
LXDs: Towards Isolation of Kernel Subsystems
Vikram Narayanan

University of California, Irvine
Abhiram Balasubramanian∗

University of Utah
Charlie Jacobsen∗

University of Utah

Sarah Spall†

University of Utah
Scott Bauer‡

University of Utah
Michael Quigley§

University of Utah
Aftab Hussain

University of California, Irvine

Abdullah Younis¶

University of California, Irvine
Junjie Shen

University of California, Irvine

Moinak Bhattacharyya
University of California, Irvine

Anton Burtsev
University of California, Irvine

Abstract
Modern operating systems are monolithic. Today, however,

lack of isolation is one of the main factors undermining se-
curity of the kernel. Inherent complexity of the kernel code
and rapid development pace combined with the use of unsafe,
low-level programming language results in a steady stream
of errors. Even after decades of efforts to make commodity
kernels more secure, i.e., development of numerous static and
dynamic approaches aimed to prevent exploitation of most
common errors, several hundreds of serious kernel vulnerabil-
ities are reported every year. Unfortunately, in a monolithic
kernel a single exploitable vulnerability potentially provides
an attacker with access to the entire kernel.

Modern kernels need isolation as a practical means of con-
fining the effects of exploits to individual kernel subsystems.
Historically, introducing isolation in the kernel is hard. First,
commodity hardware interfaces provide no support for ef-
ficient, fine-grained isolation. Second, the complexity of a
modern kernel prevents a naive decomposition effort. Our
work on Lightweight Execution Domains (LXDs) takes a
step towards enabling isolation in a full-featured operating
system kernel. LXDs allow one to take an existing kernel
subsystem and run it inside an isolated domain with minimal
or no modifications and with a minimal overhead. We evalu-
ate our approach by developing isolated versions of several
performance-critical device drivers in the Linux kernel.

1 Introduction
Modern operating system kernels are fundamentally insecure.
Due to rapid development rate (the de-facto industry standard
Linux kernel features over 70 thousand commits a year), a
huge codebase (the latest version of the Linux kernel contains
over 17 million lines of unsafe C/C++ and assembly code1),

∗Currently at Ubiquiti Networks. Work done at the University of Utah.
†Currently at Indiana University. Work done at the University of Utah.
‡Currently at Qualcomm. Work done at the University of Utah.
§Currently at Google. Work done at the University of Utah.
¶Currently at the University of California, Berkeley. Work done at the

University of California, Irvine
1Calculated using David Wheeler’s sloccount on Linux 5.0-rc1.

and inherent complexity (typical kernel code adheres to mul-
tiple allocation, synchronization, access control, and object
lifetime conventions) bugs and vulnerabilities are routinely
introduced into the kernel code. In 2018, the Common Vul-
nerabilities and Exposures database lists 176 Linux kernel
vulnerabilities that allow for privilege escalation, denial-of-
service, and other exploits [20]. This number is the lowest
across several years [19].

Even though a number of static and dynamic mechanisms
have been invented to protect execution of the low-level kernel
code, e.g., modern kernels deploy stack guards [18], address
space layout randomization (ASLR) [45], and data execution
prevention (DEP) [72], attackers come up with new ways to
bypass these protection mechanisms [8, 35, 45, 49, 51, 57–59,
71]. Even advanced defense mechanisms that are yet to be
deployed in mainstream kernels, e.g., code pointer integrity
(CPI) [1, 53] and safe stacks [14, 53], become vulnerable
in the face of data-only attacks combined with automated
attack generation tools [46, 77]. In a monolithic kernel, a
single vulnerability provides an attacker with access to the
entire kernel. An attacker can redirect control to any part
of the kernel and change any data structure escalating its
privileges [46, 77].

Modern kernels need isolation as a practical means of con-
fining the effects of individual vulnerabilities. However, in-
troducing isolation in a kernel is hard. First, despite many
advances in the architecture of modern CPUs, low-overhead
hardware isolation mechanisms [74–76] did not make it into
commodity architectures. On modern machines, the minimal
call/reply invocation that relies on traditional address-spaces
for isolation [26] takes over 834 cycles (Section 5). To put
this number into perspective, in the Linux kernel a system
call that sends a network packet through the network stack
and network device driver takes 2299 cycles. A straightfor-
ward isolation of a network device driver which requires two
domain crossings on the packet transmission path (Section 4),
would introduce an overhead of more than 72%.

Second, the complexity of a shared-memory kernel that
accumulates decades of development in a monolithic setting

prevents a trivial decomposition effort. Decomposition re-
quires cutting through a number of tightly-connected, well-
optimized subsystems that use rich interfaces and complex
interaction patterns. Two straightforward isolation strategies—
developing isolated subsystems from scratch [21, 24, 31]
or running them inside a full copy of a virtualized ker-
nel [11, 16, 30, 60]—result in either a prohibitively large engi-
neering effort or overheads of running a full copy of a kernel
for each isolated domain.

Our work on Lightweight Execution Domains (LXDs)
takes a step towards enabling isolation in a full-featured op-
erating system kernel. LXDs allow one to take an existing
kernel subsystem and run it inside an isolated domain with
minimal or no modifications and with a minimal overhead.
While isolation of core kernel subsystems, e.g., a buffer cache
layer, is beyond the scope of our work due to tight integration
with the kernel (i.e., complex isolation boundary and frequent
domain crossings), practical isolation of device drivers, which
account for over 11 millions lines of unsafe kernel code and
significant fraction of kernel exploits, is feasible.

Compared to prior isolation attempts [9, 12, 15, 27, 32–
34, 40–43, 66, 68, 69], LXDs leverage several new design
decisions. First, we make an observation that synchronous
cross-domain invocations are prohibitively expensive. The
only way to make isolation practical is to leverage asyn-
chronous communication mechanisms that batch and pipeline
multiple cross-domain invocations. Unfortunately, explicit
management of asynchronous messages typically requires a
clean-slate kernel implementation built for explicit message-
passing [5, 42]. LXDs, however, aim to enable isolation in
commodity OS kernels that are originally monolithic (com-
modity kernels accumulate decades of software engineering
effort that is worth preserving). To introduce asynchronous
communication primitives in the code of a legacy kernel,
LXDs build on the ideas from asynchronous programming lan-
guages [3,13,39]. We develop a lightweight asynchronous run-
time that allows us to create lightweight cooperative threads
that may block on cross-domain invocations and hence imple-
ment batching and pipelining of cross-domain calls in a way
transparent to the kernel code.

Second, to break the kernel apart in a manner that requires
only minimal changes to the kernel code, we develop de-
composition patterns, a collection of principles and mecha-
nisms that allow decomposition of the monolithic kernel code.
Specifically, we support decomposition of typical idioms used
in the kernel code—exported functions, data structures passed
by reference, function pointers, etc. To achieve such backward
compatibility, decomposition patterns define a minimal run-
time layer that hides isolated, share-nothing environment by
synchronizing private copies of data structures, invoking func-
tions across domain boundaries, implementing exchange of
pointers to data structures and functions, handling dispatch
of cross-domain function calls, etc. Further, to make our ap-
proach practical, we develop an interface definition language

(IDL) that generates runtime glue-code code required for de-
composition.

Finally, similar to existing projects [54, 67], we make an
observation that on modern hardware cross-core communica-
tion via the cache coherence protocol is faster then crossing
an isolation boundary on the same CPU. By placing isolated
subsystems on different cores it is possible to reduce isola-
tion costs. While dedicating cores for every isolated driver
is impractical, the ability to run several performance-critical
subsystems, e.g., NVMe block and network device drivers,
with the lowest possible overhead makes sense.

We demonstrate practical isolation of several performance-
critical device drivers in the Linux kernel: software-only net-
work and NVMe block drivers, and a 10Gbps Intel ixgbe
network driver. Our experience with decomposition patterns
shows that majority of the decomposition effort can be done
with no modification to the kernel source. We hope that our
work—general decomposition patterns, interface definition
language, and asynchronous execution primitives—will grad-
ually enable kernels that employ fine-grained isolation as the
first-class abstraction. At the moment, two main limitations of
LXDs are 1) requirement of a dedicated core for each thread
of an isolated driver (Section 5), and 2) manual development
of the IDL interfaces. We expect to relax both of the limita-
tions in our future work.

2 Background and Motivation
The concept of decomposing operating systems for isolation
and security is not new [9,12,15,27,32–34,40–43,66,68,69].
In the past, multiple projects tried to make isolation prac-
tical in both microkernel [9, 27, 41–43, 68] and virtual ma-
chine [12, 15, 33, 66] systems. SawMill was a research effort
performed by IBM aimed at building a decomposed Linux en-
vironment on top of the L4 microkernel [34]. SawMill was an
ambitious effort that outlined many problems of fine-grained
isolation in OS kernels. SawMill relied on a synchronous IPC
mechanism and a simple execution model in which threads
migrated between isolated domains. Unfortunately, the cost of
a synchronous context switch more than doubled in terms of
CPU cycles over the last two decades [26]. Arguably, with ex-
isting hardware mechanisms the choice of a synchronous IPC
is not practical (on our hardware a bare-bone synchronous
call/reply invocation takes over 834 cycles on a 2.6GHz In-
tel machine; a cache-coherent invocation between two cores
of the same die takes only 448-533 cycles, moreover, this
number can be reduced further with batching (Section 5)).
Furthermore, relying on a generic Flick IDL [25], SawMill
required re-implementation of OS subsystem interfaces. In
contrast, LXDs’s IDL is designed with an explicit goal of
backward compatibility with the existing monolithic code,
i.e., we develop mechanisms that allow us to transparently
support decomposition of typical code patterns used in the
kernel, e.g., registration of interfaces as function pointers,
passing data structures by reference, etc.

Nooks further explored the idea of isolating device drivers
in the Linux kernel [69]. Similar to SawMill, Nooks relied
on the synchronous cross-domain procedure calls that are
prohibitively expensive on modern hardware. Nooks main-
tained and synchronized private copies of kernel objects, how-
ever, the synchronization code had to be developed manually.
Nooks’ successors, Decaf [64] and Microdrivers [32] devel-
oped static analysis techniques to generate glue code directly
from the kernel source. LXDs do not have a static analysis
support at the moment. We, however, argue that IDL is still an
important part of a decomposed architecture—IDL provides a
generic intermediate representation that allows us to generate
glue code for different isolation boundaries, e.g., cross-core
invocations, address-space switches, etc.

OSKit developed a set of decomposed kernel subsys-
tems out of which a full-featured OS kernel could be con-
structed [29]. While successful, OSKit was not a sustainable
effort—decomposition glue code was developed manually,
and required a massive engineering effort in order to pro-
vide compatibility with the interface of Component Object
Model [17]. OSKit quickly became outdated and unsupported.

Rump kernels develop glue code that allows execution of
unmodified subsystems of the NetBSD kernel in a variety of
executable configurations on top of a minimal execution envi-
ronment [48], e.g., as a library operating system re-composed
out of Rump kernel subsystems. Rump’s glue code follows the
shape of the kernel subsystems and hence provides compatibil-
ity with unmodified kernel code that ensures maintainability
of the project. LXDs follow Rump’s design choice of ensur-
ing backward compatibility with unmodified code, but aim
at automating the decomposition effort. Specifically, LXDs
rely on decomposition patterns and IDL to extract unmodified
device drivers from the kernel source and seamlessly enable
their functionality for the monolithic kernel.

User-level device drivers [11, 21, 24, 30, 60] allow execu-
tion of device drivers in isolation. Two general approaches
are used for isolating the driver. First, it is possible to run an
unmodified device driver on top of a device driver execution
environment that provides a backward compatible interface
of the kernel inside an isolated domain [24]. Unfortunately,
development of a kernel-compatible device driver execution
environment requires a large engineering effort. Sometimes,
backward compatibility is sacrificed to simplify development,
but in this case the device driver or a kernel subsystem have
to be re-implemented from scratch [31]. LXDs aim to provide
a general framework for automating development of custom
backward compatible device driver environments. With a pow-
erful IDL, fast communication primitives, and asynchronous
threads, LXDs enable nearly transparent decomposition of
kernel code.

Alternatively, the device driver environment is constructed
from a partial or complete copy of the kernel that can host
the isolated driver on top of a VMM [11, 30, 60] or in-
side a user process [11, 48]. Unfortunately, a virtualized ker-

nel [11, 30, 60] extends the driver execution environment
with a nested copy of multiple software layers, e.g., interrupt
handling, thread scheduling, context-switching, memory man-
agement, etc. These layers introduce overheads of tens of
thousands of cycles on the critical data-path of the isolated
driver, and provide a large attack surface. A library operat-
ing system that provides full or partial compatibility with the
original kernel can be used as an execution environment for
the isolated device driver [48, 62, 70]. Smaller and lighter
compared to the full kernel, library operating systems elimi-
nate performance overheads of the full kernel. LXDs provide
ability to run an unmodified device driver in a very mini-
mal kernel environment hence achieving lean data path of a
custom-built device driver execution environment.

3 LXDs Architecture
LXDs execute as a collection of isolated domains running
side by side with the monolithic kernel (Figure 1). This de-
sign allows us to enable isolation incrementally, i.e., develop
isolated device drivers one at a time, and seamlessly enable
their functionality in the monolithic kernel.

Each LXD is developed as a loadable kernel module. An
unmodified source of the isolated driver is linked against the
two components that provide a backward compatible execu-
tion environment for the driver: 1) the glue code generated by
the IDL compiler Figure 1, 6), and 2) a minimal library, li-
bLXD (Figure 1, 7), that provides common utility functions
normally available to the driver in a monolithic kernel, e.g.,
memory allocators, synchronization primitives, routines like
memcpy(), etc.

LXDs rely on hardware-assisted virtualization (VT-x) for
isolation. The choice of the hardware isolation mechanism
is orthogonal to the LXDs architecture. VT-x, however, im-
plements convenient interface for direct assignment of PCIe
devices to isolated domains, and direct interrupt delivery (sup-
port for which we envision in the future). On the critical path
LXDs rely on asynchronous cross-core communication prim-
itives, and hence the cost of transitions to and from the VT-x
domain (which is higher than a regular context switch) is
acceptable.

LXDs are created and managed by a small microkernel that
runs inside the commodity operating system kernel (Figure 1,
8). The LXD microkernel follows design of the L4 microker-

nel family [26]: it is centered around a pure capability-based
synchronous IPC that explicitly controls authority of each
isolated subsystem. The synchronous IPC is used for request-
ing microkernel resources, and exchange of capabilities, e.g.,
establishing regions of shared memory that are then used for
fast asynchronous channels. Each LXD starts with at least
one synchronous IPC channel that allows the LXD to gain
more capabilities, exchange capabilities to its memory pages
with the non-isolated kernel, and establish fast asynchronous
communication channels.

To provide an interface of the isolated driver inside the

while (...) {
 thc_ipc_poll recv(chnl_group, &msg);
 ASYNC ({
 dispatch_async_loop(msg);
 });
};

ixgbe_xmit_frame(struct sk_buff *skb,
 struct net_device *netdev)

{
 ...
}

DO_FINISH({
 ...
 ASYNC({
 rc = dev->ndo_start_xmit(skb, dev);
 ...
 });
 }
});

8

2

Run-queue

ASYNC ndo_start_xmit() recv()

netdev_tx_t ndo_start_xmit(...) {
 ...
 send(channel, msg);
 ...
}

IPC
channel

Isolated Ixgbe Driver

LXD
Microkernel

Unmodified driver code

libLXD

Linux Kernel

send();

User Process

3

4

7

6

klibLXD

1

5

Figure 1: LXDs architecture (isolated ixgbe network driver).

monolithic kernel, every LXD loads the corresponding kli-
bLXD module (Figure 1, 3). The klibLXD is automatically
generated by the IDL compiler. The glue code inside klibLXD
transparently marshals arguments of cross-domain invoca-
tions to the actual isolated driver.

In the example of the isolated ixgbe driver (Figure 1), a
user process invokes an unmodified send() system call initiat-
ing transmission of the network packet through the isolated
device driver (Figure 1, 1). The monolithic kernel relies
on the interface of the isolated ixgbe driver (a collection of
function pointers registered by the driver with the kernel)
to pass the packet to the device (dev−>ndo_start_xmit()). The
dev−>ndo_start_xmit() function pointer is implemented by the
glue code of the klibLXD module. Internally, the glue code
relies on the low-level send and receive primitives of the asyn-
chronous communication channels to send the message to
the isolated driver. The message reaches the isolated driver
where it is processed by the dispatch loop generated by the
IDL compiler (Figure 1, 6). The dispatch loop then invokes
the actual ixgbe_xmit_frame() function of the unmodified ixgbe
driver (Figure 1, 5).
Transparent decomposition LXDs rely on a collection of
decomposition patterns to break the code of a monolithic sys-
tem and emulate a shared-memory environment for isolated
subsystems (Section 4). In LXDs, isolated subsystems do not
share any state that might break isolation guarantees, e.g.,
memory pointers, indexes into memory buffers, etc. Instead,
each isolated subsystem maintains its own private hierarchy of
data structures. LXDs rely on a powerful IDL to automatically
generate all inter-domain communication and synchroniza-
tion code (Figure 1, 3 and 6). In contrast to existing IDLs
used for constructing multi-server [25,38] and distributed sys-
tems [23, 50, 61, 73] the main design goal behind the LXDs’

IDL is backward compatibility with unmodified code. The
IDL is designed to generate caller and callee stubs that hide
details of inter-domain communication and synchronization
of data structures.
Asynchronous runtime Compared to the monolithic kernel,
a decomposed environment requires a cross-domain invoca-
tion in place of a regular procedure call for every function
that crosses the boundary of an isolated domain. On mod-
ern hardware the overhead of such crossings is prohibitively
expensive. LXDs include a minimal runtime built around
lightweight asynchronous threads that aims to hide over-
heads of cross-domain invocations by exploiting available
request parallelism. Specifically, the ASYNC() primitive cre-
ates a lightweight cooperative thread that yields execution
to the next thread when blocked on the reply from an iso-
lated domain (Figure 1, 2). Asynchronous threads allow us
to introduce asynchrony to the kernel code in a transparent
manner.
Cross-core IPC To reduce overheads of crossing domain
boundaries, LXDs schedule isolated subsystems with tight
latency and throughput requirements, i.e., network and block
device drivers, on separate CPU cores. The reason is that
on modern hardware cross-core communication via cache
coherence is faster than a context switch on the same CPU.
LXDs rely on efficient cross-core communication channels to
send messages across isolated subsystems (Figure 1, 4).

3.1 Interface Definition Language
We develop a collection of decomposition patterns— a col-
lection of principles and mechanisms, e.g., remote references,
projections, and hidden arguments, that allow isolation of typ-
ical code patterns used in the kernel, e.g. exported functions,
data structures passed by reference, registration of interfaces

dummy
net_device_ops

net_device

Linux
Kernel

Net

Glue code

Shadow Copies

register_netdevice()

register_netdevice()

net_device_ops

net_device

Remote reference

LXD

Figure 2: Private object hierarchies.

as function pointers, etc. To support implementation of decom-
position patterns, we develop a powerful IDL that generates
all inter-domain communication code.
Modules The IDL describes each subsystem as a module, i.e.,
a collection of functions exported and imported by an isolated
driver or the kernel. To illustrate decomposition patterns and
the design of the IDL, we consider an example of a minimal
dummy network device driver [44]. The following IDL is used
to define the dummy module.

include <net.idl>
module dummy() {

require net;
}

By itself the dummy module does not export any functions.
Instead it relies on the net interface provided by the kernel
to register itself with the kernel, i.e., register a collection of
function pointers that provide the driver-specific implemen-
tation of the network device interface. The kernel uses these
function pointers to invoke the isolated dummy device driver.

The require keyword instructs the IDL compiler to import
the net module into the context of the dummy module. At a
high level, the compiler is instructed to generate glue code
required for remote invocations of the functions exported by
the net module.

A typical network interface defines a collection of functions
that implement a specific kernel interface. For example, the
net module defines the interface of the network subsystem,
i.e., a collection of functions that allow network device drivers
to register with the kernel.

module net() {
rpc int register_netdevice(projection net_device ∗dev);
rpc void ether_setup(projection net_device ∗dev);
...

}

From the above module definition the IDL generates code
for caller stubs of the net interface so the isolated dummy
module can transparently invoke functions of the interface.
The IDL also generates the dispatch loops for both the dummy
LXD and kLXD so both isolated subsystem and non-isolated

kernel can process remote function invocations from each
other.
Data structures In LXDs, isolated device drivers and the ker-
nel do not share any state that might break isolation guarantees.
Instead, each isolated subsystem maintains its own private hi-
erarchy of data structures. In our example, the register_netdev()
function takes a pointer to the net_device data structure that
describes the network device. Since net_device is allocated in-
side the isolated dummy driver, a corresponding shadow copy
will be created by the glue code in the non-isolated kernel
(Figure 2).

The shadow hierarchies are synchronized upon function
invocations. LXDs provide support for transparent synchro-
nization of shadow data structure copies across domains with
the mechanism of projections. A projection explicitly defines
a subset of fields of the data structure that will be passed
to the callee and returned to the caller during the domain
invocation.2

projection <struct net_device> net_device {
unsigned int flags;
unsigned int priv_flags;
...
projection net_device_ops [alloc(caller)] ∗netdev_ops;

}

Here, the projection net_device only lists the fields that will
be used by the non-decomposed code in the kernel to regis-
ter a network device. The projection omits the members of
struct net_device that are private to the LXD, e.g., pointers to
other data structures. The IDL supports lexical scopes, so the
same data structure can be projected differently by different
functions.

The IDL supports explicit [in] and [out] directional attributes
to specify whether each field is marshalled from caller to
callee or vice versa. In most cases, however, they are optional.
The IDL compiler can infer the default direction from the way
the projection is used in the code. In the example above, the
default direction is [in]—all fields of the projection are copied
from the caller to the callee side, which is decided based on
the [alloc(callee)] qualifier that we discuss below.
Allocation of shadow object copies When the
register_netdev() function is invoked by the LXD, the
callee side of the invocation, i.e., the non-decomposed
kernel, does not have a private version of the net_device data
structure. The IDL provides support for controlling when
remote objects are allocated, looked up, and freed with the
alloc, bind, and dealloc qualifiers. The alloc qualifier instructs
the IDL to allocate the new data structure of the projected
type, i.e., struct net_device. The callee attribute instructs the
IDL to perform the allocation on the callee side, as the data
structure already exists on the caller side. The allocation
attribute also serves as a hint to the compiler to marshal
all fields of the projection from the already existing data

2Hence defining how a data structure is projected into another domain.

structure on the caller side to the callee (i.e., all fields of the
projection above have the implicit [in] attribute). The data
structure is deallocated when the dealloc qualifier is used with
the projection.
Remote object references In most cases isolated subsys-
tems refer to the same data structure multiple times. For ex-
ample, the net_device data structure is first registered with
the register_netdev() function, then used in a number of func-
tions that attach, turn on, and eventually unregister the device.
LXDs provide a mechanism of remote references to refer to
a specific object across domain boundaries. Similar to a ca-
pability in the LXD microkernel, each remote reference is a
number that is resolved through a fast hash that is private to
each thread of execution. References are transparent to the
code, the IDL generates all necessary code to pair every local
object with a reference that is used to lookup a corresponding
shadow copy in another domain.
Function pointers Many parts of the kernel rely on the con-
cept of an interface that allows dynamic registration of a
specific subsystem implementation. In a native language like
C an interface is implemented as a data structure with a col-
lection of function pointers that are defined by each subsys-
tem that provides a concrete interface implementation. In
our example, net_device_ops is a data structure that defines a
collection of function pointers implemented by the network
device. We implement support for export of function pointers
that cross boundaries of isolated domains. The following code
provides a definition of the projection for the net_device_ops
data structure.

projection <struct net_device_ops> net_device_ops {
rpc [alloc] int (∗ndo_open)(projection netdev_empty [bind] ∗dev);
rpc [alloc] int (∗ndo_stop)(projection netdev_empty [bind] ∗dev);
rpc [alloc] int (∗ndo_start_xmit)(projection sk_buff ∗skb,

projection net_device [bind] ∗dev);
...

}

For every function pointer, the IDL generates caller and callee
stubs that behave like normal function pointers and hide de-
tails of cross-domain communication. To implement cross-
domain function pointers while providing unmodified func-
tion signatures, we implement a concept of hidden arguments.
For each function pointer, the IDL dynamically generates an
executable trampoline in the caller’s address space. The caller
invokes this trampoline like any other function, however, the
trampoline resolves additional hidden arguments as an offset
from its own address. The hidden arguments describe which
channel to use and passes this information to the cross-domain
stub generated by the IDL compiler. A remote reference to a
function pointer on the callee side allows the caller to resolve
a specific instance of a function pointer.
Implementation We implement the IDL compiler as a
source-to-source translator from the LXD IDL to C. To build
the compiler, we rely on the formalism of parsing expression

1 DO_FINISH({
2 while (skb) {
3 struct sk_buff ∗next = skb−>next;
4 ASYNC({
5 ...
6 rc = ndo_start_xmit(skb, dev);
7 ...
8 });
9 skb = next;

10 }
11 });

Listing 1: Asynchronous threads.

grammars (PEG). This choice allows us to design a modular
grammar that is easy to extend with new IDL primitives. We
use Vembyr PEG parser generator [63] to automate develop-
ment of a compiler. Vembyr provides a convenient extension
interface that allows us to construct an abstract syntax tree
(AST) as a set of C++ classes. We then perform a compilation
step as a series of passes over the AST, e.g., module import,
derivation of directional attributes, etc.. The final pass con-
verts the AST into a concrete syntax tree (CST) that we use
to print out the C code.

3.2 Asynchronous Execution Runtime
Traditionally, asynchronous communication requires explicit
message passing [5, 42]. Programming of asynchronous
message-passing systems, however, is challenging as it re-
quires manual management (saving and restoring) of compu-
tation as execution gets blocked on remote invocations. In
general, message-based systems work well as long as they
are limited to a simple run-to-completion loop, but become
nearly impossible to program if multiple blocking invocations
are required on the message processing path [2, 52]. Further,
in a message-passing environment, re-use of existing kernel
code becomes hard or even impossible.

With LXDs we aim to satisfy two contradicting
goals: 1) utilize asynchrony for cross-domain invocations,
and 2) provide backward compatibility with existing ker-
nel code, i.e., avoid re-implementation of the system in a
message-passing style. To meet these goals, we implement a
lightweight runtime that hides details of asynchronous com-
munication behind an interface of asynchronous threads.

The core of the LXDs asynchronous runtime is built around
two primitives: ASYNC() and DO_FINISH(). In Listing 1 the
ASYNC() macro creates a new lightweight thread for execut-
ing a block of code (lines 4–8) asynchronously. Our imple-
mentation is based on GCC macros as it allows us to avoid
modifications to the compiler and therefore provides compati-
bility with the existing kernel toolchain. When ndo_start_xmit()
blocks on sending a message to the isolated driver (line 6),
the asynchronous runtime continues execution from the next
line after the asynchronous block (line 9) and starts the next
iteration of the loop creating the new asynchronous thread.

Instead of blocking on the first ndo_start_xmit() cross-domain
invocation, we dispatch multiple asynchronous invocations,
hence submitting multiple network packets to the driver in a
pipelined manner.

Internally, ASYNC() creates a minimal thread of execution
by allocating a new stack and switching to it for execution
of the code inside of the asynchronous block. ASYNC() cre-
ates a continuation, i.e., it saves the point of execution that
follows the asynchronous block, which allows the runtime to
resume execution when the thread either blocks or finishes.
We save the state of the thread, i.e., its callee saved regis-
ters, on the stack, and therefore, can represent continuation
as a tuple {instruction pointer, stack pointer}. The continuation is
added to the run-queue that holds all asynchronous threads
that are created in the context of the current kernel thread.
When asynchronous thread blocks waiting on a reply from
an isolated domain, it invokes the yield() function that again
saves the state of the thread by creating another continuation
that is added to the run-queue. The yield() function picks the
next continuation from the run-queue and switches to it.

The DO_FINISH() macro specifies the scope in which
all asynchronous threads must complete. When execution
reaches the end of the DO_FINISH() block, the runtime checks
if any of unfinished asynchronous threads are still on the
run-queue. If yes, the runtime creates a continuation for the
current thread knowing that it has to finish the DO_FINISH()
block later, and switches to a thread from the run-queue.

Integration with the messaging system Every time a re-
mote invocation blocks waiting on a reply, the asynchronous
runtime switches to the new thread. The runtime system
checks the reply message ring for incoming messages and
whether any of them can unblock one of the blocked asyn-
chronous threads. We implement a lightweight data structure
that allows us to resolve response identifiers into pointers
to asynchronous threads waiting on the run-queue. If the re-
sponse channel is empty, the runtime system tries to return to
the main thread to dispatch more asynchronous threads, but if
the main thread reached the end of the DO_FINISH() block it
picks one of the existing threads from the run-queue.

Nested invocations In most cases a cross-domain invocation
triggers one or more nested remote invocations back into
the caller domain, be it an LXD or a non-isolated kernel.
For example, the ndo_start_xmit() triggers invocation of the
consume_skb() function that releases the skb after it is sent.
We need to process nested invocations in the caller domain.
To avoid using an extra thread to dispatch remote invocations,
we process nested invocations in the context of the caller
thread. We embed a dispatch loop, the optimization we call
“sender’s dispatch loop”, inside the message receive function
thc_ipc_poll_recv() in such a way that it listens and processes
incoming invocations from the callee.

Implementation ASYNC() and DO_FINISH() leverage func-
tionality of GCC macros that allow us to declare the block

of code as a nested function that can be executed on a new
stack. We base implementation of the threading runtime on
the eager version of AC [39] (in LXDs cross-domain invo-
cations always block, therefore, eager creation of the stack
for each asynchronous thread is justified). Besides changing
AC to work inside the Linux kernel and integrating it with the
LXDs messaging primitives, we employ several aggressive
optimizations. To minimize the number of thread switches,
we introduce an idea of a “direct” continuation, the continua-
tion that is known to follow the current context of execution,
e.g., the instruction following the ASYNC() block. We also
defer deallocation of stacks. Normally, the stack cannot be
deallocated from the context of the thread that is using it. AC
switches into the context of the “idle” scheduler thread and
deallocates the stack from there. This, however, introduces an
extra context switch. Instead, we maintain the queue of stacks
pending de-allocation and deallocate them all at once right
when the execution exits the DO_FINISH() block.

3.3 Fast Cross-Core Messaging
Trying to reduce overheads of crossing the isolation bound-
ary, LXDs schedule isolated subsystems on separate CPU
cores and use a fast cross-core communication mechanism to
send “call” and “reply” invocations between the cores. The
performance of cross-core invocations is dominated by the la-
tency of cache coherence protocol, which synchronizes cache
lines between cores (a single cache-line transaction incurs a
latency of 100-400 cycles [22, 56, 57]). In order to achieve
the lowest possible communication overhead, similar to prior
projects [5,6,47], we minimize the number of cache coherence
transactions. In LXDs, each channel consists of two rings: one
for outgoing “call” messages and one for incoming “replies”.
We configure each message to be the size of a single cache
line (64 bytes on our hardware). Similar to FastForward [36],
we avoid shared producer and consumer pointers, as they add
extra transactions for each message. Instead, we utilize an
explicit state flag that signals whether the ring slot is free.

4 Decomposition Case-Studies
To evaluate the generality of LXDs abstractions, we develop
several isolated device drivers in the Linux kernel.

4.1 Network Device Drivers
We develop isolated versions of two network drivers: 1) a
software-only dummy network driver that emulates an in-
finitely fast network adapter, and 2) Intel 82599 10Gbps Eth-
ernet driver (ixgbe). The network layer of the Linux kernel
has one of the tightest performance budgets among all ker-
nel subsystems. Further, the dummy is not connected to a real
network interface, and hence allows us to stress overheads of
isolation without any artificial limits of existing NICs.

Decomposed network drivers To isolate the dummy and
ixgbe network drivers, we develop IDL specifications of the
network driver interface. The IDL specification is 64 lines of

code for the dummy, and 153 lines for the ixgbe driver (110
lines for the network and 43 for the PCIe bus interfaces). Each
network device driver registers with the kernel by invoking a
kernel function and passing a collection of function pointers
that implement an interface of a specific driver. Since ixgbe
manages a real PCIe device, it registers with the PCIe bus
driver that enumerates all PCIe devices on the bus and con-
nects them to matching device drivers. Therefore, we develop
an IDL specification for the PCI bus interface.

In contrast to block device drivers that implement a zero-
copy path for block requests, the network stack copies each
packet from a user process into a freshly allocated kernel
buffer. To ensure a zero-copy transfer of the packet from the
kernel to the LXD, we allocate a region of memory shared
between the non-isolated kernel and the LXD of the network
driver. The kernel allocates memory for the skb payload us-
ing the alloc_skb() function. We modify it to allocate payload
data from this shared region. Linux does not provide a simple
mechanism to configure one of its memory allocators to run
on a specified region of memory. We, therefore, develop a
lock-free allocator that uses a dedicated memory region to
allocate blocks of a fixed size. To enable device access to
the region of shared memory where packet payload is allo-
cated, we extend the libLXD and the LXD microkernel with
support for the IOMMU interface. We configure the IOMMU
to enable access to the packet payload region that is shared
between the kernel and the LXD.

The ixgbe device driver uses system timers for several
control plane operations. To provide timers inside LXDs, we
rely on the timer infrastructure of the non-isolated kernel.
Much like any other function pointer, we register the timer
callback function pointer with the kernel. The callback caller
stub sends an IPC to the isolated driver to trigger the actual
callback inside the LXD. Finally, in the native driver, the
NAPI polling function is invoked in the context of the softirq
thread. We implement softirq threads as asynchronous threads
dispatched from the LXD’s dispatch loop.

The isolated dummy driver requires two cross-domain calls
on the packet transmission path. The first call is invoked by
the non-isolated kernel to submit the packet to the driver
(ndo_start_xmit()), and the second is called by the driver after
the packet was processed by the device and is ready to be
released (consume_skb()). To reduce overheads of isolation,
we introduce the “half-crossing” optimization. Specifically,
for the functions that do not return a value, e.g., consume_skb()
that releases the network packet to the kernel, we send the
“call” message across the isolation boundary, but do not wait
for the arrival of the reply message.

4.2 Multi-Queue Block Device Drivers
We implement a decomposed version of the nullblk block
driver [4]. The nullblk driver is not connected to a real NVMe
device, but instead emulates the behavior of the fastest possi-
ble block device in software.

Linux multi-queue block layer Linux implements a multi-
queue (MQ) block layer [7] to support low-latency, high-
throughput PCIe-attached non-volatile memory (NVMe)
block devices. On par with network adapters, today NVMe
is one of the fastest I/O subsystems in the kernel. To fully
benefit from the asynchronous multi-queue layer, user-level
processes rely on the new asynchronous block I/O interface
that allows applications to submit batches of I/O requests to
the kernel and poll for completion later. In the case of di-
rect device access, the kernel performs all request processing
starting from the system call to leaving the request ready for
the DMA in the context of the same process that issued the
io_submit() system call. The kernel returns to the process right
after leaving request in the DMA ring buffers. Later the pro-
cess polls for completion of the request by either entering the
kernel again, or by monitoring a user-mapped page where the
kernel advertises completed requests. Being allocated inside
a user-level page, the pointer to the request is passed to the
kernel, the kernel “pins” the page ensuring that it does not get
swapped out while the request is in-flight. For each request
the device driver adds the page containing the request to the
IOMMU of the device, hence permitting the direct access to
the request payload.
Decomposed block driver Similar to network drivers, we
develop IDL specifications of the block driver interface, which
consists of 68 lines of IDL code. The isolated nullblk driver re-
quires three cross-domain calls on the I/O path. The first call
is invoked by the non-isolated kernel to pass a block request
from the block layer to the driver. The driver itself invokes
two functions of the non-isolated kernel: blk_mq_start_request()
and blk_mq_end_request(). The blk_mq_start_request() function
passes the pointer to the request back to the block layer to
inform it that request processing has started, and the I/O is
ready to be issued to the device. The block layer now asso-
ciates a timer with this particular request to ensure that if
the completion for that request does not arrive in time, it can
either abort the I/O operation or try to enqueue the request
again. The blk_mq_end_request() allows the driver to inform
the block layer that the request is completed by the device,
and is ready to go up the block layer back to the user process.

We utilize ASYNC() and DO_FINISH() to implement an asyn-
chronous loop on the submission path. A batch of requests is
submitted by the application, hence we dispatch them to the
nullblk LXD asynchronously. We provide a detailed analysis
of isolation overheads in Section 5.6.

5 Evaluation
We conduct all experiments in the openly-available CloudLab
network testbed [65].3 We utilize CloudLab d820 servers with
four 2.2 GHz 8-Core E5-4620 processors and 128 GB RAM.
All machines run 64-bit Ubuntu 18.04 Linux with the kernel
version 4.8.4. In all experiments we disable hyper-threading,

3LXDs are available at https://github.com/mars-research/

lxds.

https://github.com/mars-research/lxds
https://github.com/mars-research/lxds

Operation Cycles (Cycles per request)

Context switch 29-41
1 non-blocking ASYNC() 46
1 blocking ASYNC() 124
4 blocking ASYNC()s 374 (93.5)

Table 1: Overhead of asynchronous threads.

Operation Cycles

seL4 same-core d820 (without PCIDs) 1005
seL4 same-core c220g2 (with PCIDs) 834
LXDs cross-core r320 (non-NUMA) 448
LXDs cross-core d820 (NUMA) 533

Table 2: Intra-core vs cross-core IPC.

turbo boost, and frequency scaling to reduce the variance in
benchmarking.

5.1 Asynchronous Runtime
LXDs rely on the asynchronous runtime to hide the overheads
of cross-domain invocations. To evaluate the effectiveness of
this design choice, we conduct two sets of experiments that
measure and compare overheads of asynchronous threads,
and synchronous invocations.

Overhead of asynchronous threads We conduct four exper-
iments that measure overheads of the asynchronous runtime
(Table 1). In all tests we run 10M iterations and report an
average across five runs. The first test measures the overhead
of creating and tearing down a minimal asynchronous block
of code that just increments an integer, but does not block.
Each iteration takes 46 cycles which includes allocating and
deallocating a stack for the new thread, and two stack switches
to start and end execution of the thread. In the second test we
measure the overhead of switching between a pair of asyn-
chronous threads that takes 29 cycles and uses a sequence of
20 CPU instructions. Out of 20 instructions 16 are memory
accesses that touch the first level cache and take two cycles
each [28] (six instructions are required to save and restore
callee saved registers, and two save and restore instruction
pointer and stack registers). If, however, the context switch
touches additional metadata, e.g., adds the thread to the run-
queue, the overhead of the context switch grows to 41 cycles
due to additional memory accesses.

The third and fourth tests measure the overhead of exe-
cuting one and four blocking ASYNC() code blocks, i.e., each
thread executes yield() similar to the IPC path. The overhead
of creating one blocking asynchronous block (third test in
Table 1) is 124 cycles, which consist of the cost to create
and tear down a non-blocking asynchronous thread (46 cy-
cles) and three context switches required to block and un-
block the thread, and switch back to the main thread when the
DO_FINISH() block is reached. If, however, we execute four
asynchronous blocks in a loop the total overhead comes to 374
cycles or 93.5 cycles per one asynchronous block. Overall, we

Batch size Cycles (cycles per msg)

Manual ASYNC()
1 533 568
4 876 (219) 1111 (277)
8 1262 (157) 2096 (262)

Table 3: Benefits of manual and ASYNC() batching.

conclude that asynchronous threads are fast, and come close
to the speed of manual management of pending invocations
in a message-passing system.

5.2 Same-core vs cross-core IPC
Same-core IPC To understand the benefits of cache-coherent
cross-core invocations over traditional same-core address-
space switches, we compare LXDs’ cross-core channels with
the synchronous IPC mechanism implemented by the seL4
microkernel [26]. We choose seL4 as it implements the fastest
synchronous IPC across several modern microkernels [55]. As
d820 servers do not provide support for tagged TLBs (PCIDs)
that improve IPC performance by avoiding an expensive TLB
flush on the IPC path, in addition to the d820 machines we
report results for the same IPC tests on an Intel E5-2660 v3 10-
core Haswell 2.6GHz machine (CloudLab c220g2 server) that
implements support for tagged TLBs. To defend against Melt-
down attacks, seL4 provides support for a page-table-based
kernel isolation mechanism similar to KPTI [37]. However,
this mechanism negatively affects IPC performance due to
an additional reload of the page table root pointer. Since re-
cent Intel CPUs address Meltdown attacks in hardware, we
configure seL4 without these mitigations. On d820 machines
without PCIDs support, seL4 achieves the median IPC latency
of 1005 cycles (Table 2). On the c220g2 servers with tagged
TLBs enabled the IPC latency drops to 834 cycles (Table 2).
Cross-core IPC To measure the overhead of cross-core
cache-coherent invocations, we conduct a minimal call/re-
ply test in which a client thread repeatedly invokes a func-
tion of a server via an LXD’s asynchronous communication
channel. Client and server are running on two cores of the
same CPU socket. Since multi-socket NUMA machines in-
cur higher cache-coherence overheads and thus have slower
cross-domain invocations, in our experiments we a NUMA
and a non-NUMA machine with a similar CPU: a four socket
d820 NUMA server and a single-socket non-NUMA r320
CloudLab server configured with one 2.1 GHz 8-core Xeon
E5-2450 CPU. In all experiments we run 100M call/reply
invocations and report an average across five runs (Table 2).
On a non-NUMA r320 machine, cross-core IPC takes 448
cycles. On a NUMA d820 machine, this number increases to
533 cycles.

Two additional observations are important. First, communi-
cation between hardware threads of the same CPU core takes
less time than communication between cores (we measure the
overhead of cross-core invocations to be only 105 cycles on
the non-NUMA r320 machine and 133 cycles on the NUMA

d820). Typically, however, a single LXD serves requests from
multiple cores of the monolithic kernel, and hence only a
single core can benefit from proximity to the logical core.

Second, communication outside of the NUMA node incurs
high overheads due to crossing inter-socket links. On the d820
server, a cross-socket call/reply invocation takes 1988 cycles
over one inter-socket hop, which is higher than overhead of a
synchronous same-core IPC. Note that on a batch of 4 and 8
this number drops to 900 and 535 cycles per message respec-
tively. We anticipate that each NUMA node will run a local
LXD thread and hence the crossings of NUMA nodes will
be rare (this design makes sense as high-throughput isolated
subsystems, e.g., network and NVMe drivers, are CPU-bound
and anyway require multiple LXD threads to keep up with
invocations from multiple kernel threads).

Finally, we make an observation that compared to over-
heads of synchronous IPC invocations (both on the same
core and cross-core) the overheads of asynchronous threads
is relatively small (93.5 cycles per-request in a batch of four
(Table 1)). Therefore, the use of asynchronous threads for
batching and pipelining of multiple cross-domain invocations
is justified.

5.3 Message Batching

To evaluate the benefits of aggregating multiple cross-core
invocations in a batch, we conduct an experiment that per-
forms call/reply invocations in batches of messages ranging
from 1 to 8. On a batch of 4 messages a call/reply invocation
takes only 876 cycles, or 219 cycles per invocation on a d820
NUMA machine (Table 3). On a batch of 8 messages the
overhead per one call/reply invocation drops to 157 cycles per
message. For a batch of messages, the cross-core IPC sends
call/reply invocations through independent cache lines. The
CPU starts sending the next message right after issuing loads
and stores to the hardware load/store queue, but without wait-
ing for completion of the cache-coherence requests effectively
pipelining multiple outstanding cache coherence requests.

Composable batching with ASYNC() Finally, we analyze
how cross-core invocations are affected if the batches of mes-
sages are created by blocking asynchronous threads instead
of the manual, message-passing style batching we analyzed
above. To evaluate overheads of asynchronous threads, we de-
sign an IPC test that performs a series of cross-core function
invocations from inside an ASYNC() block (Table 3). We run
a loop of length 1, 4, and 8. The body of the loop is an asyn-
chronous code block that invokes a function on another core.
Instead of waiting for the reply, each asynchronous thread
yields and continues to the next iteration of the loop that dis-
patches the new asynchronous thread. For the loop of length
1, 4, and 8, compared to the manual batch, ASYNC() introduces
overhead ranging from 35 cycles on a batch of one to 105
cycles per message on a batch of 8 (Table 3).

0

5000

10000

15000

20000

25000

5 10 15 20 25

IO
P

S
 (

K
)

native
dummy-1

dummy-1.5
dummy-2

0

2000

4000

6000

8000

10000

12000

14000

5 10 15 20 25

IO
P

S
 (

K
)

Number of threads

native
sync-4lcds

async-4lcds

Figure 3: Performance of the dummy driver

5.4 Dummy Device Driver
We utilize the dummy driver as a platform for several bench-
marks that highlight overheads of isolation in the context of a
“fast” device driver (dummy is a good, representative example
of such device driver as it serves an infinitely fast device and
is accessed through a well-optimized I/O submission path
of the kernel network stack). In all experiments we use the
iperf2 benchmark that measures the transmit and receive band-
width for different payload sizes, and run the tests on d820
servers (Figure 3). We configure the isolated dummy driver
with a varying number of cores ranging from one to four in
such a manner that one LXD thread runs on each socket of
the 4-socket d820 system. Specifically, on a 32-core system,
the isolated dummy can support up to 27 iperf threads (i.e.,
four cores of the system are dedicated to LXD threads, and
one core is occupied by the kLXD thread servicing control
plane invocations from the LXD). We assign the first six iperf
threads to the first socket (one core of the CPU socket is occu-
pied by the LXD thread and one by the kLXD thread), then we
assign the next seven iperf threads (7-13) to the next socket,
and so on (Figure 3). We report the total number of device
driver I/O requests per-second (IOPS) across all threads (we
report an average across five runs on the maximum transmis-
sion unit (MTU) size packets).

In our first experiment we change dummy to perform only
one crossing between the kernel and the driver for sending
each packet (dummy-1, Figure 3). This synthetic configuration
allows us to analyze overheads of isolation in the ideal sce-
nario of a device driver that requires only one crossing on the
device I/O path. With one application thread the non-isolated
driver achieves 956K IOPS (i.e., on average, a well-optimized
network send path takes only 2299 cycles to submit an MTU-
sized packet from the user process to the network interface).
The isolated driver achieves 730K IOPS (76% of the non-
isolated performance), and on average requires 3009 cycles to
submit one packet. Of course, the isolated driver utilizes one
extra core for running the LXD. Isolation adds an overhead of

710 cycles per-packet, which includes the overhead of the IPC
and processing of the packet by the driver (in this experiment,
LXDs do not benefit from any asynchrony; all packets are
submitted synchronously). On 27 threads the isolated driver
achieves 70% of the performance of the non-isolated driver.
Compared to the configuration with one application thread,
the slight drop in performance is due to the fact that each of
four LXDs service up to seven application threads which adds
overhead to the LXD’s dispatch processing loop.

In practice, the dummy driver requires two domain cross-
ings for submitting each packet (Section 4). We evaluate how
performance of isolated drivers degrades with the number of
crossings by running a version of dummy that performs two
full cross-domain invocations (dummy-2, Figure 3). On one
thread, two crossings add overhead of 1794 cycles per packet.
The “half-crossing” optimization, however, reduces the over-
head of two crossings from 1794 cycles per-packet to only
814 cycles (dummy-1.5, Figure 3).

Asynchronous threads To evaluate the impact of asyn-
chronous communication, we perform the same iperf2 test
with a packet size of 4096 bytes. When the packet size ex-
ceeds MTU, the kernel fragments each packet into MTU-size
chunks suitable for transmission and submits each chunk to
the driver individually. In general, multiple domain cross-
ings caused by fragmentation negatively affect performance
of the isolated driver. We compare three configurations: a
non-isolated dummy driver (native, Figure 3), a synchronous
version of LXDs (sync-4-lcds) and asynchronous version
that leverages ASYNC() to invoke the driver in a parallel loop
(async-4-lcds). Configured with one iperf thread, a non-
isolated driver achieves 534K IOPS, i.e., on average it requires
4114 cycles to submit a 4096 byte packet split in three frag-
ments. Performance of the synchronous version of the isolated
driver is heavily penalized by the inability to overlap com-
munication, i.e., waiting for LXD replies, and processing of
further requests. The synchronous version achieves only 236K
IOPS (44% of non-isolated performance). The asynchronous
isolated driver is able to benefit from pipelining of three frag-
mented packets with asynchronous threads (it achieves 341K
IOPS or 63.8% of non-isolated performance). Note, that as
the number of application threads grows, the benefits of asyn-
chronous threads gradually disappear. With 27 iperf threads
both synchronous and asynchronous configurations achieve
similar performance (36% and 37% of the native driver re-
spectively). As the number of application threads increases,
each core of the isolated driver that processes requests from
up to seven iperf threads becomes heavily utilized. Each LXD
thread dispatches kernel invocations in a round-robin man-
ner from a set of cross-core communication channels. If all
channels are active, the performance of each iperf thread is
dominated by the time spent waiting for its turn to be pro-
cessed by the LXD. On a batch of only three messages, asyn-
chronous threads do not provide sufficient benefits to tolerate
this latency.

0

2

4

6

8

10

1 2 3 4 5 6

T
x
 B

a
n

d
w

id
th

 (
G

b
p

s
)

native
isolated

0

2

4

6

8

10

1 2 3 4 5 6

R
x
 B

a
n

d
w

id
th

 (
G

b
p

s
)

Number of threads

native
isolated

Figure 4: Ixgbe Tx and Rx bandwidth.

5.5 Ixgbe Device Driver
To measure performance of the isolated ixgbe driver, we con-
figure an iperf2 test with a varying number of iperf threads
ranging from one to six (Figure 4). On our system, a small
number of application threads saturates a 10Gbps network
adapter. Configured with one iperf thread, on the MTU size
packet the isolated ixgbe is 12% faster compared to the iso-
lated system on the network transmit path, although at the
cost of using an extra core. This advantage disappears as the
LXD becomes busy handling more than one iperf thread. Nev-
ertheless, from three to seven threads, the isolated driver stays
within 6-13% of the performance of the native device driver
which saturates the network interface with three and more
application threads.

On the receive path, the isolated driver is 1% slower for
one application thread. Two factors attribute to performance
of the isolated driver: 1) it benefits from an additional core,
and 2) it uses asynchronous threads for NAPI polling instead
of native threads used by the Linux kernel for handling IRQs.
Asynchronous threads provide a faster context switch com-
pared to the native Linux kernel threads. Similar to transmit
path, this advantage disappears with larger number of applica-
tion threads. From two to six threads the isolated driver stays
within 12-18% of the performance of the native driver.

To measure the end-to-end latency, we rely on the UDP
request-response test implemented by the netperf benchmark-
ing tool. The UDP_RR measures the number of round-trip
request-response transactions per second, i.e., the client sends
a 64 byte UDP packet and waits for the response from the
server. The native driver achieves 26688 transactions per sec-
ond (which equals the round-trip latency of 40µs), the isolated
driver is 7% (2.6µs) faster with 24975 transactions per sec-
ond (round-trip latency of 37.4µs). Again the isolated driver
benefits from a faster receive path due to low-overhead con-
text switch of asynchronous threads. As the network is lightly
loaded during the latency test even with six application threads
the isolated driver remains 3.4µs faster achieving the latency

of 43.4µs versus 46.8µs achieved by the native driver.

5.6 Multi-Queue Block Device Driver
In our block device experiments, we use fio to generate I/O
requests. To set an optimal baseline for our evaluation, we
chose the configuration parameters that provide the lowest
latency path to the driver, so that overheads of isolation are
emphasized the most. We use fio’s libaio engine to overlap I/O
submissions, and bypass the page cache by setting direct I/O
flag to ensure raw device performance. Similar to dummy, in
isolated configuration, the nullblk LXD fully utilizes one extra
core on every CPU socket. We run the same configurations
as for dummy, e.g., one LXD thread on each NUMA node.
We placing the first six fio threads on the first NUMA node,
next seven fio threads on the second NUMA node, and so on,
up until 27 fio threads. We vary the number of fio threads
from 1 to 27 and report results for two block sizes—512 bytes
and 1MB—which represent two extreme points: a very small
and a very large data block. For each block size, we submit a
set of requests at once ranging the number of requests from
1 to 16 and then poll for the same number of completions.
Since the nullblk driver does not interact with an actual storage
medium writes perform as fast as reads, hence we utilize read
I/O operations in all experiments.

The native driver achieves 295K IOPS for the packet size
of 512 bytes and the queue of one (Figure 5). In other words,
a single request takes about 7457 cycles to complete. The
isolated driver achieves 235K IOPS (or 79% of non-isolated
performance). The isolation incurs an overhead of 1904 cycles
due to three domain crossings on the critical path. For a queue
of 16 requests, the isolated driver benefits from asynchronous
threads which allow it to stay within 4% of the performance
of the native driver for as long as it stays in one NUMA node
(from 1 to 6 fio threads). Both native and isolated drivers suffer
from NUMA effects due to the fact that Linux block layer
collects performance statistics for every device partition. The
blk_mq_end_request() function acquires a per-partition lock
and updates several global counters. The native driver faces
performance drops when it spills outside of a NUMA node
at 9, 17, and 25 fio threads (Figure 5). The isolated driver
experiences similar drops at 7, 14, and 21 fio threads. On
the block size of 1M, inside one NUMA node the isolated
driver stays within 10% of the performance of the native
driver for both queues of one and 16 requests. Outside of
one NUMA node the performance of both native and isolated
drivers suffers from NUMA effects. We speculate that NUMA
degradation can be fixed by changing the kernel to use per-
core performance counters [10].

6 Conclusions
LXDs provide general abstractions and mechanisms for iso-
lating device drivers in a full-featured operating system ker-
nel. By employing several design choices—relying on an
asynchronous execution runtime for hiding latency of cross-

0

500

1000

1500

2000

2500

3000

5 10 15 20 25

IO
P

S
 (

K
)

native-512-q1
isolated-512-q1

0

2000

4000

6000

8000

10000

12000

5 10 15 20 25

IO
P

S
 (

K
)

native-512-q16
isolated-512-q16

0
20
40
60
80

100
120
140
160
180
200

5 10 15 20 25

IO
P

S
 (

K
)

native-1M-q1
isolated-1M-q1

0

50

100

150

200

250

300

5 10 15 20 25

IO
P

S
 (

K
)

Number of threads

native-1M-q16
isolated-1M-q16

Figure 5: Performance of the nullblk driver

domain invocations, developing general decomposition pat-
terns, and relying on cross-core invocations—we demonstrate
the ability to isolate kernel subsystems with tightest perfor-
mance budgets. We hope that our work will gradually enable
kernels to employ practical isolation of most device drivers
and other kernel subsystems that today account for the major-
ity of the kernel code.

Acknowledgments
We thank ASPLOS 2018, OSDI 2018, and USENIX ATC
2019 reviewers and our shepherd, Andrew Baumann, for in-
depth feedback on earlier versions of the paper and numerous
insights. Also we would like to thank the Utah Emulab and
CloudLab team, and especially Mike Hibler, for his contin-
uous support and endless patience in accommodating our
hardware requests. This research is supported in part by the
National Science Foundation under Grant Numbers 1319076,
1527526, and 1817120 and Google.

References
[1] Code-Pointer Integrity in Clang/LLVM. https://

github.com/cpi-llvm/compiler-rt.

[2] Atul Adya, Jon Howell, Marvin Theimer, William J.

https://github.com/cpi-llvm/compiler-rt
https://github.com/cpi-llvm/compiler-rt

Bolosky, and John R. Douceur. Cooperative task man-
agement without manual stack management. In USENIX
Annual Technical Conference (ATC), pages 289–302,
Berkeley, CA, USA, 2002.

[3] Eric Allen, David Chase, Joe Hallett, Victor Luchangco,
Jan-Willem Maessen, Sukyoung Ryu, Guy L Steele Jr,
Sam Tobin-Hochstadt, Joao Dias, Carl Eastlund, et al.
The Fortress language specification. Sun Microsystems,
139(140):116, 2005.

[4] Jens Axboe. Null block device driver.
https://www.kernel.org/doc/Documentation/

block/null_blk.txt, 2019.

[5] Andrew Baumann, Paul Barham, Pierre-Evariste Da-
gand, Tim Harris, Rebecca Isaacs, Simon Peter, Timo-
thy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
The Multikernel: A new OS architecture for scalable
multicore systems. In ACM SIGOPS Symposium on Op-
erating Systems Principles (SOSP), pages 29–44, New
York, NY, USA, 2009.

[6] Brian N Bershad, Thomas E Anderson, Edward D
Lazowska, and Henry M Levy. User-level interpro-
cess communication for shared memory multiproces-
sors. ACM Transactions on Computer Systems (TOCS),
9(2):175–198, 1991.

[7] Matias Bjørling, Jens Axboe, David Nellans, and
Philippe Bonnet. Linux block IO: Introducing multi-
queue SSD access on multi-core systems. In ACM In-
ternational Systems and Storage Conference (SYSTOR),
pages 22:1–22:10, New York, NY, USA, 2013.

[8] Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and
Zhenkai Liang. Jump-oriented programming: a new
class of code-reuse attack. In Proceedings of the 6th
ACM Symposium on Information, Computer and Com-
munications Security (ASIACCS), pages 30–40, 2011.

[9] Bomberger, A.C. and Frantz, A.P. and Frantz, W.S.
and Hardy, A.C. and Hardy, N. and Landau, C.R. and
Shapiro, J.S. The KeyKOS nanokernel architecture. In
Proceedings of the USENIX Workshop on Micro-Kernels
and Other Kernel Architectures, pages 95–112, 1992.

[10] Silas Boyd-Wickizer, Austin T. Clements, Yandong
Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert Mor-
ris, and Nickolai Zeldovich. An analysis of linux scala-
bility to many cores. In USENIX Symposium on Operat-
ing Systems Design and Implementation (OSDI), pages
1–16, Berkeley, CA, USA, 2010.

[11] Silas Boyd-Wickizer and Nickolai Zeldovich. Tolerating
malicious device drivers in Linux. In USENIX Annual
Technical Conference (ATC), pages 9–22, 2010.

[12] Bromium. Bromium micro-virtualization,
2010. http://www.bromium.com/misc/

BromiumMicrovirtualization.pdf.

[13] Philippe Charles, Christian Grothoff, Vijay Saraswat,
Christopher Donawa, Allan Kielstra, Kemal Ebcioglu,
Christoph Von Praun, and Vivek Sarkar. X10: an object-
oriented approach to non-uniform cluster computing. In
Acm Sigplan Notices, volume 40, pages 519–538. ACM,
2005.

[14] Gang Chen, Hai Jin, Deqing Zou, Bing Bing Zhou,
Zhenkai Liang, Weide Zheng, and Xuanhua Shi. Safes-
tack: Automatically patching stack-based buffer over-
flow vulnerabilities. IEEE Transactions on Dependable
and Secure Computing, 10(6):368–379, 2013.

[15] Citrix. XenClient. http://www.citrix.com/

products/xenclient/how-it-works.html.

[16] Patrick Colp, Mihir Nanavati, Jun Zhu, William Aiello,
George Coker, Tim Deegan, Peter Loscocco, and An-
drew Warfield. Breaking up is hard to do: security
and functionality in a commodity hypervisor. In ACM
SIGOPS Symposium on Operating Systems Principles
(SOSP), pages 189–202. ACM, 2011.

[17] Microsoft Corporation and Digital Equipment Corpora-
tion. The component object model specification, 1995.

[18] Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton,
and Jonathan Walpole. StackGuard: Automatic adaptive
detection and prevention of buffer-overflow attacks. In
USENIX Security Symposium, 1998.

[19] CVE Details. Vulnerabilities in the Linux kernel by
year. http://www.cvedetails.com/product/47/

Linux-Linux-Kernel.html?vendor_id=33.

[20] CVE Details. Vulnerabilities in the Linux ker-
nel in 2018. http://www.cvedetails.com/

vulnerability-list/vendor_id-33/product_

id-47/year-2018/Linux-Linux-Kernel.html.

[21] Data61 Trustworthy Systems. seL4 Reference Man-
ual, 2017. http://sel4.systems/Info/Docs/

seL4-manual-latest.pdf.

[22] Tudor David, Rachid Guerraoui, and Vasileios Trigo-
nakis. Everything you always wanted to know about
synchronization but were afraid to ask. In ACM SIGOPS
Symposium on Operating Systems Principles (SOSP),
pages 33–48. ACM, 2013.

[23] Distributed component object model (DCOM) remote
protocol specification. https://msdn.microsoft.

com/library/cc201989.aspx.

https://www.kernel.org/doc/Documentation/block/null_blk.txt
https://www.kernel.org/doc/Documentation/block/null_blk.txt
http://www.bromium.com/misc/BromiumMicrovirtualization.pdf
http://www.bromium.com/misc/BromiumMicrovirtualization.pdf
http://www.citrix.com/products/xenclient/how-it-works.html
http://www.citrix.com/products/xenclient/how-it-works.html
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33
http://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/year-2018/Linux-Linux-Kernel.html
http://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/year-2018/Linux-Linux-Kernel.html
http://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/year-2018/Linux-Linux-Kernel.html
http://sel4.systems/Info/Docs/seL4-manual-latest.pdf
http://sel4.systems/Info/Docs/seL4-manual-latest.pdf
https://msdn.microsoft.com/library/cc201989.aspx
https://msdn.microsoft.com/library/cc201989.aspx

[24] DDEKit and DDE for Linux. http://os.inf.

tu-dresden.de/ddekit/.

[25] Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and
Gary Lindstrom. Flick: A flexible, optimizing IDL com-
piler. In ACM SIGPLAN Notices, volume 32, pages
44–56. ACM, 1997.

[26] Kevin Elphinstone and Gernot Heiser. From L3 to seL4
what have we learnt in 20 years of L4 microkernels? In
ACM SIGOPS Symposium on Operating Systems Princi-
ples (SOSP), pages 133–150. ACM, 2013.

[27] Feske, N. and Helmuth, C. Design of the Bastei OS
architecture. Technische Universität, Dresden, Fakultät
Informatik, 2007.

[28] Agner Fog. Instruction tables. http://www.agner.

org/optimize/instruction_tables.pdf.

[29] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau,
Albert Lin, and Olin Shivers. The flux OSKit: A sub-
strate for kernel and language research. In ACM SIGOPS
Symposium on Operating Systems Principles (SOSP),
pages 38–51, 1997.

[30] Keir Fraser, Steven H, Rolf Neugebauer, Ian Pratt, An-
drew Warfield, and Mark Williamson. Safe hardware
access with the Xen virtual machine monitor. In In
1st Workshop on Operating System and Architectural
Support for the on demand IT InfraStructure (OASIS,
2004.

[31] Linux FUSE (filesystem in userspace). https://

github.com/libfuse/libfuse.

[32] Vinod Ganapathy, Matthew J Renzelmann, Arini Balakr-
ishnan, Michael M Swift, and Somesh Jha. The design
and implementation of microdrivers. In ACM SIGARCH
Computer Architecture News, volume 36, pages 168–
178. ACM, 2008.

[33] Tal Garfinkel, Ben Pfaff, Jim Chow, Mendel Rosenblum,
and Dan Boneh. Terra: a virtual machine-based platform
for trusted computing. In ACM SIGOPS Symposium on
Operating Systems Principles (SOSP), pages 193–206,
2003.

[34] Alain Gefflaut, Trent Jaeger, Yoonho Park, Jochen
Liedtke, Kevin J Elphinstone, Volkmar Uhlig,
Jonathon E Tidswell, Luke Deller, and Lars Reuther.
The SawMill multiserver approach. In Proceedings of
the 9th workshop on ACM SIGOPS European workshop:
beyond the PC: new challenges for the operating system,
pages 109–114. ACM, 2000.

[35] Gerardo Richarte. Four different tricks to bypass stack-
shield and stackguard protection. World Wide Web,
2002.

[36] John Giacomoni, Tipp Moseley, and Manish Vachhara-
jani. FastForward for efficient pipeline parallelism: a
cache-optimized concurrent lock-free queue. In ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages 43–52, 2008.

[37] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard
Fellner, Clémentine Maurice, and Stefan Mangard.
KASLR is dead: long live KASLR. In International
Symposium on Engineering Secure Software and Sys-
tems, pages 161–176. Springer, 2017.

[38] Andreas Haeberlen, Jochen Liedtke, Yoonho Park, Lars
Reuther, and Volkmar Uhlig. Stub-code performance is
becoming important. In Proceedings of the 1st Work-
shop on Industrial Experiences with Systems Software,
San Diego, CA, October 22 2000.

[39] Tim Harris, Martin Abadi, Rebecca Isaacs, and Ross
McIlroy. AC: composable asynchronous IO for native
languages. ACM SIGPLAN Notices, 46(10):903–920,
2011.

[40] Härtig, H. Security architectures revisited. In Proceed-
ings of the 10th workshop on ACM SIGOPS European
workshop, pages 16–23. ACM, 2002.

[41] Heiser, G. and Elphinstone, K. and Kuz, I. and Klein,
G. and Petters, S.M. Towards trustworthy computing
systems: taking microkernels to the next level. ACM
SIGOPS Operating Systems Review, 41(4):3–11, 2007.

[42] Herder, J.N. and Bos, H. and Gras, B. and Homburg, P.
and Tanenbaum, A.S. MINIX 3: A highly reliable, self-
repairing operating system. ACM SIGOPS Operating
Systems Review, 40(3):80–89, 2006.

[43] Hohmuth, M. and Peter, M. and Härtig, H. and Shapiro,
J.S. Reducing TCB size by using untrusted compo-
nents: small kernels versus virtual-machine monitors.
In Proceedings of the 11th workshop on ACM SIGOPS
European workshop, page 22. ACM, 2004.

[44] Nick Holloway. Dummy net driver. https:

//elixir.bootlin.com/linux/latest/source/

drivers/net/dummy.c, 1994.

[45] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh,
Nagendra Modadugu, and Dan Boneh. On the effective-
ness of address-space randomization. In ACM Confer-
ence on Computer and Communications Security (CCS),
pages 298–307, 2004.

[46] Kyriakos K. Ispoglou, Bader AlBassam, Trent Jaeger,
and Mathias Payer. Block oriented programming: Au-
tomating data-only attacks. In ACM Conference on
Computer and Communications Security (CCS), pages
1868–1882, New York, NY, USA, 2018. ACM.

http://os.inf.tu-dresden.de/ddekit/
http://os.inf.tu-dresden.de/ddekit/
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse
https://elixir.bootlin.com/linux/latest/source/drivers/net/dummy.c
https://elixir.bootlin.com/linux/latest/source/drivers/net/dummy.c
https://elixir.bootlin.com/linux/latest/source/drivers/net/dummy.c

[47] Stefan Kaestle, Reto Achermann, Roni Haecki, Moritz
Hoffmann, Sabela Ramos, and Timothy Roscoe.
Machine-aware atomic broadcast trees for multicores.
In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 33–48, 2016.

[48] Antti Kantee. Flexible operating system internals: the
design and implementation of the anykernel and rump
kernels. PhD thesis, 2012.

[49] Vinay Katoch. Whitepaper on bypassing ASLR/DEP.
http://www.exploit-db.com/wp-content/

themes/exploit/docs/17914.pdf, 2011.

[50] Kenton Varda. Cap’n Proto Cerealization Protocol.
http://kentonv.github.io/capnproto/.

[51] Kil3r and Bulba. Bypassing StackGuard and Stack-
Shield. Phrack Magazine, 53, 2000.

[52] Maxwell Krohn, Eddie Kohler, and M. Frans Kaashoek.
Events can make sense. In USENIX Annual Technical
Conference (ATC), pages 7:1–7:14, 2007.

[53] Volodymyr Kuznetsov, László Szekeres, Mathias Payer,
George Candea, R. Sekar, and Dawn Song. Code-pointer
integrity. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 147–163,
2014.

[54] Alex Landau, Muli Ben-Yehuda, and Abel Gordon.
SplitX: Split guest/hypervisor execution on multi-core.
In Workshop on I/O Virtualization, 2011.

[55] Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, and
Haibo Chen. Skybridge: Fast and secure inter-process
communication for microkernels. In Proceedings of
the Fourteenth EuroSys Conference 2019, EuroSys ’19,
pages 9:1–9:15, New York, NY, USA, 2019. ACM.

[56] Daniel Molka, Daniel Hackenberg, and Robert Schöne.
Main Memory and Cache Performance of Intel Sandy
Bridge and AMD Bulldozer. In Proceedings of the Work-
shop on Memory Systems Performance and Correctness
(MSPC), pages 4:1–4:10, New York, NY, USA, 2014.
ACM.

[57] Daniel Molka, Daniel Hackenberg, Robert Schone, and
Matthias S Muller. Memory performance and cache
coherency effects on an Intel Nehalem multiprocessor
system. In International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), pages
261–270. IEEE, 2009.

[58] Tilo Müller. ASLR smack and laugh reference. Seminar
on Advanced Exploitation Techniques, 2008.

[59] Nergal. The advanced return-into-lib(c) exploits: Pax
case study. Phrack Magazine, Volume 11, Issue 0x58,
File 4 of 14, 2001.

[60] Ruslan Nikolaev and Godmar Back. VirtuOS: An operat-
ing system with kernel virtualization. In ACM SIGOPS
Symposium on Operating Systems Principles (SOSP),
pages 116–132, New York, NY, USA, 2013.

[61] Object Management Group. OMG IDL Syntax and
Semantics. http://www.omg.org/orbrev/drafts/
3_idlsyn.pdf.

[62] Octavian Purdila. Linux kernel library. https://lwn.
net/Articles/662953/.

[63] Jon Rafkind. Vembyr - multi-language PEG parser
generator written in Python, November 2011. http:

//code.google.com/p/vembyr/.

[64] Matthew J Renzelmann and Michael M Swift. De-
caf: Moving device drivers to a modern language. In
USENIX Annual Technical Conference (ATC), 2009.

[65] Robert Ricci, Eric Eide, and the CloudLab Team. Intro-
ducing CloudLab: Scientific infrastructure for advancing
cloud architectures and applications. ;login:, 39(6):36–
38, December 2014.

[66] Rutkowska, J. and Wojtczuk, R. Qubes OS architecture.
Invisible Things Lab Tech Rep, 2010.

[67] Livio Soares and Michael Stumm. FlexSC: flexible
system call scheduling with exception-less system calls.
In USENIX Symposium on Operating Systems Design
and Implementation (OSDI), pages 1–8, 2010.

[68] Green Hills Software. INTEGRITY Real-Time Op-
erating System. http://www.ghs.com/products/

rtos/integrity.html.

[69] Michael M Swift, Steven Martin, Henry M Levy, and
Susan J Eggers. Nooks: An architecture for reliable
device drivers. In Proceedings of the 10th workshop
on ACM SIGOPS European workshop, pages 102–107.
ACM, 2002.

[70] Hajime Tazaki. An introduction of library operat-
ing system for Linux (LibOS). https://lwn.net/

Articles/637658/.

[71] Tyler Durden. Bypassing PaX ASLR protection. Phrack
Magazine, 59, 2002.

[72] Arjan van de Ven. New Security Enhance-
ments in Red Hat Enterprise Linux v.8, update
3. https://static.redhat.com/legacy/f/pdf/

rhel/WHP0006US_Execshield.pdf.

http://www.exploit-db.com/wp-content/themes/exploit/docs/17914.pdf
http://www.exploit-db.com/wp-content/themes/exploit/docs/17914.pdf
http://kentonv.github.io/capnproto/
http://www.omg.org/orbrev/drafts/3_idlsyn.pdf
http://www.omg.org/orbrev/drafts/3_idlsyn.pdf
https://lwn.net/Articles/662953/
https://lwn.net/Articles/662953/
http://code.google.com/p/vembyr/
http://code.google.com/p/vembyr/
http://www.ghs.com/products/rtos/integrity.html
http://www.ghs.com/products/rtos/integrity.html
https://lwn.net/Articles/637658/
https://lwn.net/Articles/637658/
https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_Execshield.pdf
https://static.redhat.com/legacy/f/pdf/rhel/WHP0006US_Execshield.pdf

[73] Kenton Varda. Protocol buffers: Google’s data inter-
change format. Google Open Source Blog, 2008.

[74] L. Vilanova, M. Ben-Yehuda, N. Navarro, Y. Etsion, and
M. Valero. CODOMs: Protecting software with code-
centric memory domains. In ACM/IEEE International
Symposium on Computer Architecture (ISCA), pages
469–480, June 2014.

[75] Emmett Witchel, Junghwan Rhee, and Krste Asanović.
Mondrix: Memory isolation for Linux using Mondrian
memory protection. In ACM SIGOPS Operating Sys-
tems Review, volume 39, pages 31–44. ACM, 2005.

[76] Jonathan Woodruff, Robert NM Watson, David Chisnall,
Simon W Moore, Jonathan Anderson, Brooks Davis,

Ben Laurie, Peter G Neumann, Robert Norton, and
Michael Roe. The CHERI capability model: Revisiting
RISC in an age of risk. In ACM/IEEE International
Symposium on Computer Architecture (ISCA), pages
457–468. IEEE, 2014.

[77] Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui
Gong, and Wei Zou. FUZE: Towards facilitating ex-
ploit generation for kernel use-after-free vulnerabilities.
In 27th USENIX Security Symposium (USENIX Security
18), pages 781–797, Baltimore, MD, 2018. USENIX

Association.

	Introduction
	Background and Motivation
	LXDs Architecture
	Interface Definition Language
	Asynchronous Execution Runtime
	Fast Cross-Core Messaging

	Decomposition Case-Studies
	Network Device Drivers
	Multi-Queue Block Device Drivers

	Evaluation
	Asynchronous Runtime
	Same-core vs cross-core IPC
	Message Batching
	Dummy Device Driver
	Ixgbe Device Driver
	Multi-Queue Block Device Driver

	Conclusions
	Acknowledgments

