Highlights of the High-Bandwidth Memory (HBM) Standard

Mike O'Connor

Sr. Research Scientist

What is High-Bandwidth Memory (HBM)?

- Memory standard designed for needs of future GPU and HPC systems:
 - Exploit very large number of signals available with diestacking technologies for very high memory bandwidth
 - Reduce I/O energy costs
 - Enable higher fraction of peak bandwidth to be exploited by sophisticated memory controllers
 - **Enable ECC/Resilience Features**

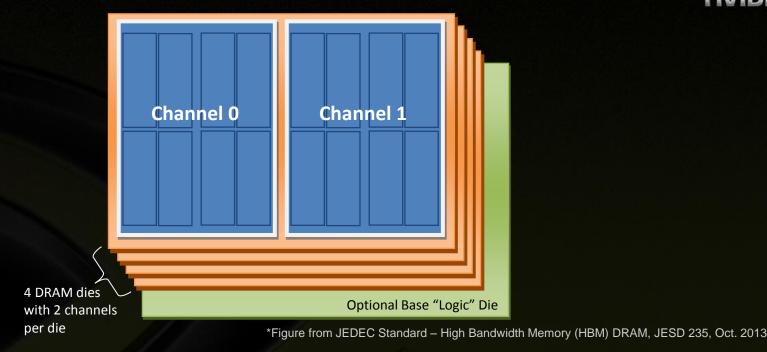
JEDEC standard JESD235, adopted Oct 2013. Initial work on standard started in 2010

What is High-Bandwidth Memory (HBM)?

Enables systems with extremely high bandwidth requirements like future high-performance GPUs

HBM Overview

Standard defines an HBM stack


- Bonding footprint
- Interface Signaling
- Commands & Protocol
- Some optional features:
 - ECC support
 - Base-layer logic/redistribution/IO die

Standard does not define

- Internal architecture of the stack
- Precise DRAM timing parameters

HBM Overview

- Each HBM stack provides 8 independent memory channels
 - These are completely independent memory interfaces
 - Independent clocks & timing
 - Independent commands
 - Independent memory arrays
 - In short, nothing one channel does affects another channel

HBM Overview - Bandwidth

Each channel provides a 128-bit data interface

- Data rate of 1 to 2 Gbps per signal (500-1000 MHz DDR)
- 16-32 GB/sec of bandwidth per channel
- 8 Channels per stack
 - 128-256 GB/sec of bandwidth per stack
- For comparison:
 - Highest-end GPU today (NVIDIA GeForce GTX TITAN Black) 384b wide GDDR5 (12 x32 devices) @ 7 Gbps = 336 GB/s
 - Future possible GPU with 4 stacks of HBM Four stacks of HBM @ 1-2 Gbps = 512 GB/s - 1 TB/s

HBM Overview - Bandwidth Each channel provides/\128-bit interface of 1 to 2 Gb Data r DDR) 1000 16-32 G At lower overall DRAM system power. ~6-7 pJ/bit vs. ~18-22 pJ/bit for GDDR5 Black) 2010 7 Gbps = 336 GB/s evice Sible GPU with 4 stacks of HBM Future Four stacks of HBM @ 1-2 Gbps = 512 GB/s - 1 TB/s

HBM Overview - Capacity

Per-channel capacities supported from 1-32 Gbit

- Stack capacity of 1 to 32GBytes
- Near-term, at lower-end of range e.g. 4 high stack of 4Gb dies = 2GBytes/stack

8 or 16 banks per channel

16 banks when > 4Gbit per channel (> 4GBytes/stack)

Not including optional additional ECC bits A stack providing ECC storage may have 12.5% more bits

HBM Channel Overview

Each channel is similar to a standard DDR interface

Data interface is bi-directional

- Still requires delay to "turn the bus around" between RD and WR
 - Burst-length of 2 (32B per access)

Requires traditional command sequences
Activates required to open rows before read/write
Precharges required before another activate
Traditional dram timings still exist (tRC, tRRD, tRP, tFAW, etc.) – but are entirely per-channel

HBM Channel Summary

Function	# of µBumps	Notes
Data	128	DDR, bi-directional
Column Command/Addr.	8	DDR
Row Command/Addr.	6	DDR
Data Bus Inversion	16	1 for every 8 Data bits, bi-directional
Data Mask/Check Bits	16	1 for every 8 Data bits, bi-directional
Strobes	16	Differential RD & WR strobes for every 32 Data bits
Clock	2	Differential Clock
Clock Enable	1	Enable low-power mode
Total	193	

New: Split Command Interfaces

2 semi-independent command interfaces per channel

- "Column Commands" Read / Write
- "Row Commands" ACT / PRE / etc.

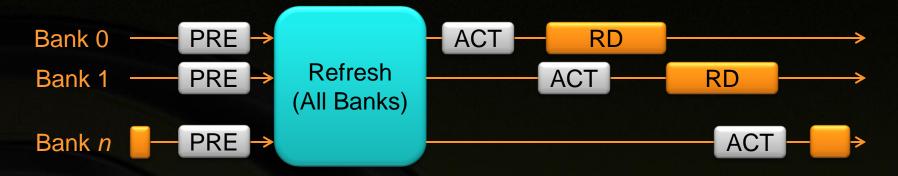
Key reasons to provide separate row command i/f:

- 100% col. cmd bandwidth to saturate the data bus w/ BL=2
- Simplifies memory controller
- Better performance (issue ACT earlier or not delay RD/WR)

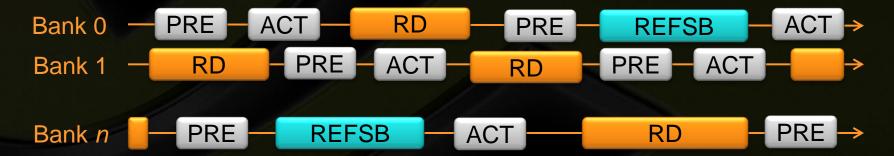
Still need to enforce usual ACT \rightarrow RD/WR \rightarrow PRE timings

New: Single-Bank Refresh

Current DRAMs require refresh operations


- Refresh commands require all banks to be closed
- ~ 1 refresh command every few µsec
- Can consume 5-10% of potential bandwidth
- Increasing overheads with larger devices

Sophisticated DRAM controllers work hard to overlap ACT/PRE in one bank with traffic to other banks


- Can manage the refresh similarly
- Added "Refresh Single Bank" command
 - Like an ACT, but w/ internal per-bank row counter
 - Can be issued to any banks in any order
 - Memory controller responsible for ensuring all banks get enough refreshes each refresh period

New: Single-Bank Refresh

Traditional Precharge-All and Refresh-All

Arbitrary Single-Bank Refresh

New: RAS Support

HBM standard supports ECC

Optional: Not all stacks required to support it

ECC and non-ECC stacks use same interface

- Key insight: Per-byte data mask signals and ECC not simultaneously useful
- Data Mask Signals can carry ECC data
 makes them bi-directional on HBM stacks that support ECC

Parity check of all cmd/addr busses also supported

Other HBM Features

HBM supports Temperature Compensated Self Refresh

 Temperature dependent refresh rates with several temperature ranges (e.g. cool/standby, normal, extended, emergency)

Temperature sensor can be read by memory controller to adjust its refresh rates as well

Data Bus Inversion coding to reduce number of simultaneously switching signals

- No more than 4 of 9 (DQ[0..7], DBI) signals switch
- DBI computation maintained across consecutive commands

Thank You

QUESTIONS?

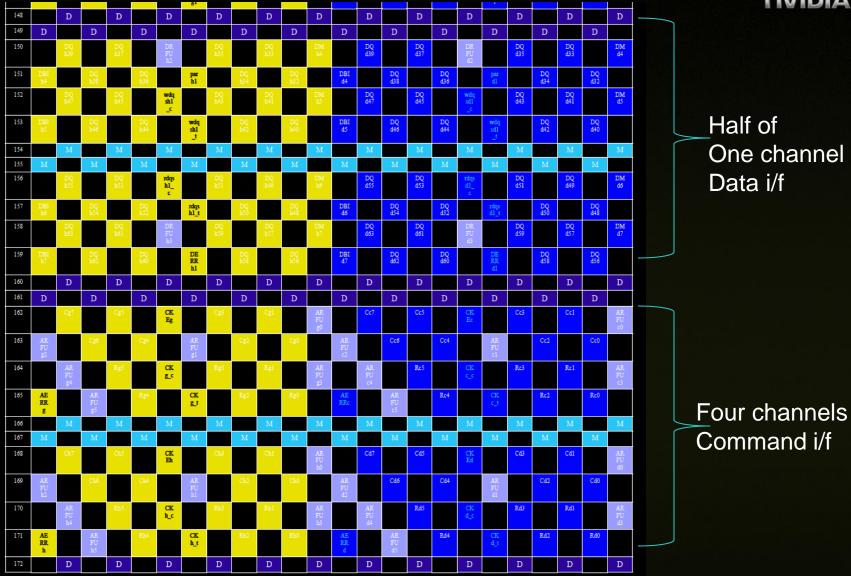
moconnor@nvidia.com

BACKUP

The Memory Forum – June 14, 2014

Footprint

The Memory Forum - June 14, 2014


HBM Footprint

		DWORD0_Channele	DWORD0_Channela
TEST PORT {DIRECT ACCESS}	Power Supply Region - Channels [f:e, b:a]	DWORD0_Channelf	DWORD0_Channelb
		DWORD1_Channele	DWORD1_Channela
		DWORD1_Channelf	DWORD1_Channelb
		AWORD_Channele	AWORD_Channela
		AWORD_Channelf	AWORD_Channelb
		DWORD2_Channele	DWORD2_Channela
		DWORD2_Channelf	DWORD_Channelb
		DWORD3_Channele	DWORD3_Channela
		WDORD3_Channelf	DWORD3_Channelb
	Depopulated Micropillar "NO BUMP" Area	MIDS	TACK
	for optional probing	1111105	mon
		DWORD0_Channelg	DWORD0_Channelc
		DWORD0_Channelg DWORD0_Channelh	DWORD0_Channelc DWORD0_Channeld
		DWORD0_Channelh	DWORD0_Channeld
TEST PORT (DIRECT ACCESS)	Power Supply Region - Channels	DWORD0_Channelh	DWORD0_Channeld DWORD1_Channelc
	Power Supply Region - Channels [h:g. d:c]	DWORD0_Channelh DWORD1_Channelg DWORD1_Channelh AWORD_Channelg	DWORD0_Channeld DWORD1_Channelc DWORD1_Channeld AWORD_Channelc
{DIRECT		DWORD0_Channelh DWORD1_Channelg DWORD1_Channelh AWORD_Channelh	DWORD0_Channeld DWORD1_Channeld DWORD1_Channeld AWORD_Channeld AWORD_Channeld
{DIRECT		DWORD0_Channelh DWORD1_Channelg DWORD1_Channelh AWORD_Channelg AWORD_Channelh DWORD2_Channelg	DWORD0_Channeld DWORD1_Channelc DWORD1_Channeld AWORD_Channeld AWORD_Channeld DWORD2_Channelc

*Figure from JEDEC Standard – High Bandwidth Memory (HBM) DRAM, JESD 235, Oct. 2013

HBM Footprint

*Figure from JEDEC Standard – High Bandwidth Memory (HBM) DRAM, JESD 235, Oct. 2013

Commands

The Memory Forum – June 14, 2014

Column Commands

Command	Clock	C[0:7]
Column NOP	Rising	CNOP / XXXXX
	Falling	XXXXXXX / Parity
Read	Rising	RD / Autoprecharge / Bank
	Falling	Column Address / Parity
Write	Rising	RD / Autoprecharge / Bank
	Falling	Column Address / Parity
Mode Register Set	Rising	MRS / Mode Reg
	Falling	Opcode

Row Commands

Command	Clock	R[0:5]
Row NOP	Rising	RNOP / XXX
	Falling	XXXXX / Parity
Activate	Rising	ACT / Bank
	Falling	Row Address[15:11] / Parity
	Rising	Row Address[10:5]
	Falling	Row Address[4:0] / Parity
Precharge	Rising	PRE / Bank
	Falling	XXXXX / Parity
Precharge All Banks	Rising	PREA / XXX
	Falling	XXXXX / Parity
Refresh (single bank)	Rising	REFSB / Bank
	Falling	XXXXX / Parity
Refresh (all banks)	Rising	REF / XXX
	Falling	XXXXX / Parity

RAS BACKUP

The Memory Forum – June 14, 2014

HBM RAS Challenges

Stacked Memory has some challenges with respect to RAS requirements

- Traditional DRAM DIMMs get only a subset of bits (e.g. 4) from each burst from a single DRAM device
 - HBM gives you all the bits of a burst from a single row of a single bank of a single DRAM device
 - Good for power, but RAS-wise all our eggs are in one basket Including the ECC bits
 - Need techniques to detect failures (e.g. row decode fault)
 - Need techniques to recover from failures (e.g. RAID-like schemes)