
  

Including random thoughts from David 

A Talk on Memory Buffers  
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Before We get Started – Random Thoughts 

 For Memory Systems: More == Faster 
― DRAM as a caching layer to reduce SSD/Disk access 

― (Workload-specific) speedup may be attained from increasing 
capacity 

― More (DRAM) capacity at lower bandwidth and/or slightly longer 
latency may still be faster  

 Difference Between Academia and Industry 
― Academia: Write papers about using 2X resources to get 10% 

speed up 

― Industry: Figure out how to reduces costs by 50% and keep 90% 
of performance 

 Cheaper is better than better 
― (Alternative statement) Barely good enough and cheaper is better 

than much better and a bit more expensive 
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Quick Historical Review 
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Memory Expansion – 20+ years ago 
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Then, Memory Modules 
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Inphi ExacTik® Memory Interface Products 

2H LRDIMM 

DDR4 Memory Interface 

Isolation Memory Buffer 

DDR2 Memory Interface DDR3 Memory Interface 

NVDIMM iSC 

Storage Controller 
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Not So Simple Anymore 
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Why Memory Buffering? 
Benefits of Buffering 
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Benefits 

 More Capacity 
― One controller to connect to many DRAM devices 

 More Bandwidth 
― Multiple loads (DRAM devices) slow down bus. 

― Buffer-and-re-drive cleans up system signal integrity, 
enabling higher operating data rate 

 Better RAS 
― Buffers can check correctness of commands/data 

 Additional Logic Interface to do “interesting 
things”, e.g. 
― (Flash-backed, DRAM Access) NVDIMM 

― NVRAM-only NVDIMM 



10 Inphi Proprietary 

  

10 Inphi Proprietary 

Memory Buffering could Reduce Operating Latency  

 LRDIMM adds ~3 ns over RDIMM 
at same frequency 

 But, parts of memory controller 
operates at same frequency as 
memory 

 At higher frequency, latency 
through memory controller is lower 

 LRDIMM total memory access 
latency may be lower than RDIMM, 
depending on frequency of 
comparison 

 e.g. 3 DPC LRDIMM @ 1333 MT/s 
has lower idle latency than 3 DPC 
RDIMM @ 800 MT/s 
― 85 ns vs 92 ns 
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1. From via to DRAM pad, typically ~10 mm distance. Non-
target ODT may not be needed at low datarates 

2. Even when non-target ODT is used, only bottom-most die 
needed to provide termination  

 Isolated channels means that  
― Termination values may be changed/reduced or even disabled 

― Power management schemes and termination schemes may be 
separately optimized 
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But . . . Memory Buffers should behave and cost like a wire  

 Zero cost 
― Should be tiny and simple to design 

 Zero latency 
― No junk (logic) in data path – logic slows things down 

 Zero footprint 
― DIMM’s and System Board should carry “useful stuff”, not chips 

that just buffer and re-drive signals   

 Zero power 
― Ideally . . . 
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How Do You Build (Architect) a Memory 
Buffer? 
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So What Do You Do When you want a Memory Buffer? 

 Define Scope 
― Improve pin-capacity-bandwidth of CPU interface? 

― Interface conversion for compatibility 

― On-DIMM or On-system-board application 

 How many pins do you need for this chip or chipset? 
― More pins -> Larger package -> higher cost & larger footprint 

― Will it fit? 

 Speed target and power budget 
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Anatomy of a DDR3 (LP) DIMM 

1. 133.35 mm x ~30 mm 
― Component area ~125 mm x ~25 mm 

― 40 “DRAM sites”, ~11.5 mm x ~11.5 mm each 

2. 240 pins, 1 mm pitch 
― DQ GND reference, Addr/Cmd Vdd reference 

― 2:1 signal-to-ground ratio 

― Same interface for UDIMM, RDIMM, LRDIMM 

3. Notches for heat spreader attachment 

 Find some free space to put some buffers! 
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This is a “Nice Architecture” 

 Register re-drives address and control to local MB 

 Local MB re-drives address to DRAM on local (x16) slice 

 Local MB re-drives data between DRAM and host on local slice 

 Simple chips, everything localized, no training needed 
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But . . . 

 Local Buffers take a lot of precious DIMM real estate 
― Constrains DRAM package size 

L
o

c
a

l 
M

B

L
o

c
a

l M
B

L
o

c
a

l 
M

B

L
o

c
a

l 
M

B

L
o

c
a

l M
B

Front

Back



18 Inphi Proprietary 

  

18 Inphi Proprietary 

Inphi iMB – Single Chip Address and Data Buffer 

 Winning JEDEC Architecture for DDR3 SDRAM Memory 
Buffering 

 Single Chip 
― Low Cost 
― Low DIMM Surface Area Impact 
― 36 Max Size (11 mm x 11.5 mm) DRAM Devices 
― Long DQ Stub Lengths  

● Not scalable to very high data rates, but . . . 
● High enough – 2 DPC @ 1866/1.5V 

 More complicated chip design than previous architecture, lots of 
training for timing and find phase adjustments 
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Example: DDR4 LRDIMM 
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DDR4 LRDIMM Chipset Architecture 

 RCD (Registering Clock Driver) is the Address and Control 
Buffer, generates command sequences to Data Buffers (DB) 

 Data Buffers must be trained to resolve 3-body synchronization 
problem (RCD, host MC, DRAM) 
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DDR4 LP DIMM 

 133.35 mm x 31.25 mm 
― Added 0.9 mm DIMM height for DB, attained by using low 

seating plane DIMM connector  

 288 pins, 0.85 mm pitch 
― DQ still GND referenced, Addr/Cmd still Vdd referenced 

― 1:1 DQ signal-to-ground ratio 
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DRAM Dimension for DDR4 LRDIMM 

 Ideally, DRAM Manufactures (SEC, Micron, Hynix) would 
like to place 36 Max Dimension DRAM Devices on Module  
― 11.0 mm x 11.5 mm or 9 mm x 13 mm  

 DRAM devices cannot shrink (much) below 11.5 mm in y 
dimension due to ball footprint constraint 

 Data Buffer (DB) competes with DRAM for area 
― DB needs to be as small as possible 
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Data Buffer Size and Placement 

 Data Buffer designed to be long and narrow (3.0 mm x 7.5 mm) 
― Concern for planarity 

 Data Buffer placed as close to DIMM finger as possible 
― Short DQ Stubs 

 DIMM x4 DQ ports alternate front/back of DIMM 
― E.g. DQ[3:0] on front, DQ[7:4] on back 

 The two x4 DQ ports on Data Buffers are interleaved 
― Facilitate routing to DIMM finger 

 Note: DB-to-DIMM-finger routing shown without series stub resistor 
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Inphi-Enabled DDR4 LRDIMM 

FRONT 

REVERSE 



25 Inphi Proprietary 

  

25 Inphi Proprietary 

Ideal LRDIMM Component Placement 

 DRAM Devices in “vertical” orientation 

 Far easier to route Address, Command, Control and Clock 
Signals 
― Relatively easier task of path length matching  
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DDR4 LRDIMM R/C E Component Placement 

 “Windmill” or “Flower” supports DRAM devices with larger 
aspect ratios 
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LRDIMM R/C E Clock Topology 

 Four y-clock pairs support 
― Left front : Rank 0 (and Rank 2) 

― Left reverse (back) : Rank 1 (and Rank 3) 

― Right front : Rank 0 (and Rank 2) 

― Right reverse : Rank 1 (and Rank 3) 

Clock for left 

front (rank 0)

Clock for left 

back (rank 1)
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DDR4 LRDIMM R/C E Clock Topology 

Y clock RCD to first DRAM top row                    - 35 mm

Y clock RCD to first DRAM bottom row              - 35 mm 

Y clock first DRAM to second DRAM top row    - 28 mm 

Y clock first DRAM to second DRAM bottom row – 28 mm

DB Clock RCD to First DB                                  - 31.3 mm  

DB Clock First DB to Second DB                       - 10.6 mm 
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DDR4 LRDIMM R/C E DRAM-to-DB DQ Routing 

 For each DB  
― One nibble is on top row of a given slice 

― Second nibble is on bottom of the same slice 

 Routing length differential between nibbles depends on 
slice (DB) 

 

First DRAM top row to First DB      – 32 mm 

First DRAM bottom row to first DB  - 27 mm 

Last DRAM top row to First DB       – 33 mm 

Last DRAM bottom row to first DB   - 11 mm 
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Relative Timing Illustrations for DDR4 LRDIMM R/C E 

1

3

4
5

27 6

8
9

1. Clock for read command arrives at RCD 

2. tPDM + y_clock_to_DRAM_flight_time later, clock for read command arrives at DRAM devices 

3. AL + PL  + CL time after step #2, DRAM devices launch data, subject to tDQSCK variances 

4. 27 mm (@ 7ps/mm) ~= 189 ps after step #3, first DB receives data from first DRAM on bottom row 

5. 32 mm (@ 7ps/mm) ~= 224 ps after step #3, first DB receives data from first DRAM on top row 

6. 100 mm(@ 10 ps/mm) ~= 1 ns after step #2, clock arrives at last DRAM devices 

7.  AL + PL  + CL time after step #6, DRAM devices launch data, subject to tDQSCK variances 

8. 11 mm (@ 7ps/mm) ~= 77 ps after step #7, first DB receives data from first DRAM on bottom row 

9. 33 mm (@ 7ps/mm) ~= 231 ps after step #7, first DB receives data from first DRAM on top row 
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Buffer on Board 
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Cisco UCS 4:1 Switched BoB on NHM Platform 

 Data buffers are 4:1 Switches 

 Address and Data Buffers on same side as CPU/DIMMs 

 Expands channel capacity from 2 DPC to 8 DPC 

 Total spacing is 42 DIMM positions across 
― CPU occupies 12 DIMM positions 

― Address and Data buffers occupy 2 DIMM positions per channel 
(total of 6) 

― 6 + 12 + 24 = 42 
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Cisco UCS (Nehalem-based System Memory Expansion) 
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IBM Power 7 
High Speed 
Serdes to 
DDRx 
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Buffering Within Memory Stack 



36 Inphi Proprietary 

  

36 Inphi Proprietary 

HMC vs. HBM 
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Summary 
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Summary 

 Address and Data Buffers commonly used to improve pin-
bandwidth/capacity of workstation and server platforms 
― Multitudes of high-speed-serdes-to-DDRx solutions have been 

implemented – AMB (FBDIMM), BoB 

― Multitudes of DDRx-to-DDRx also implemented  

 Memory Buffers CAN do a lot more, but “doing more” 
typically means “higher cost”. 
― Standard buffers are typically cost-optimized solutions 

 New Buffering concepts are being explored/implemented 
to do “interesting” things 
― DRAM + NAND backup as NVDIMM for power-failure protection 

― NAND-only Flash DIMM enables Flash devices to sit on DDR 
memory bus 

― Use of new memory technology (MRAM, PCM, ReRAM) on DDRx 
memory bus  


