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The Top 500
Supercomputers
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The Power Story

Linpack
TFlops

Power
(KW)

MW per
Exaflops

Tianhe-2 33,862 17,808 526

Titan 17,590 8,209 467

BG/Q 17,173 7,890 459

K-Computer 10,510 12,660 1205

1 MW of power costs roughly $1M per year
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The Cost of Power
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Power Scaling

1 EF/s - 2018

Memory power and I/O to memory become major contributors

20 PF/s - 2012

Link power

Network logic power

DDR chip power

DDR I/O power

L2 cache power

L2 to DDR bus power

L1P to L2 bus power

L1P power

L1D power

Leakage power

Clock power

Integer core power

Floating point power
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Active Memory
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Active Memory Cube
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Addition to HMC

WoNDP-2 12/14/2014

Modified base
logic layer of HMC

DRAM layers of
HMC unmodified



Example Exascale Node
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Processing Lane
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Vector, Scalar and Mask
Registers
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Processing Lane
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Power-Efficient
Microarchitecture
 Direct path from memory to registers

 Short latency to memory

 Low pj/bit TSV interconnection between memory and processing
lanes

 No dynamic scheduling of instructions (pipeline exposed to program)

 Explicit parallelism

 Efficient vector register file

 Chained operations to avoid intermediate writes to register file

 Largely predecoded commands to various execution units, similar to
horizontal microcoding

 No instruction cache

 Aggressive gating of unused paths
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Instruction Set
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Sample AMC Lane
Instruction
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Lane
Control

Rep Slice 0 Slice 1 Slice 2 Slice 3

AL LS

[32] nop {f1mul vr3,vr2,vr1; nop} {x2add vr5,vr7,vr9; nop} {nop; nop} {nop; nop}

Perform operation
on next 32
elements.

Do not branch at
end of instruction
– just continue to
next instruction

DP multiply element from
vector register 2 of slice 0

with element in vector
register 1 of slice 0. Result in

vector register 3 of slice 0.
Bump register pointers to

next element in each vector

32-bit integer add
2 elements from vector register 7 of

slice 1 with 2 elements in vector
register 9 of slice 1. Results in

vector register 5 of slice 1. Bump
register pointers to next element in

each vector

Same operations as above on registers in the scalar register file.
Compiler cannot place dependent operation in next instruction.

[1] nop {f1mul sr3,sr2,sr1; nop} {x2add sr5,sr7,sr9; nop} {nop; nop} {nop; nop}



LSU Commands, including
strides, gather, scatter

RN/IBM WoNDP-2 12/14/2014 15

[32] nop {nop; l8u vr3,sr2,sr1} {nop; l8 vr5,vr7,sr9} {nop; nop} {nop; nop}

Lane
Control

Rep Slice 0 Slice 1 Slice 2 Slice 3

AL LS

Perform
operation on

next 32
elements

STRIDED LOAD:
Load DP element into vector

register 3 of slice 0 from address
obtained by adding scalar

register 2 with scalar register 1.
Next load will use the updated

value for s1

GATHER:
Load DP element into vector register
5 of slice 1 from address provided by

element of vector register 7
incremented by scalar value in sr9.

Bump vector register to point to next
element for next address.



Bandwidth and Latency
(Sequential Access)
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Improvement with
Open-Page Mode
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Coherence

 No caches within AMC

 Granularity of transfer to lane
– 8 bytes to 256 bytes

 Coherence bit checked on access
– Overhead only on small-granularity

stores

RN/IBM WoNDP-2 12/14/2014 18

DRAM Page: 1024 bytes + 1024 bits metadata

Line: 128 bytes + 128 bits metadata

Vault Block: 32 bytesMetadata

2 bits coherence
30 bits ECC + other



AMC API

 Goal:
– Expose all hardware resources of interest to user

– Allow efficient sharing of AMC execution units

– Allow efficient user-mode access

 Logical naming of resources: Physical mapping by OS
– OS is minimal kernel, Compute Node Kernel (CNK), employed on BG/Q

 Memory Placement: Allocation and relocation of memory

 AMC Interface Segment – for lane code and initialized data

 Data areas (with addresses in special-purpose registers)

– Common Area: for data common to all lanes

– Lane Stack: for data specific to a single lane

 Lane Completion Mechanism

– Atomic fetch and decrement

– Wakeup host
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AMC Simulator

 Supports all features of Instruction Set Architecture

 Timing-correct at the AMC level, including internal
interconnect and vaults

 Functionally correct at the host level, including
privileged mode

 OS and runtime accurately simulated

 Provides support for power and reliability
calculation

 Provides support for experimenting with different
mix of resources and with new features
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Compiling to the AMC
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Vector ISA

Binary

Annotated Program
(OpenMP 4.0)

Binary

XL Compiler

Assembler

LLVM

User

User



AMC Compiler

 Supports C, C++, Fortran front ends

 User annotates program using OpenMP 4.0
accelerator directives

– Identify code section to run on AMC

– Identify data region accessed by AMC
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Compiled Applications

 DGEMM

 DAXPY

 Determinant

 LULESH

 SNAP

 Nekbone

 UMT

 CoMD
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Challenges/Opportunities
for Compiler Exploitation

 Heterogeneity

 Programmable length vectors

 Gather-scatter

 Slice-mapping

 Predication using mask registers

 Scalar-vector combination code

 Memory latency hiding

 Instruction Buffer size
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Techniques Used

 Polyhedral framework

 Loop nests analyzed for vector exploitation
– Loop blocking, loop versioning and loop unrolling applied

in integrated manner

 Software I-cache

 Limited source code transformation
– LULESH Kernel 1: Distribute kernel into two loops to help

scheduling

– Nekbone: Manually inline multiply nested procedure calls

– Will be automated eventually
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Performance

 DGEMM
– C = C – A x B

– 83% peak performance:
266 GF/AMC
 Hand assembled

 77% through compiler

– 10 W power in 14 nm
technology

– Roughly 20 GF/W at
system level

– 7 nm projection:
 56 GF/W at AMC

 Roughly at target at
system level
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Breakdown of Resources
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Area Breakdown Power Breakdown

Figure from [IBM JRD]



Bandwidth

 DAXPY (Y = Y + a x X)

 Performance depends on data striping

 4.95 computations per cycle per AMC when striped
across all lanes
– Out of 32 possible

– Low because of bandwidth limitation

 Improves to 7.66 computations per cycle when data
is blocked within vault

 Bandwidth utilized
– 153.2 GB/s (read), 76.6 GB/s (write) per AMC

– 2.4 TB/s (read), 1.2 TB/s (write) across node
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Power Distribution
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Power Consumption
Across Applications

 Real applications tend to be less power-constrained
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AMC Power 14nm (32 lanes)
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Concluding Remarks

 3D technology is reviving interest in
Processing-in-Memory

 The AMC design demonstrates a way to
meet DoE Exascale requirements of
1 Exaflops in 20 MW

– An AMC-like PIM approach may be the only way
to achieve this target in 7 nm CMOS technology

 Widespread use of the AMC technology will
depend on commodity adoption of such
3D memory+logic stacks
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