
NEAR DATA
PROCESSING: ARE
WE THERE YET?

MAYA GOKHALE

LAWRENCE LIVERMORE NATIONAL LABORATORY

This work was performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under contract No. DE-AC52-07NA27344.
LLNL-PRES-665279

OUTLINE
Why we need near memory computing
Niche application
Data reorganization engines

Computing near storage

FPGAs for computing near memory

WHY AREN’T WE THERE YET?
§  Processing near memory is attractive for high bandwidth,

low latency, massive parallelism
§  90’s era designs closely integrated logic and DRAM

transistor
§  Expensive
§  Slow
§  Niche

§  Is 3D packaging the answer?
§  Expensive
§  Slow
§  Niche

§  What are the technology and commercial incentives?

EXASCALE POWER PROBLEM: DATA
MOVEMENT IS A PRIME CULPRIT

Sources: Horst Simon, LBNL
Greg Astfalk, HP

•  Cost of a double precision
flop is negligible compared to
the cost of reading and writing
memory

•  Cache-unfriendly applications
waste memory bandwidth,
energy

•  Number of nodes needed to
solve problem is inflated due
to poor memory bw utilization

•  Similar phenomenon in disk

MICRON HYBRID MEMORY CUBE
OFFERS OPPORTUNITY FOR
PROCESSING NEAR MEMORY
Fast logic layer

•  Customized processors

•  Through silicon vias (TSV)
for high bandwidth access to
memory

Vault organization yields
enormous bandwidth in the
package

Best case latency is higher
than traditional DRAM due to
packetized abstract memory
interface

HMC LATENCY: LINK I TO
VAULT I, 128B, 50/50

HMC LATENCY: LINK I TO
VAULT J, 128B, 50/50

One link active, showing effect
of request through
communication network.

HMC: WIDE VARIABILITY IN
LATENCY WITH CONTENTION

Requests on links 1-4 for data on vaults 0-4 (link 0 local)

HMC SHOWS HIGH BANDWIDTH FOR
REGULAR, STREAMING ACCESS
PATTERNS, BUT …

128B	
 payload	
 64B	
 payload	

32B	
 payload	
 16B	
 payload	

Small payload, irregular accesses cut bandwidth by factor of 3

SPECIALIZED PROCESSING FOR
HIGH VALUE APPLICATIONS
Processing in memory/storage might make sense for niche,
high value applications
§  Image pixel processing, character processing

(bioinformatics applications)
§  Massively parallel regular expression applications

(cybersecurity, search problems cast as RE)
§  Content addressable memories

PIXEL/CHARACTER PROCESSING
IN MEMORY ARCHITECTURE

TERASYS WORKSTATION
ATerasys workstation (see Figure 1) consists of

External
enclosure

..

a Sun Sparc-2 processor,
an SBus interface card residing in the Sparc cabinet,
a Terasys interface board, and
one or more PIM array units.

I I
L 4K 4K
8 processors processors

Sparc-2

PIM
array units j

4K 4K i
processors processors ;

I I

I I I Sbus interface I

igure 1. A 16K processor Terasys workstation.

The notion of computing in memory has been with us for sev-
eral decades. For example, Stone’ proposed a logic-in-memory com-
puter consisting of an enhanced cache memory array that serves
as a high-speed buffer between CPU and conventional memory.

More recently, a group a t the University of Toronto has
designed a computational RAM-conventional RAM with SIMD
processors added to the send amplifiers in a 4-Mbit DRAM
process.2

In the commercial realm, Hitachi markets a video DRAM chip
with limited processing in the memory. This chip, the HM53642
series, is a 65K x 4-bit multiport CMOS video DRAM with simple
logic operators on each of the 4 bit-planes.

Our data-parallel C is similar to MasPar‘s MPL3 and Thinking
Machines C*.4 Wavetracer’s MultiC5 had user-defined bit lengths,
but did not have the bit extractiordinsertion or generic bit-length
features. Our generic SIMD interface is patterned after the CM-
2 Paris instruction

References
1. H.S. Stone, “A Logic-in-Memory Computer,” /€E€ Trans. Computers,

Jan. 1970, pp. 73-78.
2. D.G. Elliott, W.M. Snelgrove, and M. Stunn, ”A Memory SIMD Hybrid

and i t s Application,” Proc. Custom IC Conf., IEEE, Piscateway, N.J.,
1992.

3. MasPar Application Language (MPL) Reference Manual, MasPar,

4. The MultiC Programming Language, Wavetracer, Pub-00001 -001 -

5. Paris Reference Manual, Thinking Machines, Cambridge, Mass.,

Pub-9302-0000 01/90, 1990.

1 .oo, 1994.

Tech. Rep. Version 5.0, 1989.

The Terasys interface board and PIM array units fit into an
external enclosure. The system can accommodate up to
eight PIM array units, with 4 K processors per array unit,
giving a maximum configuration of 32,768 PIM proces-
sors.

A data parallel program resides on the Sparc.
Conventional sequential instructions are executed by the
Sparc. Operations on data parallel operands are conveyed
as memory writes through the Terasys interface board to
PIM memory and cause the single bit ALUs to perform the
specified operations at the specified row address across all
the columns of the memory.

An instruction written to the PIM array is actually a 12-
bit address in a 4K entry table of horizontal microcode,
which is generated on a per-program basis. The selected
table entry is the real instruction, which is sent from the
Terasys interface board to the PIM array units.

For global communications among the processors there
are three networks: global OR, partitioned OR, and par-
allel prefix network. Level 0 of the PPN serves as a bidi-
rectional linear nearest-neighbor network.

In the following sections, we describe the PIM chip and
single-bit processor, the three interprocessor communi-
cation networks, the PIM array unit, and the Terasys inter-
face board.

Processor-in-memory chip
The PIM integrated circuit, with slightly over one million

transistors on 1-micron technology, contains 2K x 64 bits
of SRAM, 64 custom-designed single-bit processors, plus
control and error detection circuitry.* Figure 2 shows the
PIM chip. Solid lines outline conventional memory com-
ponents, while dotted lines delimit the added PIM circuitry.

In conventional memory mode, the chip is configured as
a 32Kx 4-bit SRAM with an 11-bit row address and a 4-bit
column address. In response to the row address signals, it
loads the selected row into a 64-bit register. The column
address selects a 4-bit nibble (one of 16 nibbles composing
the 64-bit register).

To operate in PIM mode, the chip is activated by one of
25 command bits from the Terasys interface board.
Command mode initiates an internal row operation with
64 processors operating on one of 2Krows of memory. The
processors can perform a local operation and optionally
read/write the global OR, partitioned OR, and parallel
prefix lines.

PIM processor
The PIM processor is a bit-serial processor that accesses

and processes bits to/from a 2-Kbit column of attached
memory. Functionally, the processor is divided into upper
and lower halves. The upper half performs the actual com-
putations on the data, while the lower half performs rout-
ing and masking operations. Data is brought in from the
processors’ attached memory through the load line, cir-
culates through the logic as specified by the program, and
is written back to memory via the store line. Figure 3 is a
simplified diagram of the processor.

Three primary registers, denoted A, €3, and C, supply
data to the ALU. The registers have three primary input
lines for receiving data, each ofwhich also can be inverted
to receive the logical NOT of that input.

1 Computer

At each clock cycle, the pipelined ALU can either load
data from memory or store data to memory, but not both
at the same time. Also, on each clock cycle, the M U pro-
duces three outputs that can be either selected for storage
(under mask control) or selected for recirculation.
Additionally, data can be sent to other processors via the
routing network.

The processor can input data through a multiplexer
(MUX) from either the parallel prefix network, the global
OR network, the partitioned OR network, or the internal
masuregister control (see the “Network and mask” line
at lower right in Figure 3).

design. This allows the PIM processor to

compute a global OR or partitioned OR
signal in one tick,
send one bit of data to a left or right
neighbor in one tick, and
perform parallel prefix operations in log
(number-of-processors) ticks per bit.

GLOBAL OR. The logical OR network
combines signals from all processors and
returns a single bit result to the host. GOR
is performed across all 32K processors in
hardware. This signal is used to condition-
ally control instruction execution: One of

Indirect addressing
Indirect addressing signifies an operation A[i], where

each processor has its own instances ofA and i. To perform
this operation, the processors must access different mem-
ory locations simultaneously.

We decided against hardware support for indirect
addressing in the current PIM implementation for two
major reasons. First, introducing indirect addressing reg-
isters on a per-processor basis would reduce the number
of processors per chip. Second, the error detection and
correction circuitry, which operates on a row basis, would
not operate correctly in the presence of per-processor indi-
rect addressing registers. Thus, we opted for indirect
addressing through microcode. To make this operation
efficient, we have the compiler emit array-bound infor-
mation as part of an indexing operation. This allows the
microcoded indexing subroutine to limit the number of
locations to query to the number of array elements rather
than the entire 2K bits.

In indirect addressing, each processor holds its private
instance of an array. The application can also use a single
arrayA in Sparc conventional memory, which is shared by
all PIM processors. Each processor can index this shared
table with its unique index i that is in PIM memory. An
optimized microcode routine, which is a factor of 8 faster
than the more general per-processor table lookup, is pro-
vided for this operation in a Fortran-based library called
Passwork (Parallel SIMD Workbench) .3

Netwo

lnterprocessor communication

partitioned OR, and parallel prefix net-
A simple linear interconnect, augmented by global OR,

the value of the GOR signal. The microcode programmer
has access to the GOR signal at the host processor through
a GOR register containing the last 32 GORs generated by
the system.

PARTITIONED OR NETWORK. In contrast to the GOR,
which performs only many-to-one communication, the
POR network can be used for many-to-one or one-to-many
communication among groups of processors. The 32K
processors in the Terasys workstation can be partitioned,
starting with 2 processors per partition and increasing in

PIM command(25)
___.......__.

..___......._

4 - - - - -

f-
Conventional

data(4)

2 Kbits

? 64 bits
4 b

Register

Figure 2. A processor-in-memory chip. i

April1995 i

At each clock cycle, the pipelined ALU can either load
data from memory or store data to memory, but not both
at the same time. Also, on each clock cycle, the M U pro-
duces three outputs that can be either selected for storage
(under mask control) or selected for recirculation.
Additionally, data can be sent to other processors via the
routing network.

The processor can input data through a multiplexer
(MUX) from either the parallel prefix network, the global
OR network, the partitioned OR network, or the internal
masuregister control (see the “Network and mask” line
at lower right in Figure 3).

design. This allows the PIM processor to

compute a global OR or partitioned OR
signal in one tick,
send one bit of data to a left or right
neighbor in one tick, and
perform parallel prefix operations in log
(number-of-processors) ticks per bit.

GLOBAL OR. The logical OR network
combines signals from all processors and
returns a single bit result to the host. GOR
is performed across all 32K processors in
hardware. This signal is used to condition-
ally control instruction execution: One of

Indirect addressing
Indirect addressing signifies an operation A[i], where

each processor has its own instances ofA and i. To perform
this operation, the processors must access different mem-
ory locations simultaneously.

We decided against hardware support for indirect
addressing in the current PIM implementation for two
major reasons. First, introducing indirect addressing reg-
isters on a per-processor basis would reduce the number
of processors per chip. Second, the error detection and
correction circuitry, which operates on a row basis, would
not operate correctly in the presence of per-processor indi-
rect addressing registers. Thus, we opted for indirect
addressing through microcode. To make this operation
efficient, we have the compiler emit array-bound infor-
mation as part of an indexing operation. This allows the
microcoded indexing subroutine to limit the number of
locations to query to the number of array elements rather
than the entire 2K bits.

In indirect addressing, each processor holds its private
instance of an array. The application can also use a single
arrayA in Sparc conventional memory, which is shared by
all PIM processors. Each processor can index this shared
table with its unique index i that is in PIM memory. An
optimized microcode routine, which is a factor of 8 faster
than the more general per-processor table lookup, is pro-
vided for this operation in a Fortran-based library called
Passwork (Parallel SIMD Workbench) .3

Netwo

lnterprocessor communication

partitioned OR, and parallel prefix net-
A simple linear interconnect, augmented by global OR,

the value of the GOR signal. The microcode programmer
has access to the GOR signal at the host processor through
a GOR register containing the last 32 GORs generated by
the system.

PARTITIONED OR NETWORK. In contrast to the GOR,
which performs only many-to-one communication, the
POR network can be used for many-to-one or one-to-many
communication among groups of processors. The 32K
processors in the Terasys workstation can be partitioned,
starting with 2 processors per partition and increasing in

PIM command(25)
___.......__.

..___......._

4 - - - - -

f-
Conventional

data(4)

2 Kbits

? 64 bits
4 b

Register

Figure 2. A processor-in-memory chip. i

April1995 i
PARALLEL EXPRESSIONS. Polys can be

used in C expressions just as normal C
(mono) variables. An expression a op b is
parallel if either a or b is parallel. If the
other operand is serial, it is promoted to
parallel, and thc operation is performed in
the parallel domain.

dbC has infix reduction operators such
as I = (reduce with OR operator) that,

poly unsigned x:4; I* 4-bit logical variable x */
typedef unsigned poly int33:33; /* 33-bit logical, user-defined type *I
poly int y: 1000; I* arbitrarily large variables are supported *I
typedef poly struct

{ int33 A[50];
int33 B;
char c;

} 5; I* poly structure *I

when applied to a parallel expression, yield a serialvalue.
Reductions are computed using the global OR and paral-
lel prefix networks.

PARALLEL CONTROL CONSTRUCTS. dbC extends the
standard C guarded control constructs (if, while, do, and
for) to the parallel domain. The <guard> controlling the
statement determines whether the statement is serial or
parallel. If the <guard> is parallel, the statement is par-
allel. The escape statements break, continue, and return
have parallel versions. A break or continue in a parallel
loop is parallel. A return from a function returning a par-
allel result (even poly void) has parallel semantics. Gotos
are not allowed in parallel constructs.

In addition to the C control constructs, dbC provides a
masked where construct and an all block. Parallel code in
an all block is executed by all processors regardless of pre-
vious processor activity. An all block may contain any ser-
ial or parallel code, including parallel if/where and
parallel loops.

Bit extensions

putation over arbitrarily sized data.
The generality of dbC‘s bit constructs facilitates com-

BIT-LENGTH SPECIFIERS. dbC extends C’s bit-field fea-
ture to allow any parallel integer variable (or integer com-
ponent of a structured variable) to specify a length.
Although the syntax of the bit-length specifier is identical
to the C bit field, the semantics are quite different. The C
bit field represents a compromise between the desire to
access bits and the difficulty of supporting efficient bit
access in the word-oriented domain. A bit field declared
to be 6 bits long in C might really occupy a full memory
word (32 or 64 bits). Avariable or structure component
declared as “poly int:6” in dbC is guaranteed to use exactly
6 bits of parallel memory.

When two parallel operands are used in a binary oper-
ation, their bit lengths determine the number of bit oper-
ations required to compute the result. Thus, the user
controls both

storage allocation at the bit level (particularlyuseful on
Terasys, where each processor has only 2,048 bits of
memory) and
the bit-serial complexity of operations, since the bit
lengths of the operands determine the number of sub-
operations required to perform an operation.

Figure 4 illustrates poly declarations with bit lengths.

BIT EXTRACTION AND INSERTION. dbC also has two
bit-oriented operators, bit insertion and bit extraction,

Figure 4. Parallel variables in dbC (data-parallel bit
C), the Terasys high-level programming language.

poly x:10, y: l1
x[4:8] = y[O:4];
x[4+:5] = y[O+:5];

/* statvend index *I
I* bi t length notation *I

I

Figure 5. Bit insertion and extraction in dbC.

I ...
poly y-5:5. z-7:7;
func(y-5);
f unc(z-7);

/* pass 5 bits t o func *I
I* pass 7 bits t o func *I

...

Figure 6. Generic bit-length parameters.

illustrated in Figure 5. A parallel variable x may be
indexed x [a : b] , where a indicates the starting bit posi-
tion and b the ending bit position, inclusive. On the right- 1
hand side of an assignment, this notation means that b
- a + 1 bits are extracted from x starting at bit offset a.
When this “slice” notation is used to index a variable on
the left-hand side, bit insertion is performed. As a short-
hand, x [a : l is equivalent to x [a : a] , meaning one bit at
offset a is accessed. An alternative notation is also illus-
trated in the figure. The + : infix operator in an index
expression a+:b means that the starting index is a and
the bit length is b.

GENERIC BIT LENGTHS. To make it easier to write sub-
routines that can operate on parameters of any bit length,
dbC provides a generic bit-length construct. The bit length
of a parameter to a function may be ‘ I ? , ” indicating that
the length is to be determined at runtime at each invoca-
tion of the function. Figure 6 illustrates the use of generic
bit length in the parameter x to function func. The func-
tion is called twice, first with a parameter of bit length 5,
and the second time with a parameter of bit length 7.

COMMUNICATION. The interprocessor communication
intrinsic DBC-net-scnd transfers data between nearest
neighbors in a linear topology at level 0 in the parallel pre-
fix network. In addition, the DBC-send intrinsic can be
used for any-to-any communication; this gencral data
movement between processors is done through the Sparc
conventional memory.

Intrinsics are also provided to transfer data between ser-
ial and parallel domains, both one processor at a time and

PARALLEL EXPRESSIONS. Polys can be
used in C expressions just as normal C
(mono) variables. An expression a op b is
parallel if either a or b is parallel. If the
other operand is serial, it is promoted to
parallel, and thc operation is performed in
the parallel domain.

dbC has infix reduction operators such
as I = (reduce with OR operator) that,

poly unsigned x:4; I* 4-bit logical variable x */
typedef unsigned poly int33:33; /* 33-bit logical, user-defined type *I
poly int y: 1000; I* arbitrarily large variables are supported *I
typedef poly struct

{ int33 A[50];
int33 B;
char c;

} 5; I* poly structure *I

when applied to a parallel expression, yield a serialvalue.
Reductions are computed using the global OR and paral-
lel prefix networks.

PARALLEL CONTROL CONSTRUCTS. dbC extends the
standard C guarded control constructs (if, while, do, and
for) to the parallel domain. The <guard> controlling the
statement determines whether the statement is serial or
parallel. If the <guard> is parallel, the statement is par-
allel. The escape statements break, continue, and return
have parallel versions. A break or continue in a parallel
loop is parallel. A return from a function returning a par-
allel result (even poly void) has parallel semantics. Gotos
are not allowed in parallel constructs.

In addition to the C control constructs, dbC provides a
masked where construct and an all block. Parallel code in
an all block is executed by all processors regardless of pre-
vious processor activity. An all block may contain any ser-
ial or parallel code, including parallel if/where and
parallel loops.

Bit extensions

putation over arbitrarily sized data.
The generality of dbC‘s bit constructs facilitates com-

BIT-LENGTH SPECIFIERS. dbC extends C’s bit-field fea-
ture to allow any parallel integer variable (or integer com-
ponent of a structured variable) to specify a length.
Although the syntax of the bit-length specifier is identical
to the C bit field, the semantics are quite different. The C
bit field represents a compromise between the desire to
access bits and the difficulty of supporting efficient bit
access in the word-oriented domain. A bit field declared
to be 6 bits long in C might really occupy a full memory
word (32 or 64 bits). Avariable or structure component
declared as “poly int:6” in dbC is guaranteed to use exactly
6 bits of parallel memory.

When two parallel operands are used in a binary oper-
ation, their bit lengths determine the number of bit oper-
ations required to compute the result. Thus, the user
controls both

storage allocation at the bit level (particularlyuseful on
Terasys, where each processor has only 2,048 bits of
memory) and
the bit-serial complexity of operations, since the bit
lengths of the operands determine the number of sub-
operations required to perform an operation.

Figure 4 illustrates poly declarations with bit lengths.

BIT EXTRACTION AND INSERTION. dbC also has two
bit-oriented operators, bit insertion and bit extraction,

Figure 4. Parallel variables in dbC (data-parallel bit
C), the Terasys high-level programming language.

poly x:10, y: l1
x[4:8] = y[O:4];
x[4+:5] = y[O+:5];

/* statvend index *I
I* bi t length notation *I

I

Figure 5. Bit insertion and extraction in dbC.

I ...
poly y-5:5. z-7:7;
func(y-5);
f unc(z-7);

/* pass 5 bits t o func *I
I* pass 7 bits t o func *I

...

Figure 6. Generic bit-length parameters.

illustrated in Figure 5. A parallel variable x may be
indexed x [a : b] , where a indicates the starting bit posi-
tion and b the ending bit position, inclusive. On the right- 1
hand side of an assignment, this notation means that b
- a + 1 bits are extracted from x starting at bit offset a.
When this “slice” notation is used to index a variable on
the left-hand side, bit insertion is performed. As a short-
hand, x [a : l is equivalent to x [a : a] , meaning one bit at
offset a is accessed. An alternative notation is also illus-
trated in the figure. The + : infix operator in an index
expression a+:b means that the starting index is a and
the bit length is b.

GENERIC BIT LENGTHS. To make it easier to write sub-
routines that can operate on parameters of any bit length,
dbC provides a generic bit-length construct. The bit length
of a parameter to a function may be ‘ I ? , ” indicating that
the length is to be determined at runtime at each invoca-
tion of the function. Figure 6 illustrates the use of generic
bit length in the parameter x to function func. The func-
tion is called twice, first with a parameter of bit length 5,
and the second time with a parameter of bit length 7.

COMMUNICATION. The interprocessor communication
intrinsic DBC-net-scnd transfers data between nearest
neighbors in a linear topology at level 0 in the parallel pre-
fix network. In addition, the DBC-send intrinsic can be
used for any-to-any communication; this gencral data
movement between processors is done through the Sparc
conventional memory.

Intrinsics are also provided to transfer data between ser-
ial and parallel domains, both one processor at a time and

NFA COMPUTING IN DRAM:
MASSIVE PARALLELISM

Micron’s automata processor puts processing in the DRAM
§  Massively parallel 2D fabric
§  Thousands – millions of automaton processing elements

“state transition elements”
§  Implement Non-deterministic finite automata
§  Augmented with counters
§  Functions can be reprogrammed at runtime

§  Routing matrix consists of programmable switches, buffers,
routing wires, cross-point connections
•  Route outputs of one automaton to inputs of others
•  Possible multi-hop

•  DDR-3 interface
•  Estimate 4W/chip; snort rules in 16W vs 35W for FPGA

AUTOMATA PROCESSOR
APPLICATIONS RELATE TO
REGULAR EXPRESSIONS
Each chip takes an 8-bit symbol as input
8è256 decode for 256-bit “row buffer” and each column is
48K
Can match regular expression, with additional counting

•  a+b+c+, total # symbols = 17
•  Cybersecurity, bioinformatics applications

Challenge is to expression other problems as NFAs

•  Graph search

TCAM IN MEMRISTOR FOR
CONTENT BASED SEARCH
Memristor-based ternary content addressable memory
(mTCAM) for data-intensive computing (Semiconductor
Science and Technology. V. 29, no. 10, 2014,
http://stacks.iop.org/0268-1242/29/i=10/a=104010
A memristor-based ternary content addressable memory (mTCAM) is
presented. Each mTCAM cell, consisting of five transistors and two
memristors to store and search for ternary data, is capable of remarkable
nonvolatility and higher storage density than conventional CMOS-based
TCAMs. Each memristor in the cell can be programmed individually such that
high impedance is always present between searchlines to reduce static
energy consumption. A unique two-step write scheme offers reliable and
energy-efficient write operations. The search voltage is designed to ensure
optimum sensing margins with the presence of variations in memristor
devices. Simulations of the proposed mTCAM demonstrate functionalities in
write and search modes, as well as a search delay of 2 ns and a search of
0.99 fJ/bit/search for a word width of 128 bits.

V1.0 1

TCAM Emulation System

Zynq SoC
The Zynq system-on-a-chip (SoC) from Xilinx is used for the emulation platform. Both fixed and
programmable logic are combined within a single device. Two ARM A9 cores and a DDR3 memory
controller are integrated with FPGA logic. Figure 1 shows the system architecture.

Figure 1: Commands from the host are processed by the programmable search engine. Results from
multiple CAM accesses are merged or reduced before sending the final result to the host. Counters and
timers are used to track power usage and time.

Emulation of the TCAM may be accomplished through a couple of methods. One method is through a
core provided by Xilinx implemented entirely from FPGA components. The TCAM core has single cycle
search performance but has limited capacity. A practical TCAM size for the Zynq is about 64 Kbits. The
other method is to use an embedded MicroBlaze 32-bit processor instantiated in FPGA logic and a hash
table implemented in 1GB of DRAM attached to the programmable logic. The processor and hash table
implementation has greater capacity at the cost of reduced search performance.

A search application can execute on the ARM cores at hardware speed while accesses to the TCAM are
monitored without additional overhead by dedicated counters in programmable logic. Library calls can be
inserted in the application code at key locations to retrieve TCAM usage counts and search time.

DATA ANALYTICS: HIGH VALUE
COMMERCIAL APPLICATIONS
Application space includes …
§  Image/video processing
§  Graph analytics
§  Specialized in-memory data bases
§  Tree, list-based data structure manipulation
Minimal benefit from cache
•  Streaming, strided access patterns
•  Irregular access patterns

Processing in (near) memory opportunity to “reorganize” data
structures from native format to cache-friendly

PROPOSED DATA REORGANIZATION
ENGINE ARCHITECTURE

Host CPU Link

Active Memory Subsystem

Vault

Reorg
Engine

Interconnect

Vault

Reorg
Engine

Vault

View Buffer View Buffer

Masters

Slaves

FPGA emulator for Data Reorg Engine in
active memory

§  Multiple block requests given at start
§  Incoming packets for Data Reorg Engine processed one at a

time
§  All reorganization done within Engine
§  Views are created in buffers
§  View buffers are memory mapped from host CPU perspective

Data Reorganization Engines

SCOTT LLOYD, LLNL

EMULATION ARCHITECTURE

Zynq FPGA Zynq
Processing

System

DRE

Interconnect

DRE

Masters

Slaves

kernel

main

kernel

Buffer
Block RAM

View

CPU 0

CPU 1

ARM Cores

32b

LSU

MCU

LSU

MCU

64b

64b

Vault Emulation

Vault Vault Vault

View

1GB DDR3 SODIMM

64b

DDR3 Controller

The Zynq system on a chip with both hard processors and FPGA logic is used for active memory emulation. The ARM cores
(CPU) are used for the main application and the kernel executes on a data reorganization engine (DRE) which consists of a
micro-control unit (MCU) and a load-store unit (LSU). The vaults are emulated with DDR3 memory.	

Programmable Logic (PL)

Processing System (PS)

Zynq SoC
Tr

ac
e

S
ub

sy
st

em

M
em

or
y

S
ub

sy
st

em

H
os

t
S

ub
sy

st
em

1 GB DRAM #2

SRAM

1
G

B
 D

R
A

M

#1

AXI Performance Monitor (APM)

ARM Core

L2 Cache

ARM Core

Accelerator Accelerator Accelerator

AXI Interconnect

Trace Capture Device

Monitor

Peripheral

BRAM

L1 L1

EMULATOR STRUCTURE ON ZYNQ

Image difference: compute pixel-wise difference of two reduced
resolution images

•  DRE in memory subsystem assembles view buffer of each
reduced resolution image

•  Host CPU computes image difference
Pagerank: traverse web graph to find highly referenced pages

•  DRE in memory subsystem assembles view buffer of node
neighbors (page rank vector)

•  Host CPU updates reference count of each neighbor, creates
next page rank vector

RandomAccess: use memory location as index to next location
•  DRE in memory subsystem assembles view buffer of memory

words accessed through gather/scatter hardware

DATA CENTRIC BENCHMARKS
DEMONSTRATE
PROGRAMMABLE DRES

Emulated System Configuration
CPU: 32-bit ARM A9 core, 2.57 GHz, 5.14 GB/s bandwidth
 DRAM: 1 GB, 122 ns read and write access
 SRAM: 256 KB, 42 ns read and write access
----- Data Reorganization Engine (DRE) in memory subsystem -----
LSU: (Load-Store Unit) 64-bit data path, 1.25 GHz, 10.00 GB/s bandwidth
 DRAM: 1 GB, 90 ns read and write access
 SRAM: 256 KB, 10 ns read and write access
MCU: (MicroBlaze) 32-bit data path, 1.25 GHz, 5.00 GB/s bandwidth
 DRAM: 1 GB, 90 ns read and write access
 SRAM: 256 KB, 10 ns read and write access
 BRAM: local 16 KB for instructions and stack

EMULATOR CONFIGURATION

DRE USE FASTER, LESS ENERGY:
IMAGE DECIMATION BY 16

Host Only:
Access ARM read: 1997558
 ARM write: 15764
Bytes ARM read: 63921856
 ARM write: 504448
Joules ARM: 0.0154623

Access ARM read: 156504 ARM write: 15666
Access DRE read: 1000000 DRE write: 1000000
Bytes ARM read: 5008128 ARM write: 501312
Bytes DRE read: 16000000 DRE write: 8000000
Joules ARM: 0.000998247
Joules DRE: 0.001344
Joules A+D: 0.00234225

PAGERANK SCALE 18,19

Scale 19 Host+DRE:
page rank time:0.753485 sec
Host Only:
page rank time:0.828449 sec

Scale 18 profile

Profile of one iteration of the Page Rank
algorithm. The DRE assembles a compact page
rank view based on the adjacency list for vertex i
which is an index array into the original page rank
vector. The host accesses the compact view
created by the DRE.

RANDOMACCESS

Host+DRE:
Real time used = 0.286718 seconds
0.014628678 Billion(10^9) Updates per second [GUP/s]

Host Only:
Real time used = 0.313953 seconds
0.013359660 Billion(10^9) Updates per second [GUP/s]

RESEARCH QUESTIONS
REMAIN
Enough benefit to justify cost of fabrication?
How to interact with virtual memory?
How many DREs on chip?

Programming models

ACTIVE STORAGE WITH
MINERVA (UCSD AND LLNL)

Designed for future generations of
NVRAM that are byte addressable,
very low latency on read

Based on computation close to
storage

Moved data or I/O intensive
computations to the storage to
minimize data transfer between the
host and the storage

Processing scales as storage expands

Power efficiency and performance
gain

Arup De, UCSD/LLNL

§  Prototyped on BEE-3
system
•  4 Xilinx Virtex 5, each with

16GB memory, ring
interconnect

§  Emulate PCM controller
by inserting appropriate
latency on reads and
writes, emulate wear
leveling to store blocks

§  Get advantage of fast
PCM and FPGA-based
hardware acceleration

MINERVA ARCHITECTURE PROVIDES
CONCURRENT ACCESS, IN-STORAGE
PROCESSING UNITS

!"#$%&'()*+,

-./

!"#

0(+1

&23.04' 565%78

!

93:

$%"%"&&!'(')"*

!""#$%&'()&'*

-./

!"#

+,*-

&23

-./

!"#

+,*-

-./

!"#

+,*-

-./

!"#

+,*-

&23

-./

!"#

+,*-

&23

-./

!"#

+,*-

&23

-./

!"#

+,*-

&23

.4;

!'<='>(%-?@'A=1'+

/. 9;B&

0*CD=('%0@E##'1%F

/. 9;B&

0*CD=('%0@E##'1%5

/. 9;B&

0*CD=('%0@E##'1%&

#'+,*'

&23 &23

./&0&123(

45!

%-./$01/*'2&3*

INTERACTION WITH STORAGE
PROCESSOR

Local
Interface

Compute Kernel

Ring
Interface

Lo
ca

l M
em

or
y Control

Processor S
pl

itt
er

 Data
Manager

Compute
Manager

Data
Scheduler

DMA
Engine

Compute
Scheduler

Local
Memory

K0 K1

K3 K2

Kn Kn-1

Request
Manager

Command 1

Command 2
Status 1

Status 2
11

Receives command
Reads command

Initiate computations via
request manager Receives result

Sends back
completion notification

Loads it to memory
Sends DMA request via

request manager
Update status Loads data to memory

Request
Extractor

Response
Generator

1

Word
Counter

Memory Interface

Grep
FSM

Address

Ref.
String

Actual
String

C
om

pa
ra

to
r

Enable

R
eq

-r
sp

In

te
rfa

c
e

MINERVA PROTOTYPE

Built on BEE3 board
PCIe 1.1 x8 host connection
Clock frequency 250MHz
Virtex 5 FPGA implements

• Request scheduler
• Network
• Storage processor
• Memory controller

DDR2 DRAM emulates PCM

MINERVA FPGA EMULATOR ALLOWS
US TO ESTIMATE PERFORMANCE,
POWER

Compare standard I/O with
computational offload approach
Design alternative storage
processor architectures and
evaluate trade-offs
Run benchmarks and mini-apps in
real-time
Estimate power draw and energy
for different technology nodes

§  Streaming string search
•  8+× performance
•  10+× energy efficiency

§  Saxpy
•  4× performance
•  4.5× energy efficiency

§  Key-Value store (key lookup)
•  1.6× performance
•  1.7× energy efficiency

§  B+ tree search
•  4+× performance
•  5× energy efficiency

RESULTS

0
1
2
3
4
5
6
7
8
9

10

I/O
RPC

0

2

4

6

8

10

12

I/O
RPC

Sp
ee

du
p

En
er

gy
 E

ffi
ci

en
cy

HOW ABOUT A RECONFIGURABLE
LOGIC LAYER?

3D package
•  DRAM stack
•  TSVs directly into FPGA
•  Has the time come for

“Programmable
Heterogeneous Interconnect”

FPGA
PHI Die PHI Die

FPGA-BASED MEMORY
INTENSIVE ARCHITECTURE

Memory

Memory

FPGA Compute
Engines

HSI
Sensor

Cue Other
Sensors

8-12 GFLOPs
3 GB Mem

10-15 GFLOPs
3 GB Mem

l5-10 GFLOPs
2 GB Mem

5-7 GFLOPs
2 GB Mem

10-15 GFLOPs
2 GB Mem

XMTR

Preprocessing
•  Spect-Spatial

Registration
•  Gain Control
•  Calibration
•  Data Format.
•  Atmospheric

Cor. (Modtran,
etc.)

•  Geocoding

Spect. Unmixing
•  Anal. of

Variance
•  Regression
•  Hypoth.

Testing
•  Endmember

Sel.
•  Terrain

Analysis

Image Fusion
•  Material Map

Sharpening
•  HR Panchro.

+ LR Spec.
Regis.

•  Image Data
Fusion

Anomaly
Detection

•  Spectral Match
Filtering

•  Adaptive CFAR
•  Hypoth. Testing
•  Cluster Analysis
•  Outlier Detection
•  Object Attributes/

Preclassification

Compression
•  Spectral KLT
•  Bit Allocation
•  Band Coding

Target Handoff
•  Geolocation
•  Attributes/Class. 1.3 GB

130 MB

2kx2k
12 bpp
200 bands Application driver:

Processing hyperspectral
imagery

FPGA-resident compute engines
operate directly on data in the 3D
memory stack

XILINX IP
Methods and apparatus for implementing a stacked memory
programmable integrated circuit system in package
US 7701251 B1
ABSTRACT
Methods and apparatus for implementing a stacked memory-
programmable integrated circuit system-in-package are described. An
aspect of the invention relates to a semiconductor device. A first
integrated circuit (IC) die is provided having an array of tiles that form a
programmable fabric of a programmable integrated circuit. A second IC
die is stacked on the first IC die and connected therewith via inter-die
connections. The second IC die includes banks of memory coupled to
input/output (IO) data pins. The inter-die connections couple the IO data
pins to the programmable fabric such that all of the banks of memory
are accessible in parallel.

 Arifur Rahman, Chidamber R. Kulkarni
Original Assignee Xilinx, Inc.

Near data processing is even more technically feasible than
the 90’s.

Commercial drivers may emerge to make it a reality in
commodity DRAM

Reconfigurable logic offers opportunity to create custom
near data applications at relatively low cost

CONCLUSIONS

