain waiting in
a busy wait loop. If the invocation is fast the caller can reply nearly
instantly. But in a typical scenario remote invocations take thousands
of cycles. Second, the system can rely on traditional thread context
switching to utilize the CPU. Unfortunately, traditional thread
switches are expensive due to an expensive exit into the microkernel.
Alternatively, the code of the system can be designed to implement
an asynchronous programming model [26, 35].

With LCDs we aim to 1) avoid expensive context switches,
and 2) provide backward compatibility with existing kernel code,
i.e., avoid reimplementing kernel code in a message friendly manner.
We implement a composable asynchronous I/O without stack ripping
that relies on a lightweight context switch implemented as a form
of cooperative thread scheduling. We base our implementation on
AC [26], but change it to work inside the Linux kernel. Similar to
AC, we leverage functionality of GCC macros and nested functions
to avoid compiler modifications.

3.6 libKernel Environment
libKernel Decomposed subsystems run in isolation from the rest
of the kernel. However, the logic of any kernel subsystem depends
on a set of common primitives provided by the kernel environment:
memory allocation, synchronization, string and memory copy, con-
sole output, etc. We built a small library kernel, libKernel, that
implements a minimal instance of the kernel, and includes page and
slab allocators, capability management code, console, and common
kernel utilities like memcpy. libKernel is linked with the isolated
code and becomes a part of the kernel module that is loaded inside
the isolated domain. We implement a simple page allocator that uses
the microkernel interface to allocate host pages and map them in the
LCD’s address space. Since the microkernel only understands capa-
bility identifiers, the page allocator has to track the correspondence
between physical pages and capability identifiers. Using preproces-
sor macros, we adapted the Linux slab allocator to run inside LCDs.
We use a similar approach to borrow common library routines from
the Linux kernel, like memcpy and sprintf. We developed techniques
for eliding unnecessary variables and functions and ensured we had
resolved all dependencies by checking that the final kernel module
had no unresolved symbols.

4. Related Work
The concept of decomposing operating system services for isolation
and security is not new [23, 27]. Multiple projects try to apply this
principle in practice in both microkernel [5, 20, 29–31, 33] and
virtual machine [7, 22, 39, 47, 53] based systems. Most notable,
SawMill was a research effort performed by IBM aimed at building
a decomposed Linux environment on top of the L4 microkernel [23].

SawMill was an ambitious effort to decompose the entire kernel at
once. Unfortunately, the project became suspended due to organi-
zational politics and untimely decease of one of its leaders, Jochen
Liedtke. Nooks was primarily aimed at isolation of device drivers
inside the Linux kernel [52]. While lacking an explicit interface
definition language, Nooks developed mechanisms for generating
entry points and skeletons for the glue code from the kernel header
files. Similar to LCDs, Nooks maintained and synchronized private
copies of kernel objects, however, this synchronization code had
to be developed manually. OSKit developed a set of decomposed
kernel subsystems out of which a full-featured OS kernel could be
constructed [21]. While successful, OSKit was not a sustainable
effort—decomposition glue code was developed manually, and re-
quired a massive engineering effort in order to provide compatibility
with the COM component object model. OSKit quickly became
outdated and unsupported.

Existing hypervisors succeed in providing complete isolation of
applications at the level of hardware virtualization, but they pro-
vide no mechanisms to support decomposition of kernel subsystems.
Multiple commercial projects attempt to secure commodity applica-
tions using full-system virtualization (Qubes OS [47], Bromium [7],
XenClient [53]). Complete isolation works well when no sharing is
required, e.g., in case of individual applications or device drivers [6].
An untrusted desktop application is sealed in its virtual container,
and runs until it exits [7, 47, 53]. However, core operating system
services which are inherently designed to provide sharing of re-
sources (e.g. file systems, block storage, network stack), require
mechanisms for sharing and collaboration to avoid operating with
reduced functionality or with excessive privilege. Several military-
grade certified secure virtualization projects apply the principle of
secure isolation to traditional systems [33, 39]. The proprietary na-
ture of these systems limits their impact in the broader community.

Do we have to decompose existing kernels or is it better to
re-implement decomposed environments from scratch? Multiple
projects attempt to re-implement kernel functionality from scratch
in a safer, verification friendly language [9, 25, 28, 34, 54]. Although
promising, these approaches are still far from being applicable in a
realistic deployment. Modern kernels accumulate several decades
of development effort that result in irreplaceable functionality:
hundreds of device drivers, dozens of network protocols, block
storage stacks, file systems, and CPU and I/O schedulers. To be
practical, decomposition must aid security and reliability of existing
OS kernels and become an integral part of the kernel development
process with low overhead for developers.

5. Conclusion
Decomposition of commodity kernels has remained an unsolved
problem for decades. We believe LCDs provides a practical step
towards solving this problem. A combination of fast cross-core com-
munication, asynchronous execution model, general decomposition
patterns, and language support result in a decomposition platform
that enables practical, efficient, and secure systems. LCDs is an
evolving platform. In the future, we intend to extend it with a static
analysis aimed at automatic generation of interface and projection
definitions. We further plan to use LCDs as a practical platform for
enabling verification of commodity operating systems.

Acknowledgments
We thank Weibin Sun, Jon Rafkind, and the anonymous PLOS
reviewers. This material is based upon work supported by the
National Science Foundation under Grant No. 1319076, Google,
and NetApp.

5

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow

integrity - principles, implementations, and applications. In CCS,
2005.

[2] K. Ashcraft and D. R. Engler. Using programmer-written compiler
extensions to catch security holes. In IEEE Symposium on Security
and Privacy, pages 143–159, 2002.

[3] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion. IX: A protected dataplane operating system for high
throughput and low latency. In OSDI, 2014.

[4] B. Blackham and G. Heiser. Correct, fast, maintainable: choose any
three! In APSys, page 13, 2012.

[5] Bomberger, A.C. and Frantz, A.P. and Frantz, W.S. and Hardy, A.C.
and Hardy, N. and Landau, C.R. and Shapiro, J.S. The KeyKOS
nanokernel architecture. In Proceedings of the USENIX Workshop on
Micro-Kernels and Other Kernel Architectures, pages 95–112, 1992.

[6] S. Boyd-Wickizer and N. Zeldovich. Tolerating malicious device
drivers in Linux. In USENIX ATC, pages 9–9, 2010.

[7] Bromium. Bromium micro-virtualization, 2010. http://www.
bromium.com/misc/BromiumMicrovirtualization.pdf.

[8] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and M. F.
Kaashoek. Linux kernel vulnerabilities: state-of-the-art defenses and
open problems. In APSys, pages 5:1–5:5, 2011.

[9] S. Chiricescu, A. DeHon, D. Demange, S. Iyer, A. Kliger, G. Morrisett,
B. C. Pierce, H. Reubenstein, J. M. Smith, G. T. Sullivan, et al. SAFE:
A clean-slate architecture for secure systems. In Technologies for
Homeland Security (HST), pages 570–576, 2013.

[10] Coverity, Inc. Coverity SAVE, 2012. http://www.coverity.com/
products/coverity-save.html.

[11] C. Cowan, C. Pu, D. Maier, H. Hinton, and J. Walpole. StackGuard:
Automatic Adaptive Detection and Prevention of Buffer-Overflow
Attacks. In USENIX Security Symposium, 1998.

[12] CVE Details. Vulnerabilities in the Linux kernel by year. http:
//www.cvedetails.com/product/47/Linux-Linux-Kernel.
html?vendor_id=33.

[13] CVE Details. Vulnerabilities in the Linux kernel in 2014. http://
www.cvedetails.com/vulnerability-list/vendor_id-33/
product_id-47/year-2014/Linux-Linux-Kernel.html.

[14] W. de Bruijn and H. Bos. Beltway buffers: Avoiding the OS traffic jam.
In INFOCOM, 2008.

[15] P. Derrin, D. Elkaduwe, and K. Elphinstone. seL4 reference manual.
Technical report, ERTOS NICTA. http://www.ertos.nicta.com/
research/sel4/sel4-refman.pdf.

[16] D. Elkaduwe. A principled approach to kernel memory management.
PhD thesis, University of New South Wales, 2010.

[17] K. Elphinstone and G. Heiser. From L3 to seL4 what have we learnt
in 20 years of L4 microkernels? In SOSP, pages 133–150, 2013.

[18] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules
using system-specific, programmer-written compiler extensions. In
OSDI, pages 1–1, 2000.

[19] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula. XFI:
Software guards for system address spaces. In OSDI, pages 75–88,
2006.

[20] Feske, N. and Helmuth, C. Design of the Bastei OS architecture. Techn.
Univ., Fakultät Informatik, 2007.

[21] B. Ford, G. Back, G. Benson, J. Lepreau, A. Lin, and O. Shivers. The
flux OSKit: A substrate for kernel and language research. In SOSP,
pages 38–51, 1997.

[22] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: a
virtual machine-based platform for trusted computing. In SOSP, pages
193–206, 2003.

[23] A. Gefflaut, T. Jaeger, Y. Park, J. Liedtke, K. J. Elphinstone, V. Uhlig,

J. E. Tidswell, L. Deller, and L. Reuther. The SawMill multiserver
approach. In Proceedings of the 9th workshop on ACM SIGOPS
European workshop: beyond the PC: new challenges for the operating
system, pages 109–114. ACM, 2000.

[24] J. Giacomoni, T. Moseley, and M. Vachharajani. FastForward for
efficient pipeline parallelism: a cache-optimized concurrent lock-free
queue. In PPoPP, pages 43–52, 2008.

[25] Gu, L., Vaynberg, A., Ford, B., Shao, Z., and Costanzo, D. CertiKOS:
a certified kernel for secure cloud computing. In APSys, page 3, 2011.

[26] T. Harris, M. Abadi, R. Isaacs, and R. McIlroy. AC: composable
asynchronous IO for native languages. ACM SIGPLAN Notices,
46(10):903–920, 2011.

[27] Härtig, H. Security architectures revisited. In Proceedings of the 10th
workshop on ACM SIGOPS European workshop, pages 16–23. ACM,
2002.

[28] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang,
and B. Zill. Ironclad apps: End-to-end security via automated full-
system verification. In OSDI, 2014.

[29] Heiser, G. and Elphinstone, K. and Kuz, I. and Klein, G. and Petters,
S.M. Towards trustworthy computing systems: taking microkernels to
the next level. ACM SIGOPS Operating Systems Review, 41(4):3–11,
2007.

[30] Herder, J.N. and Bos, H. and Gras, B. and Homburg, P. and Tanenbaum,
A.S. MINIX 3: A highly reliable, self-repairing operating system. ACM
SIGOPS Operating Systems Review, 40(3):80–89, 2006.

[31] Hohmuth, M. and Peter, M. and Härtig, H. and Shapiro, J.S. Reducing
TCB size by using untrusted components: small kernels versus virtual-
machine monitors. In Proceedings of the 11th workshop on ACM
SIGOPS European workshop, page 22. ACM, 2004.

[32] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra
Modadugu, and Dan Boneh. On the effectiveness of address-space
randomization. In CCS, pages 298–307, 2004.

[33] INTEGRITY Real-Time Operating System. http://www.ghs.com/
products/rtos/integrity.html.

[34] Klein, G., Elphinstone, K., Heiser, G., Andronick, J., Cock, D., Derrin,
P., Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., and others.
seL4: formal verification of an OS kernel. In SOSP, pages 207–220.
ACM, 2009.

[35] M. Krohn, E. Kohler, and M. F. Kaashoek. Events can make sense. In
USENIX ATC, pages 7:1–7:14, 2007.

[36] A. Landau, M. Ben-Yehuda, and A. Gordon. SplitX: Split guest/hyper-
visor execution on multi-core. In WIOV, 2011.

[37] S. Larsen, P. Sarangam, R. Huggahalli, and S. Kulkarni. Architectural
breakdown of end-to-end latency in a TCP/IP network. Int. J. Parallel
Program., 37(6):556–571, Dec. 2009.

[38] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A holistic
approach to fast in-memory key-value storage. In NSDI, pages 429–
444, 2014.

[39] LynuxWorks. Desktop virtualization and secure client virtualization
based on military-grade technology.

[40] D. Molka, D. Hackenberg, and R. Schöne. Main memory and cache
performance of Intel Sandy Bridge and AMD Bulldozer. In Workshop
on Memory Systems Performance and Correctness, pages 4:1–4:10,
2014.

[41] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller. Memory
performance and cache coherency effects on an Intel Nehalem multi-
processor system. In PACT, pages 261–270. IEEE, 2009.

[42] Moritz Jodeit and Martin Johns. USB device drivers: A stepping
stone into your kernel. In European Conference on Computer Network
Defense, 2010.

[43] T. Mueller. Virtualised USB fuzzing for vulnerabilities. 2010. https:
//muelli.cryptobitch.de/paper/2010-usb-fuzzing.pdf.

[44] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krishnamurthy,

6

http://www.bromium.com/misc/BromiumMicrovirtualization.pdf
http://www.bromium.com/misc/BromiumMicrovirtualization.pdf
http://www.coverity.com/products/coverity-save.html
http://www.coverity.com/products/coverity-save.html
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/year-2014/Linux-Linux-Kernel.html
http://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/year-2014/Linux-Linux-Kernel.html
http://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/year-2014/Linux-Linux-Kernel.html
http://www.ertos.nicta.com/research/sel4/sel4-refman.pdf
http://www.ertos.nicta.com/research/sel4/sel4-refman.pdf
http://www.ghs.com/products/rtos/integrity.html
http://www.ghs.com/products/rtos/integrity.html
https://muelli.cryptobitch.de/paper/2010-usb-fuzzing.pdf
https://muelli.cryptobitch.de/paper/2010-usb-fuzzing.pdf

T. Anderson, and T. Roscoe. Arrakis: The operating system is the
control plane. In OSDI, 2014.

[45] Bypassing StackGuard and StackShield. Phrack Magazine. Volume
0xa. Issue 0x38.

[46] R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented
programming: Systems, languages, and applications. ACM Trans. Inf.
Syst. Secur., 15(1):2:1–2:34, Mar. 2012. http://doi.acm.org/10.
1145/2133375.2133377.

[47] Rutkowska, J. and Wojtczuk, R. Qubes OS architecture. Invisible
Things Lab Tech Rep, 2010.

[48] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: a tiny hypervisor
to provide lifetime kernel code integrity for commodity OSes. In SOSP,
pages 335–350, 2007.

[49] H. Shacham. The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86). In CCS, pages 552–561,
2007.

[50] L. Soares and M. Stumm. FlexSC: flexible system call scheduling with
exception-less system calls. In OSDI, pages 1–8, 2010.

[51] M. Stiegler. The E language in a walnut, 2000. http://www.
skyhunter.com/marcs/ewalnut.html.

[52] M. M. Swift, S. Martin, H. M. Levy, and S. J. Eggers. Nooks: An
architecture for reliable device drivers. In Proceedings of the 10th
workshop on ACM SIGOPS European workshop, pages 102–107.
ACM, 2002.

[53] XenClient. http://www.citrix.com/products/xenclient/
how-it-works.html.

[54] J. Yang and C. Hawblitzel. Safe to the last instruction: automated
verification of a type-safe operating system. In ACM Sigplan Notices,
volume 45, pages 99–110. ACM, 2010.

7

http://doi.acm.org/10.1145/2133375.2133377
http://doi.acm.org/10.1145/2133375.2133377
http://www.skyhunter.com/marcs/ewalnut.html
http://www.skyhunter.com/marcs/ewalnut.html
http://www.citrix.com/products/xenclient/how-it-works.html
http://www.citrix.com/products/xenclient/how-it-works.html

	Abstract
	Introduction
	Decomposition Strategy
	LCDs Architecture
	LCDs microkernel
	Interface Definition Language
	Decomposition Patterns
	Fast Communication
	Composable Asynchronous Communication
	libKernel Environment

	Related Work
	Conclusion
	Acknowledgments
	References

