
Active Memory Cube

Ravi Nair

IBM T. J. Watson Research Center

December 14, 2014



RN/IBM 2

The Top 500
Supercomputers
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The Power Story

Linpack
TFlops

Power
(KW)

MW per
Exaflops

Tianhe-2 33,862 17,808 526

Titan 17,590 8,209 467

BG/Q 17,173 7,890 459

K-Computer 10,510 12,660 1205

1 MW of power costs roughly $1M per year
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The Cost of Power
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Power Scaling

1 EF/s - 2018

Memory power and I/O to memory become major contributors

20 PF/s - 2012

Link power

Network logic power

DDR chip power

DDR I/O power

L2 cache power

L2 to DDR bus power

L1P to L2 bus power

L1P power

L1D power

Leakage power

Clock power

Integer core power

Floating point power
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Active Memory
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Active Memory Cube
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Addition to HMC
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Modified base
logic layer of HMC

DRAM layers of
HMC unmodified



Example Exascale Node
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Processing Lane
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Vector, Scalar and Mask
Registers
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Processing Lane
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Power-Efficient
Microarchitecture
 Direct path from memory to registers

 Short latency to memory

 Low pj/bit TSV interconnection between memory and processing
lanes

 No dynamic scheduling of instructions (pipeline exposed to program)

 Explicit parallelism

 Efficient vector register file

 Chained operations to avoid intermediate writes to register file

 Largely predecoded commands to various execution units, similar to
horizontal microcoding

 No instruction cache

 Aggressive gating of unused paths
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Instruction Set
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Sample AMC Lane
Instruction
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Lane
Control

Rep Slice 0 Slice 1 Slice 2 Slice 3

AL LS

[32] nop {f1mul vr3,vr2,vr1; nop} {x2add vr5,vr7,vr9; nop} {nop; nop} {nop; nop}

Perform operation
on next 32
elements.

Do not branch at
end of instruction
– just continue to
next instruction

DP multiply element from
vector register 2 of slice 0

with element in vector
register 1 of slice 0. Result in

vector register 3 of slice 0.
Bump register pointers to

next element in each vector

32-bit integer add
2 elements from vector register 7 of

slice 1 with 2 elements in vector
register 9 of slice 1. Results in

vector register 5 of slice 1. Bump
register pointers to next element in

each vector

Same operations as above on registers in the scalar register file.
Compiler cannot place dependent operation in next instruction.

[1] nop {f1mul sr3,sr2,sr1; nop} {x2add sr5,sr7,sr9; nop} {nop; nop} {nop; nop}



LSU Commands, including
strides, gather, scatter
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[32] nop {nop; l8u vr3,sr2,sr1} {nop; l8 vr5,vr7,sr9} {nop; nop} {nop; nop}

Lane
Control

Rep Slice 0 Slice 1 Slice 2 Slice 3

AL LS

Perform
operation on

next 32
elements

STRIDED LOAD:
Load DP element into vector

register 3 of slice 0 from address
obtained by adding scalar

register 2 with scalar register 1.
Next load will use the updated

value for s1

GATHER:
Load DP element into vector register
5 of slice 1 from address provided by

element of vector register 7
incremented by scalar value in sr9.

Bump vector register to point to next
element for next address.



Bandwidth and Latency
(Sequential Access)
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Improvement with
Open-Page Mode
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Coherence

 No caches within AMC

 Granularity of transfer to lane
– 8 bytes to 256 bytes

 Coherence bit checked on access
– Overhead only on small-granularity

stores
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DRAM Page: 1024 bytes + 1024 bits metadata

Line: 128 bytes + 128 bits metadata

Vault Block: 32 bytesMetadata

2 bits coherence
30 bits ECC + other



AMC API

 Goal:
– Expose all hardware resources of interest to user

– Allow efficient sharing of AMC execution units

– Allow efficient user-mode access

 Logical naming of resources: Physical mapping by OS
– OS is minimal kernel, Compute Node Kernel (CNK), employed on BG/Q

 Memory Placement: Allocation and relocation of memory

 AMC Interface Segment – for lane code and initialized data

 Data areas (with addresses in special-purpose registers)

– Common Area: for data common to all lanes

– Lane Stack: for data specific to a single lane

 Lane Completion Mechanism

– Atomic fetch and decrement

– Wakeup host
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AMC Simulator

 Supports all features of Instruction Set Architecture

 Timing-correct at the AMC level, including internal
interconnect and vaults

 Functionally correct at the host level, including
privileged mode

 OS and runtime accurately simulated

 Provides support for power and reliability
calculation

 Provides support for experimenting with different
mix of resources and with new features
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Compiling to the AMC
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Vector ISA

Binary

Annotated Program
(OpenMP 4.0)

Binary

XL Compiler

Assembler

LLVM

User

User



AMC Compiler

 Supports C, C++, Fortran front ends

 User annotates program using OpenMP 4.0
accelerator directives

– Identify code section to run on AMC

– Identify data region accessed by AMC
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Compiled Applications

 DGEMM

 DAXPY

 Determinant

 LULESH

 SNAP

 Nekbone

 UMT

 CoMD
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Challenges/Opportunities
for Compiler Exploitation

 Heterogeneity

 Programmable length vectors

 Gather-scatter

 Slice-mapping

 Predication using mask registers

 Scalar-vector combination code

 Memory latency hiding

 Instruction Buffer size
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Techniques Used

 Polyhedral framework

 Loop nests analyzed for vector exploitation
– Loop blocking, loop versioning and loop unrolling applied

in integrated manner

 Software I-cache

 Limited source code transformation
– LULESH Kernel 1: Distribute kernel into two loops to help

scheduling

– Nekbone: Manually inline multiply nested procedure calls

– Will be automated eventually
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Performance

 DGEMM
– C = C – A x B

– 83% peak performance:
266 GF/AMC
 Hand assembled

 77% through compiler

– 10 W power in 14 nm
technology

– Roughly 20 GF/W at
system level

– 7 nm projection:
 56 GF/W at AMC

 Roughly at target at
system level
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Breakdown of Resources
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Area Breakdown Power Breakdown

Figure from [IBM JRD]



Bandwidth

 DAXPY (Y = Y + a x X)

 Performance depends on data striping

 4.95 computations per cycle per AMC when striped
across all lanes
– Out of 32 possible

– Low because of bandwidth limitation

 Improves to 7.66 computations per cycle when data
is blocked within vault

 Bandwidth utilized
– 153.2 GB/s (read), 76.6 GB/s (write) per AMC

– 2.4 TB/s (read), 1.2 TB/s (write) across node
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Power Distribution
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Power Consumption
Across Applications

 Real applications tend to be less power-constrained
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AMC Power 14nm (32 lanes)
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Concluding Remarks

 3D technology is reviving interest in
Processing-in-Memory

 The AMC design demonstrates a way to
meet DoE Exascale requirements of
1 Exaflops in 20 MW

– An AMC-like PIM approach may be the only way
to achieve this target in 7 nm CMOS technology

 Widespread use of the AMC technology will
depend on commodity adoption of such
3D memory+logic stacks
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