Memory Network: Enabling Technology for
Scalable Near-Data Computing

Gwangsun Kim, John Kim
KAIST
{gskim, jjk12}@Kkaist.ac.kr

1. INTRODUCTION

Processing-in-memory (PIM) or near-data processing
(NDP) has been researched during the late 90s but with
the advances in technology, including 3D memory stack-
ing, and new emerging workloads, similar concepts have
been recently revisited. There are various challenges for
near-data processing to become widely used but one of
the basic assumption is the emphasis on near-data pro-
cessing — i.e., the data is “near” the computation. For a
single-node PIM or NDP, this is not an issue but if there
are more than one nodes in the system, a challenge is that
the data might not be “near” any longer, especially if the
data is located on a different node. As a result, to en-
able scalable near-data processing, one of the challenges
includes how to efficiently move data between the various
nodes or minimize the cost of data movement.

In this paper, we describe the issues in designing a cost-
efficient memory network that can enable scalable near-
data processing. In particular, we focus on multi-module
PIM or NDP system — i.e., a system that has more than
one PIM module. With such systems, we describe the
memory network or the interconnect that connects the
memory modules and the core modules together. While
there are high-level, software challenges including data
mapping, and memory allocation in NDP, the underly-
ing communication substrate (or the memory network) is
a critical component in enabling efficient communication
and scalable near-data computing. We describe some of
the recent work in memory network and then, summa-
rize different directions for research in memory network
for scalable near-data computing.

In this work, we assume a hybrid memory cube (HMC)-
based NDP as shown in Fig. 1, but this work is not nec-
essarily limited to the HMC technology and is applicable
to other memory technologies. Processors and the HMCs
communicate with packetized abstract messages through
high-speed serial interface instead of communicating low-
level commands (e.g., DDR memory commands). The
memory is 3D stacked on top of a logic layer, connected
with through-silicon-vias. The logic layer consists of the
vault memory controllers and the I/O ports. In addition,
an intra-HMC network connects the I/O ports and the
memory controllers together.

Prior work [5] has classified the different types of in-
terconnects with multiple memory and processing mod-
ules. Conventional multi-socket systems can be classi-
fied as processor-centric network (PCN) as the processor-
interconnect is used to connect the different processors

Jung Ho Ahn
Seoul National University

gajh@snu.ac.kr

Yongkee Kwon
SK Hynix
yongkee.kwon@sk.com

Logic Layer

-7 Vault | Vault _ Vault
e CTRL | CTRL CTRL

o Intra-HMC Network
layers N
Logic

layer — ‘b""i

Figure 1: The Hybrid Memory Cube (HMC) ar-
chitecture.

DRAM

@ : Memory Module

IE‘ : Processor Socket

(a) Processor-centric network

(b) Memory-centric network
Figure 2: Alternative system interconnect designs.

together, with each processor having its own dedicated
memory, as shown in Fig. 2(a). In comparison, if the
memory modules or a pool of memory modules are in-
terconnected with a memory network, a memory-centric
network (MCN) can be created. In an MCN, processors
are only connected to their local HMCs, and all com-
munications between processors are routed through the
memory network as shown in Fig. 2(b) [5]. While MCN
enables flexibility and facilitates remote memory access,
it also creates challenges since locality can be lost if ac-
cessing data from remote memory modules. In this work,
we focus on the memory-centric network organization or
simply, memory network [10] and the challenges/issues.

1.1 Related Work

When PIM was researched in the late 90s to early 2000s,
PIM interconnect or memory interconnect was also dis-
cussed. For example, in DIVA [3], the interconnect design
to connect multiple PIM modules was presented. In par-
ticular, the authors designed a simple, fast router orga-
nization but assumed a simple low-dimensional network
(e.g., ring) was sufficient. However, with the advances in
technology and greater importance on energy-efficiency,
such an approach is not necessarily most efficient as higher
hop count results in inefficiency — both in terms of perfor-
mance and energy.

With the recent (re-)emergence of PIM or near-data
processing, the interconnect aspect of PIM has been re-
visited as well. Sudan [13] and Rosenfeld [12] have eval-

uated alternative memory network topologies including
daisy chain organization [12] and different tree organiza-
tions [13]. However, their work was focused on a single-
node or a single-socket system with multiple memory mod-
ules. With only a single-node system, a “halo”-like organi-
zation can be most efficient to minimize distance between
the node and the memory modules.

Different topologies for multi-CPU systems [5] and multi-
GPU systems [6] have been recently proposed. Their
topologies are variations of the recently proposed high-
radix topologies for large-scale networks, including the
flattened butterfly topology [7] and the dragonfly topol-
ogy [8]. These topologies differ from other work as multi-
ple processing nodes are assumed in the memory network.
To exploit the constraints of a memory network, these
topologies exploit distributor-based topology to efficiently
utilize the channel bandwidth from the processing nodes.
In the following section, we summarize and highlight some
of the issues in designing such memory networks and the
different research directions.

2. MEMORY NETWORK
2.1 Common Interface

One of the challenges (as well as one of the significant
benefits) of the memory network comes from a common
interface across all of the modules. Current HMC is based
on an abstract interface between the processing nodes and
the 3D stacked memory where packets are used for com-
munication — a very different interface compared with the
conventional DRAM interface. There is a non-technical
challenge associated with this issue since multiple vendors
need to agree on a common interface but a recent whitepa-
per argues that “computer industry has historically made
major advances when industry players have been able to
add innovation behind a standard interface” [11].

By having a common interface, it not only results in
greater flexibility in system configuration but it can also
potentially reduce overall cost of the system. For example,
in a heterogeneous system such as a multi-GPU system
today, various interconnects are necessary — including the
CPU memory bus, the GPU memory bus, and the PCle
interconnect for communication between the CPU and the
GPUs. A memory-network for such a heterogeneous sys-
tem can be built with just a single type of interconnect
and reduce the system cost.

With a packetized approach in the interface and cre-
ating an interconnection network, the significant amount
of research done in large-scale networks (and on-chip net-
works) can be leveraged. However, some of the problems
unique to the memory network need to be addressed. For
example, with multiple packets in the network, there is
no guarantee of ordering, if that is required, in the sys-
tem leveraging memory network. In addition, there is
no bound (or guarantee) on the latency of the packets
injected into the network (compared with a request sent
through a conventional DRAM bus interface). These chal-
lenges must be addressed to enable a memory network
using a common, packetized interface.

2.2 Topology

While a daisy-chain approach is a simple topology, it
is not necessarily an efficient memory network topology
since each additional hop increases network latency and
power. Designing a high-radix topology that reduces the
network diameter and thus, latency and power, is impor-
tant; however, creating a high-radix topology in a memory
network is a challenge since the number of router ports in
an HMC is relatively small (e.g., current HMC generation
has 8 ports). The Dragonfly [8] is a topology that creates
virtual high-radix router by using a collection of routers.
This can help reduce diameter by virtually increasing the
radix but it comes at the cost of increasing local hop count.
While previously proposed high-radix topologies are an
indirect network, the memory network topology needs to
be a direct network since the routers are directly con-
nected to the endpoint nodes (e.g., memory modules). As
a result, in addition to high-radix topologies, a topology
exploration is necessary to determine the most efficient
topology for scalable memory network topology.

In addition to the topology itself, the routing also has
significant impact on overall performance. One of the ad-
vantages of a high-radix topology is the path diversity it
provides and the routing algorithm needs to fully exploit
it. However, providing more path diversity than neces-
sary leads to increased cost — for example, if well load-
balanced memory mapping is used (e.g., fine-grain cache
line interleaving), it can lead to random traffic and re-
move the need for any path diversity or adaptive routing.
However, this results in loss of locality as the data is not
necessarily nearby. Thus, a balance between locality and
load-balancing needs to be achieved, not only through the
topology/routing but also based on the memory access
pattern and memory mapping.

2.3 Hierarchical Network

While there is the inter-HMC network, there is another
intra-HMC network for a network within the logic layer,
as shown earlier in Fig. 1. In the design of the intra-HMC
network, the inter-HMC network needs to be considered
to be able to fully optimize the network design and over-
all efficiency. Similar approaches have been proposed for
large-scale network router design [1] and the Anton2 net-
work [14], referred to as a unified network, combines the
design of the off-chip network router and the on-chip net-
work. Similarly, the memory network is a hierarchical
network and the impact of the local (or the intra-HMC)
network and the global (or the inter-HMC) network, and
their interaction need to be carefully understood. One
example of this is the pass-through architecture [5] where
the placement of the I/O ports was based on the overall
inter-HMC network topology. This prior work assumed a
simple concentrated mesh topology [2] for the intra-HMC
network but it remains to be seen what the most effi-
cient intra-HMC network organization is. In addition, al-
though the network size of the intra-HMC network can be
relatively small (e.g., 8-16 components), the components
are distributed across the entire logic layer chip and thus,

even if a simple crossbar is used, routing the wires to/from
the different components and providing global arbitration
across the different distributed components is non-trivial.

2.4 Power Efficiency

Power (or energy) efficiency is an important factor in
overall system design. For example, one of the limitations
of previously proposed Fully Buffered DIMM technology
was the high energy cost of routing through intermediate
buffers. Thus, if the energy cost of HMC or other simi-
lar technology with near-data computing is not properly
managed, it will not lead to a scalable solution. One of
the challenges with high-speed signaling interface is the
power consumed in the channels (and the I/Os). Since
the high-speed Ser/Des (serializer/deserializer) consumes
significant amount of static power, different power sav-
ing techniques are necessary to improve power-efficiency.
There are the traditional trade-off issues in power-gating —
when to power-gate? which channels to turn off? power-
gate latency vs. overhead trade-off, etc. For memory-
latency sensitive workloads that do not have high memory
throughput requirements, the power-gating strategies will
likely be different from high-throughput workloads that
require high bandwidth. In addition, the power-gating
should not be considered separately but holistically with
the topology and the routing. For example, if a channel
consumes significant amount of static power, does it make
sense to leverage non-minimal routing and keep some of
the minimal channel power-gated to improve overall sys-
tem energy efficiency? The power challenges creates an
opportunity for dynamic topologies where the topology
connectivity changes based on the traffic load.

2.5 Memory Management

NUMA systems often have local memory for a given
node (i.e., memory directly connected to the current node)
and remote memory. For these systems, there is added
cost in accessing remote memory and there has been sig-
nificant research done on memory management in NUMA
systems, including memory data allocation and migration.
The same issues are applicable to a memory network but
the constraints are different — instead of a physical dis-
tinction between local and remote memory, the memory
network creates a memory pool [9] that is shared by the
computing nodes. As a result, the distinction between lo-
cal and remote memory is no longer necessarily required;
however, optimizing data allocation can have a significant
impact on overall memory network traffic and overall per-
formance. The memory network also presents an oppor-
tunity for new optimization on page migration.

The ability to share memory through the memory net-
work can be more significant for heterogeneous systems
with different components, each with its own local mem-
ory. For example, in current multi-GPU systems, the CPU
and the GPU have their own memory and communication
is necessary to transfer data between the two memory —
data initialized on the CPU memory are often copied over
to the GPU memory before the GPU begins its computa-
tion. This communication can also be a performance bot-

tleneck. By having a common memory network shared
between the CPU and the GPUs, such explicit memory
copy is no longer necessary, which provides improvement
in performance and cost. In addition, accessing remote
GPUs data is simplified since only the memory network
needs to be accessed and the requests do not need to be
routed through remote GPUs. However, memory network
between the heterogeneous components also creates other
design issues that need to be addressed — for example, how
to partition the total physical memory across the different
components, as well as how to allocate memory across the
different components to exploit locality.

3. SUMMARY

In this paper, we describe the issues in designing a mem-
ory network for scalable near-data computing. Although
we focused on the HMC technology, there are some limi-
tations currently. For example, some of the basic features
required to design an interconnection network (e.g., VCs)
are not supported in the current HMC specification [4] and
the number of HMCs that can be chained together is also
limited (8 HMCs in the current spec). However, there is
no fundamental reason why VCs cannot be supported; nor
with an efficient, scalable memory network, the number of
components does not need to be limited by introducing ad-
ditional bits in the header to address the different nodes.
Research into memory network needs to overlook some
of the limitations that might exist in current technolo-
gies and explore cost-efficient memory network to enable
scalable near-data processing in the future.

4. REFERENCES

[1] J. Ahn et al., “Network within a network approach to
create a scalable high-radix router microarchitecture,” in
HPCA’12.

[2] J. Balfour and W. J. Dally, “Design tradeoffs for tiled
CMP on-chip networks,” in I1CS’06.

[3] J. Draper et al., “The architecture of the diva
processing-in-memory chip,” in 1CS’02.

[4] “Hybrid Memory Cube Specification 1.0,” Hybrid
Memory Cube Consortium, 2013.

[5] G. Kim et al., “Memory-centric system interconnect
design with hybrid memory cubes,” in PACT’13.

[6] G. Kim et al., “Multi-GPU system design with memory
networks,” in MICRO’14.

[7] J. Kim et al., “Flattened butterfly: a cost-efficient
topology for high-radix networks,” in ISCA’07.

[8] J. Kim et al., “Cost-efficient dragonfly topology for
large-scale systems,” IEEE Micro, 2009.

[9] K. Lim et al., “Disaggregated memory for expansion and
sharing in blade servers,” in ISCA’09.

[10] D. R. Resnick, “Memory Network Methods, Apparatus,
and Systems,” US Patent US20100211721 A1, 2010.

[11] D. R. Resnick and M. Ignatowski, “Proposing an
abstracted interface and protocol for computer systems,”
White Paper, Sandia National Laboratories, 2014.

[12] P. Rosenfeld, “Performance exploration of the hybrid
memory cube,” Ph.D. dissertation, University of
Maryland, 2014.

[13] K. Sudan, “Data Placement for Efficient Main Memory
Access,” Ph.D. dissertation, University of Utah, 2013.

[14] B. Towles et al., “Unifying on-chip and inter-node
switching within the anton 2 network,” in ISCA’14.

