
A Logic-base Interconnect for Supporting Near
Memory Computation in the Hybrid Memory Cube

Erfan Azarkhish,
Davide Rossi, and Igor Loi

DEI, University of Bologna, Bologna, Italy
Emails: erfan.azarkhish@unibo.it,

davide.rossi@unibo.it, and igor.loi@unibo.it

Luca Benini
ITET, Swiss Federal Institute of Technology,

Zurich, Switzerland,
DEI, University of Bologna, Bologna, Italy

Email: lbenini@iis.ee.ethz.ch

Abstract—Hybrid Memory Cube (HMC) has promised to
improve bandwidth, power consumption, and density for next-
generation main memory systems. In addition, 3D integration
gives a “second shot” for revisiting near memory computation to
fill the gap between the processors and memories. In this paper,
we study the concept of “Smart Memory Cube (SMC)”, a fully
backward compatible and modular extension to the standard
HMC, supporting near memory computation on its Logic Base
(LoB), through a high performance interconnect designed for this
purpose. We take the first step towards SMC by designing a high
bandwidth, low latency, and AXI-4.0 compatible interconnect
optimized to serve the huge bandwidth demand by HMC’s serial
links, and to provide extra bandwidth to a processor-in-memory
(PIM) embedded in the Logic Base (LoB). Our results obtained
from trace-based cycle accurate simulation demonstrate that this
interconnect can easily meet the demands of current and future
HMC instances (Up to 87GB/s READ bandwidth with 4 serial
links and 16 memory vaults, and 175GB/s with 8 serial links and
32 memory vaults, for injected random traffic). The interference
between the PIM traffic and the main links was found to be
negligible with execution time increase of less than 5%, and
average memory access time increase of less than 15% when
56GB/s bandwidth is requested by the main links and 15GB/s
bandwidth is delivered to the PIM port. Lastly, a closed-loop co-
simulation environment based on gem5 and Modelsim is under
development to analyze the feedback effect between software and
hardware.

I. INTRODUCTION

The “memory wall problem”, or the speed and bandwidth
disparity between processors and memory, has been a concern
for the last thirty years [1]. Many researchers, since the
early nineties [2], have looked into the possibility to migrate
some part of computation closer to the memory systems, to
solve this issue. Unfortunately, the “processing in memory”
research efforts in the late nineties and the first decade of
the new millennium (See [2][3][4] for samples) did not lead
to successful industrial platforms and products. The main
reason for this lack of success was that all these works were
assuming that significant amount of logic resources, needed
for having processing elements close to the memory arrays,
could be integrated on DRAM dies (or vice versa). This
could not be achieved economically given the restrictions
of DRAM processes (e.g., limited number of metal levels,
slow transistors). On the other hand, integration of DRAM in
logic processes has achieved some partial success, but it has
always been plagued by high cost and low memory density
issues [5]. Starting from 2011, this situation started to change
with the appearance of heterogeneous 3D integration of logic
and memory dies based on through-silicon-vias (TSV). TSV
technology was brought to commercial maturity by memory
manufacturers (DRAM and Flash) to build “memory cubes”
made of vertically stacked thinned memory dies achieving
higher capacity in packages with smaller footprint and power
compared to traditional multi-chip modules. The last missing
piece came in place when an industrial consortium backed by

Round-robin
counter

RR

W I R I N G

Decoders
Allocators

AR R AW W B

Dec. Dec.
Mux

M
AS

TE
R

PO
RT

S

AR R AW W B

Dec. Dec.
Mux

AR R AW W B

Dec. < > < >

RR RR

i i i RE
AD

W
RI

TE

A A A A A

AR R AW W B

Dec. < > < >

RR RR

i i i

RE
AD

W
RI

TE

A A A A A

MASTER
BLOCK

SLAVE
BLOCK

SLAVE
FIFOS

MASTER
FIFOS

S0 Sm

M0 Mn

SL
AV

E
PO

RT
S

HPP LPP

HPP LPP

HPP
High Priority

Port

b

FSM

FIFO

Dem.
Demux

Mux
Multiplexer

Dual clock FIFO

 < >
Address Decoder

Dec.
Decoder

Arb. Tree

Address
 remapper

A

Issue Logic
i

Legends

LPP
Low Priority

Port

PIM Local
Mem.

Vault
Controller

Vault
Controller

Vault
Controller

Link
Controller

Link
Controller

St
an

da
rd

 H
M

C
In

te
rf

ac
e

TSVs

Memory Dies Logic Base (LoB)

Bank

Vault

HPP

Slaves

Main Ports

PIM Ports Masters
Main

Interco
(AXI-4.0)

LPP

HPP

HPP

LPP

LPP

a

R AR AW W B

Req.

Rs
p.

CM
DQ

W
Da

ta

FI
FO

Rd
at

a
FI

FO

Ph
y.

ev
en

od
d

ev
en

od
d

commit
FS

M
s

Power

Config Refresh

Master

DDR

RR

DDR Phy. RAS, CAS, WE, …

AX
I I

N
TE

RF
AC

E

RA
S

RP

RC
D

W
R

Co
un

te
rs

RW

BA
N

K
1

RA
S

RP

RC
D

W
R

Co
un

te
rs

RW

BA
N

K
B

c

Dem.

Mux

Mux

Fig. 1. a) Overview of the Smart Memory Cube, b) proposed AXI 4.0 based
logarithmic interconnect for SMC, c) schematic view of a Vault Controller

several major semiconductor companies introduced the Hybrid
Memory Cube (HMC) [6].

In this paper, we leverage the recent technology break-
through represented by the HMC to revisit the possibility of
near memory computation inside the cube, taking advantage of
the heterogeneous 3D stacking technology. We mainly focus
on the architectural implications and the required infrastructure
inside HMC to support this feature. Therefore, exploiting
the high internal bandwidth provided by TSVs we propose

a modular and scalable solution, called the “Smart Memory
Cube (SMC)”. SMC is build upon the existing HMC standard,
and is compatible with its interface, with no changes made
to the memory dies, and no new die introduced in the stack.
In other words, SMC is fully backward compatible with the
HMC’s IO interface specification, featuring a high performance
and extensible AXI-4.0 based interconnect on its Logic Base
(LoB), carefully designed to provide high bandwidth to the
external serial links, as well as plenty of extra bandwidth to
any generic and AXI-compliant PIM device attached to its
extension ports. We have developed a cycle accurate model
for the SMC interconnect and its interfaces, and tuned its
parameters based on the available data from the literature on
HMC. Our trace-based simulation results demonstrate that the
proposed interconnect can easily meet the demands of current
and future projections of HMC (Up to 87GB/s READ band-
width with 4 serial links and 16 memory vaults, and 175GB/s
with 8 serial links and 32 memory vaults, for injected random
traffic). Moreover, the interference between the PIM traffic and
the main links was found to be negligible with execution time
increase of less than 5%, and average memory access time
increase of less than 15% when 56GB/s bandwidth is delivered
to the main links and 15GB/s residual bandwidth to the PIM
port. Lastly, to tackle the feedback-effect problem of trace-
driven simulations a closed-loop co-simulation environment
based on gem5 and Modelsim has been developed. To speed-up
simulation, fast forwarding and dynamic switching techniques
of gem5 are utilized.

II. RELATED WORKS

As stated earlier, in-memory processing is a possible so-
lution to the memory wall problem. Researches in this area
started more than two decades ago. Computational RAM [2]
using SRAMs or DRAMs coupled with processing elements
close to the sense amplifiers, and Intelligent-RAM (IRAM)
[3] to fill the gap between DRAM and processors, are just
two examples of the efforts in this area. Nevertheless, the
effort for PIM dried out soon after 2000’s without major
commercial adopters, due to several performance, cost, and
business model obstacles [4] arising from the incompatibility
of DRAM process with logic. With the recent advancements
in process technology and emergence of 3D integration, the
interest in near-memory computation has been renewed [7]. In
[8] throughput oriented computing using programmable GPU
units for 3D stacked memories has been studied. In DRAMA
[9] a reconfigurable accelerator architecture for processing
in 3D memory stacks is proposed. Lastly, in [1] logic die
of the 3D memory stack has been augmented with PIM
functionalities. All these works are not in competition but in
synergy with us moving towards the same direction.

The most outstanding examples of 3D-memory stacking as
substitutes for traditional DDR devices are the Hybrid Memory
Cube [10] and the High Bandwidth Memory (HBM) [11], with
HMC offering higher flexibility by abstracting away the details
of DRAM control, and providing a high-level communication
mechanism over serial links. Therefore we believe that HMC
is the best target for near memory computation. Focusing on
the location of the PIM device in the HMC, it can be either
integrated with the existing logic [1][12] or DRAM dies [13],
or it can be added as a new die in the stack [14]. Introduction of
a new layer to the stack would require redesign and a complete
reanalysis of the 3D stack structure and the power distribution
networks, affecting manufacturing yield of the stack, as well.
Moreover, placing the PIM devices on the memory dies still
suffers from the incompatibility of logic and DRAM processes
[4] and the functionality and visibility of the PIM device to
the address space will become extremely limited. Placing the
PIM device on the logic die, specifically behind the main
interconnect in the HMC (See Fig.1a), could lead to a modular
and scalable solution with a global visibility of the whole

memory space, exploiting the large bandwidth provided by
TSVs without any concerns about the DRAM devices. Besides,
this solution is the least intrusive one to the standard HMC
architecture, as it does not make any change to the 3D stack
or the DRAM dies. Lastly, the range of functionalities covered
by the PIM devices has been studied thoroughly in [15],
and it has been concluded that fixed-function PIMs without
any support for memory management, multi-threading, and
synchronization, are the best starting point for the evolution
of the smart memories. Memory-mapped communication with
these devices occurs through low-level drivers, and offloading
the computation kernels and job dispatching are managed
through the programming model [16]. In this paper, we won’t
focus on the implementation of the PIM device but on the
design of an LoB interconnect that is flexible enough to host a
wide range of PIM architectures, to be studied in future works.

One last point to mention is that, in the standard published
by HMC consortium [6], the external interface is specified
in complete details, nevertheless, the implementation of the
Logic Base (LoB), the DRAM dies, and specially the main
interconnect inside the LoB have been left open. Our main
contribution is to design a high performance and low latency
interconnect based on the AXI-4.0 standard to serve as the
main interconnect in HMC, while providing additional band-
width to a generic PIM device attached to it, ensuring that
interference on the main traffic is minimum. Next section
describes our proposal called the smart memory cube.

III. THE SMART MEMORY CUBE (SMC)
Smart Memory Cube (SMC) is an extension to HMC [6]

providing the possibility of moving part of the computation
inside the cube. Fig.1a illustrates an overview of the proposed
underlying architecture for Smart Memory Cube. Next, our
cycle accurate model for the baseline HMC system and its
SMC extension are presented.

A. Cycle Accurate Modelling
As shown in Fig.1a, the main interconnect and the vault

controllers are two key components in design of the smart
memory cube. We have designed the main interconnect based
on the ultra low-latency “logarithmic interconnect” [17] (orig-
inally designed for L1/L2 contexts), and modified it to sup-
port high bandwidth communication based on AMBA AXI
4.0 [18], the most widely used standard for communication
in system-on-chips. It is worth mentioning here that our
proposed interconnect can easily meet the demands for 32
masters/slaves, while for cardinalities beyond this number, a
hierarchy of pipelined logarithmic trees or a memory-centric
network connecting multiple cubes [19] can be adopted. This
standard divides traffic streams into 5 categories and dedicates
independent channels to each of them (AR: Address Read,
R: Read Data, AW: Address Write, W: Write Data, B: Write
Response). Fig.1a illustrates a high-level schematic view of
our interconnect design. When a transaction arrives at the
AXI master ports, first the “Issue Logic” decides whether
it should be allowed to enter the memory system, limiting
the maximum outstanding transactions of each master port
to a certain number called MoT. Next, address remapping is
performed on the transactions based on the intended addressing
scheme, by simply shuffling the address bits. AW and W
channels deliver address and data for the WRITE transactions,
and after identifying the destination port (inside the “Master
Blocks”), WRITE transactions will be sent to the arbitration
tree in the intended “Slave Block”. There, among the mas-
ter ports and separately on the PIM ports fair round-robin
arbitration is performed [17]. However, in the last stage of
the network a fixed-priority arbitration scheme ensures higher
priority (HPP) for the main ports and lower priority for the PIM
ports (LPP). This hierarchical arbitration guarantees that only
residual bandwidth is delivered to the PIM. The winner request

will have its data delivered through multiplexers in the “Slave
Block” to the FIFOs on the slave ports. A similar procedure
takes place for READ transactions, except that READ requests
do not have any data associated with them, and they are 1 flit
long. On the other side of the network (slave side), B and R
channels deliver back the response data, and acknowledgement
of the WRITE transaction, respectively. The responses will
arrive at the intended “Master Block”, and there, they will
wait for arbitration with other responses destined to the same
master. The arbitration performed inside this network is single-
cycle, and the whole interconnect has been developed as a
synthesizable and parametric RTL model.

Design of the Vault Controllers follows a very simple
DRAM Channel Controller, again with a standard AXI 4.0
interface to connect seamlessly to the main interconnect (See
Fig.1b). The first stage in this channel controller is a round-
robin arbiter choosing requests from one of the AXI AW and
AR channels to issue into the Command Queue (CMDQ). In
case of WRITE, the burst data is stored in the WData FIFO. A
set of Finite State Machines (FSMs) control power up/down,
auto-refresh, and configuration of the DRAM devices; and for
each memory bank a Read-Write FSM keeps track of the bank
state and timings using a set of counters. Finally, one Master
FSM controls the main DRAM bus and all other mentioned
FSMs. Design of the vault controllers and the signalling at the
DRAM bus follows the JESD79F JEDEC standard for DDR
SDRAMs [20], in a generic and configurable way. Moreover,
different techniques of pipelining and latency hiding have been
implemented to reach the highest throughput; and unlike the
standard vault controllers in HMC, this model supports both
open and closed page policies. Since data widths and burst
sizes of the AXI interconnect and the DRAM devices do not
necessarily match, “AXI Interface” in the vault controllers
performs burst size conversion, as well. In addition, the AXI
interconnect and the vault controllers work in separate clock
domains, therefore, Command Queues (CMDQ) and RData
FIFOs have been designed based on asynchronous dual-clock
FIFOs to ensure data integrity. The DRAM device models
have been adopted from [21], and detailed design of the link
controllers has been left as a future work, since the main scope
of this paper is management of traffic inside the memory cube.
One final point is that, standard and flexible design of our
main interconnect allows for connecting any AXI-compatible
device including processor-in-memory modules. Therefore, a
PIM device can be easily integrated in this model by simply
increasing the number of master ports of the main interconnect
and attaching the PIM device to them (See Fig.1a).

B. Calibrating The Model
In the Exascale projections for 2013 [22] for a prototype

of HMC manufactured in 2011, 4 Memory dies and 1 Logic
Base (LoB) have been reported, with 16 memory vaults each
consisting of 2 DRAM banks per memory die. With a bank
size of 4MB a total memory of 512MB is provided in this
configuration. Each vault is expected to deliver a bandwidth
of 10GB/s to the lower LoB. This aggregates in total to a
maximum of 160GB/s. On the other side, four serial links
consisting of 16+16 differential lanes for READ and WRITE
are advocated. With a lane bit-rate of 10Gb/s [22] an aggregate
off-chip bandwidth of 160GB/s for WRITE and READ can
be delivered. In the first paper on HMC [10] 32 data TSVs
were reported per each vault with a double data rate (DDR)
data transfer mechanism, this requires a clock frequency of
1.25GHz to deliver 10GB/s [23].

Unlike existing DDR memories, HMC utilizes Closed-Page
policy and its DRAM devices have been redesigned to have
shorter rows (256 Bytes matching the maximum burst size of
serial links, rather than 8-16KB in a typical DDR3 device)
[10]. This is because HMC has been mainly designed for
High Performance Computing (HPC) and server workloads

which typically exhibit little or no locality. The reduced row
length helps save power by alleviating the over-fetch problem,
however, reduces the row buffer hit probability, which makes
open page mode impractical. In addition, open page policy
exhibits additional overheads for little locality workloads,
due to delaying the precharge between accesses to different
rows [23][12] (See section IV.A for experiments). It is worth
mentioning that, in the HMC projected for 2015, the vault
bandwidth and TSV structure are not expected to change [22].
Instead the number of vaults will increase to 32 and the serial
links will double to 8, delivering a total bandwidth of 320GB/s.
Moreover, HMC specification V2.0 has been released in 2014
which is not available to public yet. The main focus of our
experiments will be on the current and silicon demonstrated
HMC specifications [10], nevertheless, in one experiment we
will show that our model can be scaled easily to 32 memory
vaults, and 8 serial links delivering the required bandwidth.

The specifications of the DRAM devices utilized in HMC
are proprietary. However, to the best of our knowledge
[19] contains the most comprehensive set of parameters that
currently published for HMC: {tRP =13.75ns, ttCCD=5ns,
tRCD=13.75ns, tCL=13.75ns, tWR=15ns, tRAS=27.5ns}.
Moreover, we assume that the DRAM devices have the same
clock frequency (tCK = 0.8ns) as the TSVs, while the
interconnect and the rest of the cube work in different clock
domains. Besides, we assume the internal Data Width of the
DRAM devices to be 32 bits, matching the TSV count. These
assumptions simplify the 3D interface allowing for direct
connection between TSVs and the DRAM devices. Similar
approach has been taken in [23]. HMC supports different types
of address mapping through its Address Mapping Mode Reg-
ister. The default address mapping in HMC is low-interleaved,
optimized to achieve highest memory-level parallelism [6]. In
our model, there is a possibility for modifying the address
interleaving scheme, through “Address Remapper” modules
illustrated in Fig.1a. The baseline address mapping of HMC is
[RC-BA-VA-OF] (VA: vault address, BA: bank address inside
the vault, RC: row and column addresses, and OF: offset bits of
the address). Assuming that transaction splitting is not possible
in the HMC [6], a full transaction is always directed to one
bank, therefore, OF bits are always in the leas significant
position. This results in 6 possible permutations for address
mapping, which are investigated in Section IV.

A preliminary logic synthesis confirmed that our AXI-
based interconnect can easily meet a frequency of 1GHz for
the mentioned parameters (See section IV). While a simple
calculation reveals that with this clock frequency and a flit size
of 128-bits, a total of 128GB/s bandwidth can be delivered
to 4 master ports (which is below the intended limit). To
workaround this issue the most straightforward solution is
to increase the flit-size of the main interconnect from 128
to 256 bits. Other alternatives include increasing the clock
frequency, which can cause power related issues, and increas-
ing its number of master ports in the interconnect, which can
increase arbitration latency. Increasing the flit size effectively
improves aggregate bandwidth to 256GB/s at the master side,
and in section IV it will be shown that the total area of the
interconnect is negligible compared to the total available area
in the LoB. Next section presents the experimental results.

IV. EXPERIMENTAL RESULTS

Our baseline HMC model has been described using Sys-
temVerilog HDL in the cycle-accurate and fully synthesizable
level. ModelSim has been utilized for simulation, and pre-
liminary logic synthesis has been performed using Synopsys
Design Compiler using STMicroelectronics Bulk CMOS-28nm
Low Power technology library. Area of each vault controller
was found to be 0.62mm2, and for the AXI interconnect,
less than 0.2mm2. Summing to a total of about 10.1mm2,

a) HMC

0

0.5

1

1.5

2

2.5

3.3

3.8

4.3

4.8

5.3

5.8

3.2 4.2 5.2 6.2

Ideal Bandwidth
Delivered Bandwidth
AMAT

Requested Bandwidth (GB/s)

De
liv

er
ed

 B
an

dw
id

th
 (G

B/
s)

AM
AT

 (μ
s)

99%
5.5GB/s

427ns

206ns 130ns
0

0.5

1

1.5

2

2.5

3

25

35

45

55

65

75

85

95

25 45 65 85
Requested Bandwidth (GB/s)

De
liv

er
ed

 B
an

dw
id

th
 (G

B/
s)

AM
AT

 (μ
s)

 97%
81GB/s

512ns

162ns 100ns

b) Vault

Fig. 2. Delivered bandwidth of a) one vault only and b) the baseline HMC.

which is much less than the DRAM area reported for HMC
2011 (68mm2) [10]. Two types of traces have been exploited
for performance analysis: Synthetic random traffic generated
in ModelSim, and traces gathered in Gem5 [24] running a
full-system simulation of eight x86 CPUs with Linux 2.6.22.9
kernel executing PARSEC V2.1 benchmark suite [25]. It has
been previously observed in [23] that current multi-threaded
workloads cannot easily utilize the huge bandwidth provided
by HMC, mainly due to the overheads of the cache-coherence
mechanisms. To increase the bandwidth demand [23] proposes
ideal-caches which always result in a hit. In this work, we
have compressed the time-scale of the traces to adjust their
bandwidth demand to HMC. A more sophisticated closed-
loop traffic generation mechanism composed of ARM64 and
GPGPU cores in gem5 simulation environment in under de-
velopment and is briefly described in Section V.

A. HMC Exploration
First we adjusted the size of all buffers along with the MoT

parameter to achieve the maximum bandwidth requirement
of HMC with a reasonable access latency. Fig.2a,b illustrate
delivered bandwidth and AMAT versus requested bandwidth,
in the baseline HMC model (RIGHT), and in one vault
only (LEFT). Uniform random READ transactions have been
applied to the ports, and AMAT has been measured at the
response master ports of the interconnect. As this figure shows,
in both cases, when the network is not saturated, delivered
bandwidth is over 97% of the requested bandwidth (81.2GB/s),
matching HMC’s intended READ bandwidth (80GB/s). While
AMAT is bounded and less than 500ns, which is about 7X of
the zero load latency for READ (Zero load latency: 76ns for
READ and 13ns for WRITE).

To demonstrate this fact better, different traffics have been
applied to the baseline model changing only the page policy,
with results plotted in Fig.3.a. RAND is a uniform random
traffic with only READ transactions of maximum burst size.
MASKED is a random traffic with its lower address bits
intentionally masked to zero to achieve the highest hit-rate
in open page policy. ZERO is a traffic directed to address
0x00000000, MIXED is a mixture of 8 PARSEC benchmarks,
and all PARSEC benchmarks have been time compressed to
the highest possible value. Firstly, it can be seen that ZERO
in open page mode obtains 9.6GB/s which is 96% of the
intended bandwidth for 1 vault. This proves that both the
interconnect, and the vault controllers are working at full-
bandwidth and are not losing any cycles. Moreover, MASKED
traffic in open page mode receives an average bandwidth
of 110GB/s for READ transactions. This is the maximum
bandwidth which our network is able to deliver. Interestingly,
when RAND traffic is applied, closed-page policy operates
better than open-page, with a delivered bandwidth beyond
requirement of HMC (i.e. 80GB/s for READ). And even
in PARSEC benchmarks which have a lot of locality, still
open page does not provide superior benefits to cover for its
implementation cost. In addition, it can be seen in Fig.3.b that
changing READ to WRITE ratio in RAND traffic does not
improve the total delivered bandwidth. In the next experiments
we will show that this limitation is caused by the DRAM

0

50

100
CLOSED
OPEN

Page Policy

0
20
40
60
80

100

O
nl

y
R

1/
8

1/
4

1/
2 1 2 4 4 8

O
nl

y
W

Write Read Total

Write to Read Ratio

(G
B/

s)

a) b)

(G
B/

s)

Fig. 3. a) Effect of page policy on delivered bandwidth, b) effect of R/W
ratio in RAND traffic on total bandwidth

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

32
64
128

DRAM Bus Width (bits)

GB/s

20

40

60

80

0 10 20 30 40 50 60 70 80 90 100

128
256
512

AXI Data Width (Bits)

GB/s

a)

b)

20

40

60

80

0 10 20 30 40 50 60 70 80 90 100

0.4 0.6

0.8 1
AXI Clk Period (ns)

GB/s

c)

T

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

0.6
0.8
1
1.2

DRAM tCK (ns)
GB/s

d)

T

T

T

Fig. 4. Effect of a) AXI data width, b) DRAM bus width, c) AXI clock
period, and d) DRAM tCK on READ bandwidth. Random traffic with inter-
arrival time Random[0,T] has been applied (Closed page policy)

and not the interconnect. Lastly, in a separate experiment on
the 2015 projection of HMC, a maximum READ bandwidth
of 172GB/s for RAND traffic was obtained (Policy: Closed),
which is beyond its requirement (160GB/s READ bandwidth).

Next, we analysed the effect of different architectural
parameters on the delivered bandwidth. Fig.4.a illustrates
delivered READ bandwidth when the flit size of the AXI
interconnect has been changed from 128 to 512. Packet inter-
arrival time of the RAND traffic has been changed based on
Random[0,T], with T being on the X-axis. This preliminary
results shows that, 128-bit flits are not enough, while, 512-
bit flits do not seem necessary. Fig.4.b illustrates the effect of
DRAM Bus Width (i.e. number of TSVs per each vault). This
plot shows that if TSV manufacturing technology allowed,
a bandwidth improvement of about 20% for random traffic
would be achievable with 64 data TSVs per each vault. Lastly,
Fig.4.c,d show that decreasing the AXI interconnect cannot
improve maximum delivered bandwidth while reducing tCK
can. This suggests that the main bottleneck of the system is
the DRAM and not the AXI interconnect. To confirm this
result we have scaled down all the timing parameters of the
DRAM devices from their default values by the scale factors
illustrated in Fig.5.a. A set of PARSEC and random traffics
have been applied and the page policy is closed. Interestingly,
the delivered bandwidth can be highly improved when DRAM
overheads are very small, and close to an ideal SRAM.

Fig.5.b depicts the effect of the number of banks per each
vault on the delivered bandwidth. When there is only one bank
per each vault, closed-page behaves almost similarly to the
open-page, while as this number increases, there is potential for
latency hiding specially for the RAND traffic where bank-level
parallelism is high. For traffics which exhibit locality, address
mapping was found to have an extremely important effect
on the delivered bandwidth and total execution time. Fig.6
illustrates the delivered bandwidth over time for 4 bandwidth
critical PARSEC benchmarks using the 6 possible address
mapping schemes. The benchmarks are time compressed to
the maximum value and there is no empty space among the
consecutive transactions (End time of each case has been
highlighted in the graph with a vertical line). Interestingly,
address mapping scheme affects the benchmarks differently.
For x264 and streamcluster the best address mapping is RC-
BA-VA-OF (HMC’s default mapping), while in canneal RC-
VA-BA-OF achieves the highest performance with an exe-
cution time reduction of over 2X compared to the default
address mapping. And in swaptions BA-RC-VA-OF achieves
the highest performance. This suggests that a configurable

0
20
40
60
80

100
120

1/8
1/4
1/2
1

a) DRAM Timing Scale

0
20
40
60
80

100
120 1

2
4
8

b) Num. Banks
Per Vault

Delivered Bandwidth
(GB/S)

Delivered Bandwidth
(GB/S)

O
: O

pe
n

C:
 C

lo
se

d

Fig. 5. Effect of a) scaling down the timing parameters of DRAM and b)
effect of number of banks per vault on bandwidth

45

50

55

60

65

70

75

17 19 21 23 25 27 29 31 33 35

Bandwidth
(Main Links)

0.1

1

10

100

17 19 21 23 25 27 29 31 33 35

95GB/s
91GB/s
78GB/s
58GB/s
52GB/s
49GB/s

AMAT
(Main Links)

PIM Req. BW. (GB/s)

PIM Req. BW. (GB/s)

(G
B/

s)

(μ
s)

400ns

a)

c)

56GB/s

15%

10

15

20

25

30

17 19 21 23 25 27 29 31 33 35

Bandwidth
(PIM Link)

0.4

4

40

17 19 21 23 25 27 29 31 33 35

Max MAT
(Main Links)

PIM Req. BW. (GB/s)

PIM Req. BW. (GB/s)

(G
B/

s)

(μ
s)

15GB/s

b)

d)

20%

Fig. 7. a) Effect of PIM traffic on the main, b) Delivered bandwidth to
PIM as a function of its requested bandwidth, Increase in c) average and d)
maximum memory access time caused by PIM.

addressing mechanism (See Fig.1a) is required to tune the
performance of the cube based on the running application.

B. Handling PIM Traffic
Assuming a generic PIM device is connected to the main

interconnect through one additional link, we aim to find the
upper bound on the bandwidth that it can request without
disrupting the main traffic. As a worst case scenario, we
assume that the bandwidth demand of the PIM and the main
links are independent from each other, and increasing one
does not decrease the other. Moreover, we assume that the
PIM device can process received data instantaneously. On the
four main links as well as the PIM link we inject RAND
transactions with various bandwidth profiles. Fig.7a,b show
total delivered bandwidth on the main and the PIM links,
and Fig.7c,d illustrate the average and maximum Memory
Access Time (MAT) on the main links, respectively. All plots
have been characterized based on the amount of requested
bandwidth on the main links (from 49GB/s to 95GB/s), and
the X-axis shows requested bandwidth by the PIM device.
Firstly, when 56GB/s or less bandwidth is requested on the
main links, the PIM device can request up to 31GB/s without
pushing the system into saturation, and without observing any
drop in the bandwidth of the main links. Moreover, Average
Memory Access Time (AMAT) is below 400ns (5X of zero
load AMAT). However, to keep the increase in maximum
MAT within 20% and AMAT within 15%, a bandwidth of less
than 15GB/s should be requested on the PIM device. Since
for typical general purpose servers, the traffic on the main
links mostly consists of cache refill requests, they are very
sensitive to latency. Therefore not only AMAT but also the
worst-case MAT should be small. While, a less conservative
bandwidth partitioning could be speculated for accelerator-
dominated traffics (e.g. GPGPU) which are much less latency-
sensitive.

To demonstrate this fact better, instead of random traffic,

Normalized Slow-down

gem5 + Internal Memory 1

gem5 + Dummy External Mem. 6

gem5 + Modelsim[N=1,M=1] 47

gem5 + Modelsim[N=4,M=16] 430

1
2
3
4
5
6

10 100 1000 10000(ns)

Normalized
 slow-down

Sync Period (T)

c)

b)

0.05

0.5

5

5

15

25

32 31 28 20 15 12 10 9 8 7 6

PIM BW
Main Links BW
PIM AMAT
Main Links AMAT
Main Link MAT(max)

G
B/

s

 (μ
s)

1000ns

Req BW (GB/s)

a)

Fig. 8. a) Effect of requested bandwidth by ideal PIM on x264, b) effect of
synchronization period (T) on simulation slow down (closed-loop simulation),
c) normalized simulation slow-down of different closed-loop configurations

real traces of the high bandwidth demanding x264 benchmark
with no time compression are applied on the main port, and
interference caused by random traffic from PIM has been
plotted in Fig.8.a. This plot shows that the PIM device can
request up 28GB/s (90% of its theoretical max.) without
affecting the AMAT of x264 transactions by over 10% percent.
This result persists even with a 2X trace time compression with
similar bandwidth delivered to the PIM device, and less than
1% increase in total execution time. Next section, discusses
about issues faced simulation and proposes solutions to them.

V. SIMULATION CHALLENGES

While cycle accurate modelling provides highest possible
accuracy, some issues need to be addressed to ensure that
the promising results obtained in the previous sections would
remain valid in a full-system context. First, trace-based traffic
generation neglects the feedback effect between the processors
and the memory system, and may lead to incorrect results in
analysis of the whole system. Random and trace-based traffic
are suitable for fast and easy design space exploration and
studying the effect of the low level architectural parameters.
However, for full system simulation other alternatives should
be adopted. For this purpose, a closed loop simulation wrapper
has been developed which allows data communication between
gem5 and Modelsim through Linux pipes and periodically
synchronizes time and data between them (with period T). This
method can reflect the dynamic effects of the operating system,
APIs, drivers, cache coherence, and consistency protocols on
the overall performance. Yet two important issues should be
considered: Periodic synchronization introduces an error in
memory access time (MAT). Since transactions must cross the
gem5-Modelsim interface twice, the minimum reported MAT
becomes 2×T . Moreover, reducing T to increase accuracy has
a negative effect on simulation time. Fig.8.b illustrates this ef-
fect where T has been swept from 10ns to 10μS. A slow down
of over 5X is observable when T is very small. This situation
is nevertheless tolerable in comparison with the slow-down
caused by Modelsim itself, degrading gem5’s performance
down to cycle accurate simulation. Fig.8.c compares simula-
tion slowdown in four cases. First, baseline gem5 simulation in
timing-accurate mode with a “SimpleMemory” model. Second,
a dummy external memory connected to gem5 using the
developed co-simulation wrapper and synchronization period
has been set to 10ns. Third, a cycle-accurate memory with 1
AXI port and 1 vault connected to gem5, and last, the baseline
cycle accurate HMC model connected to gem5. It can be seen
that the slow down caused by the synchronization method is
about 6X, while Modelsim running the baseline HMC config-
uration slows down the simulation by another 70X. To bypass
this issue, we rely on gem5’s check-pointing, restoring, and
fast-forwarding abilities, to skip over the less-interesting time
periods and only simulate the region-of-interest accurately. For
this purpose we utilize gem5’s internal memory model for
keeping data and functional behaviour, and Modelsim only for
correction of gem5’s timing. This way, whenever accuracy is
required, simulation mode is switched from “atomic” to timing
accurate, and simple memory model of gem5 switches to the

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

(G
B

/s
)

X 1000 Cycles

x264

"VA-BA-RC-OF"
"VA-RC-BA-OF"
"BA-VA-RC-OF"
"BA-RC-VA-OF"
"RC-VA-BA-OF"
"RC-BA-VA-OF"

End Time

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600 700 800

(G
B

/s
)

X 1000 Cycles

canneal

"VA-BA-RC-OF"
"VA-RC-BA-OF"
"BA-VA-RC-OF"
"BA-RC-VA-OF"
"RC-VA-BA-OF"
"RC-BA-VA-OF"

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700 800

(G
B

/s
)

X 1000 Cycles

swaptions

"VA-BA-RC-OF"
"VA-RC-BA-OF"
"BA-VA-RC-OF"
"BA-RC-VA-OF"
"RC-VA-BA-OF"
"RC-BA-VA-OF"

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

(G
B

/s
)

X 1000 Cycles

streamcluster

"VA-BA-RC-OF"
"VA-RC-BA-OF"
"BA-VA-RC-OF"
"BA-RC-VA-OF"
"RC-VA-BA-OF"
"RC-BA-VA-OF"

Fig. 6. Effect of address mapping on delivered bandwidth to PARSEC benchmarks, measured in epochs of 1000ns

cycle-accurate model. We are currently in the process of setting
up a complete system configuration including multi-core CPU
and GP-GPU, with memory-intensive benchmarks to assess
the performance of our interconnect design in a full-system
context.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we presented the concept of the smart mem-
ory cube, a fully backward compatible and modular extension
to the standard HMC, supporting near memory computation
on its Logic Base (LoB), through a high performance AXI-
compatible interconnect designed for this purpose. Cycle ac-
curate simulation demonstrated that, the proposed interconnect
can easily meet the demands of current and future projections
of HMC (Up to 87GB/s READ bandwidth with 4 serial links
and 16 memory vaults, and 175GB/s with 8 serial links and
32 memory vaults, for injected random traffic). Moreover, the
interference between the PIM traffic and the main links was
found to be negligible with execution time increase of less
than 5%, and average memory access time increase of less
than 15% when 56GB/s bandwidth is requested by the main
links and 15GB/s bandwidth is delivered to the PIM port. Pre-
liminary logic synthesis confirms that our proposed models are
implementable and realistic. Moreover, since CPU traffic does
not utilize HMC’s bandwidth completely [23], we plan to use
gem5-gpu [26] which integrates GPGPU-Sim [27] with gem5.
gem5-gpu allows for seamless closed-loop co-simulation with
our models and is under active development. We are also
looking into development of higher level models calibrated
based on cycle-accurate results to improve simulation time.
The goal is to use statistical models to reflect timings of HMC
for very long simulations, and switch to the cycle accurate
model whenever error is beyond a certain threshold.

ACKNOWLEDGEMENT

This work was supported, in parts, by EU FP7 ERC Project
MULTITHERMAN (GA n. 291125); YINS RTD project (no.
20NA21 150939), evaluated by the Swiss NSF and funded
by Nano-Tera.ch with Swiss Confederation financing; and
Samsung Electronics Company.

REFERENCES

[1] D. P. Zhang, N. Jayasena, A. Lyashevsky et al., “A new perspective on
processing-in-memory architecture design,” in Proceedings of the ACM
SIGPLAN Workshop on Memory Systems Performance and Correctness,
ser. MSPC ’13. New York, NY, USA: ACM, 2013, pp. 7:1–7:3.

[2] D. Elliott, W. Snelgrove, and M. Stumm, “Computational RAM: A
memory-SIMD hybrid and its application to DSP,” in Custom Integrated
Circuits Conference, 1992., Proceedings of the IEEE 1992, May 1992,
pp. 30.6.1–30.6.4.

[3] D. Patterson, T. Anderson, N. Cardwell et al., “A case for intelligent
RAM,” Micro, IEEE, vol. 17, no. 2, pp. 34–44, Mar 1997.

[4] D. Patterson, K. Asanovic, A. Brown et al., “Intelligent RAM (IRAM):
the industrial setting, applications, and architectures,” in Computer
Design: VLSI in Computers and Processors, 1997. ICCD ’97. Proceed-
ings., 1997 IEEE International Conference on, Oct 1997, pp. 2–7.

[5] F. Hamzaoglu, U. Arslan, N. Bisnik et al., “13.1 a 1Gb 2GHz embedded
DRAM in 22nm tri-gate CMOS technology,” in Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), 2014 IEEE Interna-
tional, Feb 2014, pp. 230–231.

[6] Hybrid Memory Cube Specification 1.1, Hybrid Memory Cube Consor-
tium Std., 2014.

[7] R. Balasubramonian, J. Chang, T. Manning et al., “Near-data process-
ing: Insights from a MICRO-46 workshop,” Micro, IEEE, vol. 34, no. 4,
pp. 36–42, July 2014.

[8] D. Zhang, N. Jayasena, A. Lyashevsky et al., “TOP-PIM: Throughput-
oriented programmable processing in memory,” in Proceedings of
the 23rd International Symposium on High-performance Parallel and
Distributed Computing, ser. HPDC ’14. New York, NY, USA: ACM,
2014, pp. 85–98.

[9] A. Farmahini-Farahani, J. Ahn, K. Compton, and N. Kim, “DRAMA:
An architecture for accelerated processing near memory,” Computer
Architecture Letters, vol. PP, no. 99, pp. 1–1, 2014.

[10] J. Jeddeloh and B. Keeth, “Hybrid memory cube new DRAM architec-
ture increases density and performance,” in VLSI Technology (VLSIT),
2012 Symposium on, June 2012, pp. 87–88.

[11] D. U. Lee, K. W. Kim, K. W. Kim et al., “25.2 A 1.2V 8Gb 8-
channel 128GB/s high-bandwidth memory (HBM) stacked DRAM with
effective microbump i/o test methods using 29nm process and TSV,”
in Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
2014 IEEE International, Feb 2014, pp. 432–433.

[12] S. H. Pugsley, J. Jestes, R. Balasubramonian et al., “Comparing
implementations of near-data computing with in-memory mapreduce
workloads,” Micro, IEEE, vol. 34, no. 4, pp. 44–52, July 2014.

[13] Y. Kang, W. Huang, S.-M. Yoo et al., “FlexRAM: Toward an advanced
intelligent memory system,” in Computer Design (ICCD), 2012 IEEE
30th International Conference on, Sept 2012, pp. 5–14.

[14] Q. Zhu, B. Akin, H. Sumbul et al., “A 3D-stacked logic-in-memory
accelerator for application-specific data intensive computing,” in 3D
Systems Integration Conference (3DIC), 2013 IEEE International, Oct
2013, pp. 1–7.

[15] G. H. Loh, N. Jayasena, M. Oskin et al., “A processing in memory
taxonomy and a case for studying fixed-function pim,” in Workshop on
Near-Data Processing (WoNDP), Dec 2013.

[16] D. P. Z. M. I. M. Chu, N. Jayasena, “High-level programming model
abstractions for processing in memory,” in Workshop on Near-Data
Processing (WoNDP), Dec 2013.

[17] E. Azarkhish, I. Loi, and L. Benini, “A case for three-dimensional
stacking of tightly coupled data memories over multi-core clusters using
low-latency interconnects,” Computers Digital Techniques, IET, vol. 7,
no. 5, pp. 191–199, September 2013.

[18] AMBA AXI Protocol Specification V2.0, ARM Holdings plc Std., 2010.

[19] G. Kim, J. Kim, J. H. Ahn, and J. Kim, “Memory-centric system
interconnect design with hybrid memory cubes,” in Parallel Architec-
tures and Compilation Techniques (PACT), 2013 22nd International
Conference on, Sept 2013, pp. 145–155.

[20] Double Data Rate (DDR) SDRAM, JEDEC Std. JESD79F, 2005.

[21] C. Weis, I. Loi et al., “An energy efficient DRAM subsystem for 3D
integrated SoCs,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, March 2012, pp. 1138–1141.

[22] P. M. Kogge and D. R. Resnick, “Yearly update: Exascale projections
for 2013,” Sandia National Laboratoris, Tech. Rep. SAND2013-9229,
Oct. 2013.

[23] P. Rosenfeld, “Performance exploration of the hybrid memory cube,”
Ph.D. dissertation, univ. of Maryland, 2014.

[24] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[25] C. Bienia and K. Li, “PARSEC 2.0: A new benchmark suite for
chip-multiprocessors,” in Proceedings of the 5th Annual Workshop on
Modeling, Benchmarking and Simulation, June 2009.

[26] J. Power, J. Hestness, M. Orr et al., “gem5-gpu: A heterogeneous CPU-
GPU simulator,” Computer Architecture Letters, vol. PP, no. 99, pp. 1–1,
2014.

[27] A. Bakhoda, G. Yuan, W. Fung et al., “Analyzing CUDA workloads
using a detailed GPU simulator,” in Performance Analysis of Systems
and Software, 2009. ISPASS 2009. IEEE International Symposium on,
April 2009, pp. 163–174.

