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Abstract—Recent studies of DRAM failures in data centers and supercomputer environments have highlighted non-uniform failure
modes in DRAM chips. Failures fall into different classes depending on the source of the failure (e.g., an I/O pin, rank, bank, row,
column, or bit). These failures will be common in future memory technologies. To mitigate them, memory systems employ complex
error correcting codes and fault repair mechanisms. One way to evaluate the relative potency of these mechanisms is with analytical
models, which are time-consuming to derive. Therefore, we propose FaultSim, a configurable memory-reliability simulation tool for
2D and 3D-stacked memories. FaultSim uses Monte Carlo methods, real-world failure statistics and novel algorithms to accelerate
evaluation of different resilience schemes. Using multi-granularity failure rates from field studies with BCH-1 (SECDED) and ChipKill
codes, simulated results are within 0.41% and 1.13% of an approximate analytical model, respectively.
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1 INTRODUCTION

Memory-reliability modeling has been an important part of
system design for on-chip SRAM as well as off-chip memories
such as DRAM and storage devices including Flash memory.
With the introduction of emerging storage-class non-volatile
memories (NVM) such as phase-change (PCM), spin-torque
magnetic (STT-MRAM) and resistive (RRAM), new memory-
reliability models will be required to design efficient resilience
schemes such as error-correcting codes (ECC) and repair
techniques that maximize protection for a given hardware
cost. Because different memories have different failure modes,
customized resilience schemes have been proposed that are
based on the latest failure pattern data for each type of device.
Failure data typically is obtained by manufacturers who may
use accelerated testing via high temperatures or high-radiation
environments. They also have access to manufacturing test
data for thousands of devices. In addition, field studies [1],
[2], [3], [4] have recorded memory-error locations for instal-
lations containing thousands of chips during several years of
operation. These studies allow the capture of time-dependent
failure rates and wear-out effects. Finally, failure models may
be derived based on detailed physical models of memory cells,
interconnect, and packaging. However, because some factors
influencing faults are environmental, such models may fail to
capture real-world behavior.

Faults fall into two basic categories: permanent and tran-
sient. Permanent faults arise from manufacturing defects or
degradation over time (e.g., wear-out in NVMs). Transient
faults have many possible causes, including energetic particle
strikes (e.g., from cosmic rays) and power-supply noise. The
faults are exhibited as errors observed by the device consuming
the data. Once transient errors are corrected, the data can be
written back into memory and accessed as usual. Read requests
to corrected permanent faults require repeated error correction
unless the memory is replaced with non-faulty cells (repair),
resulting in performance and energy costs.

Given a fault model for a particular set of memory devices
and technologies, we need to determine the improvement
in resilience obtained by using data-encoding and repair
techniques. These usually involve a combination of ECC
and redundant memory cells that can be used to replace
cells suffering permanent faults. For DRAM main memories,
a number of spare rows are available on each device to
repair permanently faulty rows identified at manufacturing
test. During operation, additional ECC is added to protect
against soft errors and emerging permanent faults. Examples
of modern DRAM ECC includes ECC-DIMM and ChipKill.
ECC-DIMM adds an additional memory chip for every eight
data chips, providing the ability to correct single-bit errors
within each word [5]. ChipKill adds two or more chips to each
DRAM rank to allow continued operation even when an entire
chip fails [6]. Calculation of the reliability of these schemes
becomes complicated (although possible) when using real-
world, multi-granularity fault models [7]. When the ability to
perform scrubbing and on-line repair is added to the resilience
scheme, it becomes even more time-consuming to derive an
analytical model.

Earlier papers [7] avoid this difficulty by using statistical
modeling approaches. Monte Carlo methods are a class of
algorithms that use repeated random sampling to obtain the
distribution of an unknown probabilistic entity[8]. In our case,
we want to determine the probability of a memory device
failure at a certain point in time under different resilience
schemes. Prior approaches [7] use the same basic method of
dividing device lifetime into equal-sized intervals and injecting
faults into a memory array according to their probability of
occurrence during the small interval. Error correction then is
invoked periodically (at the scrubbing interval or on reads)
on the simulated array to determine whether an error can be
detected, corrected, and/or repaired, or is uncorrectable. By
running thousands of experiments, the outcome will converge
on an expected error probability. However, we are not aware
of any publications detailing the data structures and algorithms
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used in this compute-intensive process. In this paper, we
describe novel algorithms and data structures that provide
simulation performance that is higher than a naive approach
by orders of magnitude. We also demonstrate the power of
such a tool to explore the reliability design space rapidly.

2 FAULT MODELS AND ECC
This section describes common fault models and DRAM
ECC schemes, with particular emphasis on how detection and
correction abilities can be determined algorithmically.

As mentioned earlier, several methods of modeling faults
are available. By default, we use field data-based failure rate
models defined as failure-in-time (FIT) rates, which represent
failures per billion hours. These parameters can be obtained
from studies by Sridharan et al. [1], [2]. FaultSim can incor-
porate new models flexibly as desired.

The error-detection and -correction capabilities of a code
can be defined by the code’s minimum Hamming distance [9].
Given a code with Hamming distance d, then d− 1 errors are
guaranteed to be detected and bd/2c errors can be corrected.
However, it is possible for a given code to detect more errors.
For speed, FaultSim conservatively uses the minimum distance
to determine whether an error is detectable, correctable, or
uncorrectable.
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Fig. 1: ECC-DIMM and ChipKill conceptual block diagrams.
The green block represents the rows being read. The red block
indicates the size of a failed block of bits that can be corrected
by each scheme. The arrows indicate the set of chips that are
read or written in parallel.

Figure 1 illustrates two of the most common DRAM ECC
schemes. ECC-DIMM adds an additional 8-bit check symbol
to each 64-bit transaction on the memory bus, via a ninth
8-bit wide DRAM chip, forming a rank. Using a Hamming
code capable of single-error correction, double-error detection
(SECDED), any one bit in a bus cycle may be corrected. This
condition can be tested by counting the number of unique
faulty bits occupying the same bus cycle as other faulty bit
ranges. The maximum number of faulty bits occupying the
same bus cycle can be no greater than 1 for correction.

The ChipKill scheme requires two additional chips (pro-
viding two symbols) and can correct a single-symbol error in
each codeword, including the case of a complete single-chip

failure. The correction capability of a ChipKill system can
be determined as with ECC-DIMM, except that only a single
faulty symbol can exist per codeword, rather than a single bit.
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Fig. 2: FaultSim top-level block diagram
FaultSim consists of several interacting components illus-

trated in Figure 2. The fault model specifies the probability of
inserting faults of each granularity at a particular time step.
The probabilities may be constants when considering a fixed
failure rate, or they may vary over time e.g. to model the wear-
out of non-volatile memories. The memory organization allows
the user to specify the capacity and physical organization of
the memory system including chips per rank and an option
to enable 3D-stacked memory. An optional graph representing
the interconnect between multiple memory devices and a host
processor may also be specified. An ECC / repair scheme
is selected for the simulation run, along with a scrubbing
interval. Finally, the core Monte Carlo simulator is started
once all objects have been specified. Although the simulator
is not parallelized, it is simple to execute multiple instances
of the simulator and combine the results to improve accuracy.
Currently, the user must specify the number of trials to achieve
their desired level of accuracy.

4 ALGORITHMS AND DATA STRUCTURES

The core simulation engine repeatedly performs two steps.
First, every chip randomly inserts new faults according to
the failure probability within one time interval. Second, any
associated ECC schemes are invoked on the current list of
faults to look for correctable or detectable errors. When ECC
fails, the simulation is terminated, the faults are cleared, and
the next simulation begins. Given enough simulations, the
distribution of failure times can be generated.

4.1 Fault representation
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Fig. 3: FaultSim core data structures
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Figure 3 shows the core data objects involved in FaultSim.
The memory is represented as a collection of fault domains
(FDs) and fault ranges (FRs). An FD represents a physical
memory die, while an FR represents a range of the address
space that exhibits a permanent or transient error. Each FD
contains a list of FRs as they accumulate over time.
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Fig. 4: Column fault example

Figure 4 illustrates how three faults are represented as FRs
A, B, and C. Both memory banks consists of four rows with
eight columns each. For fault A, column 1 (the second column,
assuming indexes starting from 0) in bank 0 is faulty. For fault
B, row 2 of bank 0 and for fault C, row 3 of bank 1 are faulty.

Each fault is stored as a single FR object. A FR contains an
address (ADDR) and mask (MASK) field, each of which is 64
bits wide, along with a bit indicating transient or permanent.
Bit positions in these fields represent bits in the physical device
address map (in descending order from MSB) of (rank, bank,
row, column, bit). Any MASK bit set to 1 indicates that all
addresses (with a 0 or 1) in this bit position are faulty. The
ADDR bits in a position in which MASK is 0 specify a
fixed part of the fault address. In this way, MASK acts as
a wildcard so that ranges of faulty bits can be represented
in a compact form that can be compared with other FRs. By
counting the number of faulty bits in an ECC codeword, we
can determine whether the error count exceeds the capability
of the detection or correction code. Restricting the analysis
to the bits in the FRs greatly reduces the search space for the
analysis (as contrasted with a naive method in which faults are
recorded as an array of bits). When using the failure rate model
of [1], all of the fault classes (bit, word, column, bank, rank)
can be represented by a single FR. However, when modeling
through-silicon vias (TSVs) for 3D-stacked die, we need to
insert multiple FRs because the TSVs span multiple die.

As time progresses, faults accumulate in the memory FDs.
These are recorded as lists of FR objects contained within
each FD. The basic operation applied to the data structure is
intersect(X,Y) (i.e., a Boolean function that determines whether
two FRs (X and Y) overlap). Armed with this function, high-
level models can traverse the FR structures to determine which
errors can be detected or corrected.

TABLE 1: Fault Range example

FR mask addr

A 011000 000001
B 000111 010000
C 000111 110000

TABLE 2: Fault Range intersection example

XY X.mask + Y.mask X.addr ⊕ Y.addr intersects

AB 011111 101110 1
AC 011111 001110 0
BC 000111 011111 0

The function intersect(X,Y) is described by the bitwise
operations in Equation 1, where n is the number of bits in
the address;

∀i∈0..n−1 : (X.maski + Y.maski) +
(
X.addri ⊕ Y.addri

)
(1)

Tables 1 and 2 illustrate the use of this equation in determining
intersection. The term involving the masks determines that FRs
X and Y could intersect because at least one FR contains all
possible addresses determined by that bit position. However, to
be certain of an overlap, the addresses of X and Y must match
precisely where MASK is zero (the second term in Equation
1), in case only a specific address bit value is faulty. If both of
these conditions are met for all address bits, the FRs overlap.

4.2 3D-stacked memories
There are several proposed 3D-stacked memory architectures
in existence [10], [11], [12], but they typically use through-
silicon vias (TSVs) to carry power, clock, command, address
and data signals between die. FaultSim was extended to model
an array of data TSVs with a fixed failure probability. In the
event of TSV failure during a time step, multiple bit error FRs
are inserted into the address space where they are accessed by
that specific TSV.

4.3 Memory Networks
By defining a graph connecting multiple memory devices
and assigning failure probabilities to each inter-memory link,
we can incorporate multi-memory networks (such as those
supported by the 3D-stacked Hybrid Memory Cube [12]). We
define a “host” node representing the consumer of the data.
Using a reachability algorithm at each time step interval, we
record a system failure when any memory becomes unreach-
able from the host due to link failure.

5 EXAMPLE ECC AND REPAIR ALGORITHMS

By themselves, the intersect function and data structures
cannot determine whether errors can be detected or corrected.
Therefore we apply a second level of algorithms that utilize
them. We illustrate the algorithms for single-error correcting
BCH [13] and ChipKill [6] in the following sub-sections.
These well-known schemes were chosen to validate the sim-
ulator. Note that many more ECC and repair schemes can be
explored using FaultSim simply by creating a new C++ class,
and we have successfully applied it to RAID-like [14] schemes
in 3D-stacked memories.

As a baseline, we consider a naive simulation approach in
which faulty data bit locations are recorded in an array of
bits the same size as the simulated memory. To determine the
number of faulty bits or symbols in a codeword (and, hence,
correctability), every bit in every codeword must be scanned
at each time step. The leads to a time complexity of O(n),
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where n is the total number of bits in the memory. In our
example, the system is composed of 18 1-Gbit chips for a total
of 18Gbits storage. We can do considerably better than the
naive scanning algorithm by using the O(1) intersect function
over the set of fault ranges, which for realistic failure rates
will be very few (0.036 single-bit fault per 7 year period for
an 18-chip system, using data from [1]). In FaultSim, one fault
range can represent an entire chip’s worth of faulty bits.

The ECC algorithms count the number of faulty bits or
symbols in each codeword covered by an FR. ECC algorithms
terminate the simulation after recording the time of failure, if
the number of faulty bits or symbols per codeword exceed the
number corrected or detected by the specified ECC.

5.1 BCH Code
This description assumes a single rank of chips in an ECC-
DIMM with codewords spanning the width of the data bus
(typically 64+8=72 bits). For BCH codes, the algorithm (1)
considers every FR in each chip as a reference (FR0) and count
faulty bits in codewords covered by that same FR and FRs in
any other chips (FR1) that intersect with codewords covered
by the first FR. Bit counting is achieved by manipulating the
mask and addr bits of a temporary FR to test each bit position
on the bus individually. Because the bit intersection count
(n intersections) is reset for each reference FR0, intersecting
faults are not double-counted within the nested loops.

Algorithm 1: BCH ECC algorithm for a single Monte
Carlo run. N is the number of chips in the rank
for FR0 in FR[0..N-1] do

FRtemp = FR0
n intersections = 0
CLEAR lower 2 bits of FRtemp.addr
CLEAR lower 2 bits of FRtemp.mask
for bit addr in (0..3) do

for FR1 in FR[0..N-1] do
if FRtemp intersects FR1 then

n intersections++
end

end
FRtemp.addr++

end
if n intersections > correctable errors then

terminate simulation;
end

end

If we are interested in error-detection capability, the simula-
tion is not terminated on the first uncorrectable error; instead,
it continues until the first undetectable error.

5.2 ChipKill
For ChipKill, we perform a similar algorithm (2) to BCH
except that instead of counting individual bits, we count 8-
bit symbols in overlapping address ranges between chips.
Symbol-level comparison is easily achieved by setting the least
significant mask bits to span the symbol size.

Algorithm 2: ChipKill ECC algorithm for a single Monte
Carlo run. N is the number of chips in a rank
for FR0 in FR[0..N-1] do

FRtemp = FR0
n intersections = 0
SET lower 3 bits of FRtemp.mask
for FR1 in FR[0..N-1] do

if FRtemp intersects FR1 then
n intersections++

end
end
if n intersections > correctable errors then

terminate simulation;
end

end

5.3 Scrubbing and Repair
FaultSim simulates the practice of periodic scrubbing that
is prevalent in server systems. During the scrubbing cycle,
all correctable transient faults in memory can be repaired
by removing the appropriate FRs from the list in the FD.
By allocating spare capacity, FaultSim also can model repair
schemes that use remapping or spare resources [15]. In such
repair schemes, during the scrubbing interval, all correctable
data errors are remapped into a spare region using an address
remap table. This table must be consulted by the ECC-
evaluation algorithm before the data structure is addressed.

6 RESULTS

In this section, we derive an approximate analytical model
for memory system failure probability under ECC-DIMM and
ChipKill. We compare this with the statistical results from
FaultSim to determine its accuracy.

6.1 Analysis
For ECC-DIMM and ChipKill, it is possible to derive ap-
proximate analytical failure models. The use of different
probabilities for various fault granularities from field study
data complicates the analysis, which will only become more
complex as more is learned about failure modes from detailed
field studies.

BCH-1 code can correct single bit errors and detect double
bit errors (SECDED). Since BCH1 codes can tolerate all
isolated 1-bit errors and the memories have large capacities
relative to the failure rates, there is a low probability of single-
bit faults accumulating in the same codeword. Therefore, we
will ignore the impact of single bit faults. Any multi-bit
fault results in uncorrectable errors. Let the probability of
failure of a chip due to multi-bit faults bePFail−MultiBit. The
probability that the n-chip system experiences a multi-bit fault
in a system with BCH1 code (PSysFail−BCH1) is (2).

PSysFail−BCH1 u 1−

(
n

0

)
P 0
Fail−MultiBit×(1−PFail−MultiBit)

n

(2)
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ChipKill ECC uses 8-bit symbols in our case, and can
tolerate any size of fault in any one chip. These systems
can also tolerate bank, column, row and bit faults in different
codewords across multiple chips. Occasionally, faulty symbols
can overlap in the same address region in other chips, resulting
in more than one bad symbol per codeword. This implies
that the larger classes of faults such as rank, multi-bank and
single bank faults determine ChipKill resilience to a first order,
since they have relatively high failure probability and are
likely to coincide with other faults. For an n-chip system,
let the probability of a chip failure due to any fault type be
PFail−Any , and multi-bank or rank faults be represented as
PFail−Multi. Let the probability of chip failure due to a single
bank fault in a chip be PFail−OneBank. The total probability
of chip failure due to non-multibank faults (i.e. bit, word,
column, row or bank) is represented by PFail−NonMulti. The
probability of precisely one chip having a multi-bank or rank
fault is given in Equation (3).

POneMultiBank =

(
n

1

)
P 1
Fail−Multi× (1−PFail−Multi)

n−1 (3)

The probability of system failure when one multi-bank or rank
fault (POneMultiBank) occurs, simultaneous with any other
fault on one or more other chips, is represented by (4).

PSysFail(1) = POneMultiBank×[
1−

(
n−1
0

)
P 0
Fail−Any × (1− PFail−Any)

n−1
]

(4)
The probability of system failure when one single-bank fault

(POneChipBank) occurs in one chip is given in Equation (5).

POneChipBank =
(
n
1

)
P 1
Fail−OneBank × (1− PFail−OneBank)

n−1

(5)
The probability of system failure when one single-bank fault

occurs, simultaneous with one or more faults contained within
a single bank on another chip (PFail−NonMulti), is represented
by (6). Note that since there are 8 banks in the chip, we divide
by 8 to account for the fact that only bank-aligned faults across
chips cause uncorrectable errors, and there are 8 banks per
chip.

PSysFail(2) = (1/8)× POneChipBank×[
1−

(
n−1
0

)
P 0
Fail−NonMulti × (1− PFail−NonMulti)

n−1
]
(6)

We have now accounted for those non-multibank faults which
align with the first bank fault with probability 1/8. We must
now add the probability of a bank fault intersecting with one
or more multi-bank or rank faults which always intersect with
the bank fault’s codewords (Equation (7)).

PSysFail(3) = POneChipBank×[
1−

(
n−1
0

)
P 0
Fail−Multi × (1− PFail−Multi)

n−1
] (7)

The probability that the system fails for (PSysFail−Chipkill)
due to the fault combinations from equations (4), (6) and (7)
can be represented by (8).

PSysFail−Chipkill u PSysFail(1) + PSysFail(2) + PSysFail(3) (8)

We use the values from Table 3 [1] to obtain the various
chip failure probabilities.

6.2 Validation
We compare error correction capability of ECC-DIMM
(BCH1) and ChipKill DIMM (SSCDSD) over a 7 year life-
time. For both types of ECC we use the same 18-chip 1-rank
system for consistency (bus width of 4 bits per chip). The

TABLE 3: DRAM Failure Rates in failures per billion device
hours (FIT) [1]

Fault Rate (FIT)
DRAM Chip Failure Mode Transient Permanent

Single bit 14.2 18.6
Single word 1.4 0.3

Single column 1.4 5.6
Single row 0.2 8.2
Single bank 0.8 10
Multi-bank 0.3 1.4
Multi-rank 0.9 2.8

experiment is performed on AMD Opteron 8431 operating at
2.4 GHz. FaultSim ran ‘ChipKill with Scrubbing’ at 2.3 seven-
year simulations per second and ‘BCH1 with scrubbing’ 2.6
seven-year simulations per second. The accelerated speed of
Monte Carlo simulation is attributed to the data structures and
organization of FaultSim. To maintain accuracy, we ran these
simulations with a 3 hour time step and a total of 80,000
simulations for BCH1 and 240,000 for ChipKill.
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Figures 5 and 6 show that BCH-1 codes are more sus-
pectible to failures versus Chipkill as they cannot tolerate
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large granularity chip failures. The simulated results show
PSysFail−BCH1 and PSysFail−ChipKill over the 7 year period.
After 7 years (without scrubbing) simulated probabilities are
0.035975 and 0.0005583 respectively. The analytical model
for BCH-1 and ChipKill has a difference of only 0.41% and
1.13% versus the simulation results.

7 CONCLUSIONS AND FUTURE WORK
In this paper, we presented a simulator and fast algorithms
for memory-resilience analysis. As emerging memories come
to market and knowledge of failures is gained through field
studies, the need for rapid evaluation of evolving failure
rates and resilience schemes grows significantly. We hope
to continue development of this tool via parallelization and
implementation of recently published fault models [2].
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