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Abstract—DRAM memory stores its contents in leaky cells that require periodic refresh to prevent data loss. The refresh operation
does not only degrade system performance, but also consumes significant amounts of energy in mobile systems. Relaxed DRAM
refresh has been proposed as one possible building block of approximate computing. Multiple authors have suggested techniques
where programmers can specify which data is critical and can not tolerate any bit errors and which data can be stored approximately.
However, in these approaches all bits in the approximate area are treated as equally important. We show that this produces suboptimal
results and higher energy savings or better quality can be achieved, if a more fine-grained approach is used. Our proposal is able to
save more refresh power and enables a more effective storage of non-critical data by utilizing a non-uniform refresh of multiple DRAM
chips and a permutation of the bits to the DRAM chips. In our proposal bits of high importance are stored in a high quality storage bits
and bits of low importance are stored in low quality storage bits. The proposed technique works with commodity DRAMs.

Index Terms—DRAM, Refresh, Approximate Computing
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1 INTRODUCTION

R EFRESH is projected to consume almost 50% of total
DRAM power only a few generations ahead [1]. For

mobile devices DRAM refresh is already a big concern. At
the same time the DRAM capacity of modern smart phones
and tablets lags just slightly behind regular PCs. Complex
multimedia application are now used on phones and often use
large parts of their DRAM usage to store uncompressed audio
or picture data. DRAM refresh must be performed even if the
CPU is in sleep mode. This makes reducing refresh energy
important for battery life. Short refresh periods such as 64 ms
are required for error-free storage. Most bit cells can hold their
data for many seconds, but to ensure error-free storage all cells
are refreshed at a rate sufficient for even the most leaky cells.
But not all data requires an error-free storage, some types of
data can accept an approximate storage that introduces some
errors. This provides an opportunity to reduce the refresh rate.
Uncompressed media data is a good candidate for approximate
storage. However not all media data suitable for approximate
storage is equally tolerant to the errors caused by the storage.
In this paper we propose a lightweight modification to DRAM-
based memory systems that provides the user with an ap-
proximate storage area in which accuracy can be traded for
reduced power consumption. We show how data and refresh
operations can be distributed over this storage area to reach
better quality levels than previously proposed techniques with
the same energy or the same quality with less energy. Our
technique allows an analog-like scaling of energy and quality
without requiring any change to the DRAM architecture. This
technique could be a key part of an approximate computing
system because it enlarges the region of operation where useful
quality levels can be achieved.

2 APPROXIMATIVE STORAGE

Reducing the energy consumption is a topic of ever increasing
importance. By relaxing the normal correctness constraints,
approximate computing opens many possibilities for energy
reduction. Many applications can tolerate small errors and
still provide a great user experience [2].

• All authors are with the Embedded Systems Architecture Department of
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This does not only apply to correctness of calculations but
also applies to the storage of data values. Often a bit-exact
storage is not required and small deviations do not hurt.
The amount of variation applications can tolerate depends
on the application [2]. We therefore argue that a practical
approximative storage system should be able to provide
different quality levels. This allows programmers or tools to
find a good trade-off between power consumption and quality.
Even within a single application, many different storage areas
with vastly different quality requirements can exist. Previous
work often used binary classifications such as critical and non-
critical data [2][3]. This binary classification, however, limits
the usefulness of approximative storage. With only a single
quality level for approximate storage, applications cannot
choose the best accuracy and power consumption trade-off
for each storage area, but are forced to pick a configuration
that still provides acceptable quality for the data that is most
sensitive to errors.

3 RELATED WORK

Among others, Jamie Liu et al. [1] recognized that most
DRAM rows do not contain high leakage cells and thus can
tolerate lower refresh rates. Most cells retain their data for
a much longer time than the short regular refresh period,
that is required for error-free storage [4]. They proposed a
mechanism named RAIDR to refresh these rows at a lower
rate. Because different refresh periods cannot be achieved
with the conventional DRAM internal refresh counters, they
add a refresh counter to the memory controller. This refresh
counter runs at the rate necessary to achieve bit-error free
operation, including rows that contain cells with high leakage.
The memory controller then generates activate and precharge
commands to manually refresh the rows. Manual refresh
cycles are skipped if the memory controller determines that
they are not necessary. The manual refresh by the memory
controller needs slightly more power per refresh operation
than the normal auto refresh as the row addresses need to be
transmitted to memory. But the authors show that the power
saved by the reduced refresh frequency outweighs the power
consumed by the more complex refresh signaling. The idea of
a memory controller managed refresh and memory controller
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Fig. 1: Mapping of bits to 4 DRAM chips for approximate byte storage

internal row counter is also used in this paper. In RAIDR, the
memory controller uses bloom filters to classify row addresses
into different refresh bins. Depending on a row’s refresh bin,
the memory controller issues an actual refresh command only
every fourth, second or every time the refresh counter reaches
it. This results in rows getting refreshed at 256, 128 or 64 ms
periods depending on their refresh binning. Our proposal
extends RAIDR by introducing additional refresh bins for
approximate data.

Song Liu et al. propose Flikker [3], a memory area with
reduced refresh periods for non-critical data. They propose a
modified DRAM to enable longer refresh periods on a part of
the DRAM. The authors of RAIDR recognized that their work
can be combined with the Flikker proposal of Liu et al. Our
approach can been seen as an extension of Flikker. It provides
an additional reduction of refresh activity for non-critical data.
Different from the storage area proposed by Liu et al. this
storage area uses varying refresh periods for different bits
based on their importance.

Ware and Hampel proposed threaded memory modules [5].
In a threaded memory module, a DRAM rank is split
into multiple subranks. The subranks have separated chip
select(CS) lines but otherwise share the address and control
signals. The CS line controls whether the DRAM chip reacts to
transmitted commands or ignores them. By providing multiple
CS lines instead of a single CS signal per rank, commands can
be issued to a subset of the DRAM rank. Ware and Hampel
list various advantages, such as finer granularity transactions,
higher performance and lower power consumption. Our
proposal also relies on subranks, but uses them to provide
bits with different energy/error rate trade-offs simultaneously.

Sampson et al. worked on approximate storage in multi
level cells in Flash or PCM [6]. They recognized that storage
bits from one cell have different reliabilities and errors can
be minimized with their so called striping code. This striping
code is very similar to the permutation proposed in this paper.

4 SPARKK

In this section, the first key ideas behind the Sparkk storage
are described. Then, it is explained how the DRAM controller
manages the refresh of these storage areas.

4.1 Sparkk Storage
Our proposed extension to Flikker and RAIDR is based on two
key observations:

1. Even within a single storage area, not all bits are equally
critical.
2. Most memory systems require multiple DRAM chips (or
multiple dies in a single package) to reach the required band-
width and capacity.
Applications mostly use and store multi-bit symbols such
as bytes. A bit error in the most significant bit of a byte
changes the value of the byte by 128, while a bit error of
the least significant bit will only change the value by one.
Many applications can tolerate errors that change the least
significant bit, but will provide an unacceptable quality if the
most significant bit fails often.
Regular DDR3 chips have 4, 8 or 16 bit wide interfaces, but
most CPUs use wider interfaces. Building a 64-bit wide DRAM
interface with regular DDR3 requires at least four 16-bit wide
chips or eight 8-bit wide chips. Chip select signals are normally
used to control multiple ranks that share the same data lines.
The chip select signals for all DRAM chips of a single rank
are usually connected together. Only the whole rank can be
enabled or disabled. Thus a command is always executed
on the whole rank. We propose that the memory controller
provides separate CS signals for every chip of the DRAM.
This way commands can be issued to a subset of the DRAM
chips of a rank. While many additional uses are possible [5],
Sparkk uses this to gain more fine grained control over the
refresh. With this modification to the traditional interface,
different DRAM chips of a rank do not need to share the same
refresh profile, as refresh commands can be issued selectively
to DRAM chips. Using manual refresh does not work together
with self-refresh, as during self-refresh mode the interface to
the memory controller is disabled and self-refresh is performed
autonomously by the DRAM chip. Requiring one CS line per
subrank can also be problematic in systems with many sub-
ranks. These problems can be solved by making changes to the
DRAM refresh signaling. This, however, requires modifications
to the DRAM chips. The exact details of such a scheme remain
future work.

Different refresh periods for the same row of different DRAM
chips of one rank can make multiple storage bits with different
quality levels available simultaneously. But without additional
modifications to the usual memory system this does not solve
the problem: Some high quality storage bits would used to
store low-importance bits and vice versa. It is therefore neces-
sary to permute the data bits so that high-importance bits are
stored in high-quality storage bits and low quality storage bits
are only used for bits of low importance.
Figure 1 shows how four bytes can be mapped to a 32-bit
wide memory interface built from four DRAM chips. The
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red dashed lines show a commonly used mapping between
application bits and DRAM bits. The green lines show the
proposed mapping: The two highest significance bits from all
four bytes transmitted per transfer are mapped into DRAM
chip 3. The two smallest significance bits are all mapped into
DRAM chip 0. Bit errors in DRAM chip 3 now have a much
higher impact on the stored values. They will change the stored
values by 64, 128 or 192, while bit errors in DRAM chip 0
will only cause small errors in range of 1-3. Data types with
more than 8 bits per value have even larger differences in
significance between the bits. To find a good trade-off between
the number of refresh operations and quality, more refresh
cycles need to be allocated for the refresh of DRAM chip 3
than for DRAM chip 0.
Which bits are important varies between data types; here, an
examples is shown for bytes. We propose to add a permutation
stage to the memory controller that provides a small number
of permutations selected for the most common data types. The
used permutation could be controlled by the type of instruction
used for access, additional page table flags or a small number
of high address bits of the physical address. Permutations
are not limited to blocks equal to the width of the memory
interface: It is also possible to permute the bits within one burst
or one cache line. With a 32-bit wide DDR3 interface one burst
is 256-bit long, so it may be used to map four 64-bit values to
DRAM chips in a way that minimizes errors.

4.2 Controlling the refresh
Aside from the permutation, an effective way for the memory
controller to decide whether a row needs to be refreshed is
also required. Unfortunately, the solution used by RAIDR
cannot be adapted for this task. In RAIDR, the memory
controller uses bloom filters to decide which rows need to be
refreshed more often. These bloom filters are initialized with
the set of rows that contain high leakage cells. A bloom filter
can produce false positives, but refreshing some rows more
often than needed does not hurt but only causes additional
power usage. For schemes such as Sparkk or Flikker, a bloom
filter cannot be used: Areas falsely binned as approximate
would cause data corruption in critical memory locations and
a bloom filter containing all non-approximate rows would use
large amounts of memory.
A different solution is required. The authors of Flikker
proposed a single boundary in memory space between critical
and non-critical data. While this solution is simple, it does
not offer enough flexibility as it does not allow for multiple
approximate storage areas with different quality levels at the
same time. It should be possible to run multiple applications
each using multiple approximative storage areas at different
quality levels. A practical approximate storage system should
thus offer the ability to configure multiple memory areas
with different quality levels. This way, a trade-off between
power and accuracy can be chosen for each area. Using our
proposal, it is also possible to turn off refresh completely
for unused bits, e.g. if 16-bit data types are used to store
12-bit data. It is also possible to built approximate storage
that guarantees that errors directly caused by the memory
stay within configured bounds: More significant bits can
be configured to be refreshed at the rate required for error
free operation. Only less significant bits are then stored
approximately.

Fortunately, we can exploit the characteristics of the refresh
counter to build a flexible mechanism that enables the
handling of hundreds or thousands of memory areas with
different refresh characteristics with a very simple hardware
unit and low storage requirements. Every time the refresh
counter switches to the next row, the memory controller
must decide if a refresh operation should be triggered in the
memory and, if so, on which subranks. The refresh counter
in the memory controller counts through the rows in a
monotonic and gap-less fashion. A mechanism that provides
retrieval of the refresh characteristics of arbitrary addresses
is therefore not required. At every point in time, it is only
necessary to have access to the refresh properties of the
current block and information about the end of current block.
We propose to store the refresh properties in an ordered list.
Each entry contains the address of the end of the current area
and informations about the refresh properties of this block.
When the refresh counter address and the end of the block
address match, we advance to the next entry in the table.
Figure 2 shows the proposed hardware unit. The unit uses
a small single ported memory to store the list of memory
areas. The exact storage requirements depend on the number
of DRAM chips per rank, the maximum number of DRAM
rows and the maximum refresh period at which a DRAM chip
still provides at least some working storage bits. Normally
less than 100 bits are required per memory area. Because of
the list structure each storage area can be composed from any
number of consecutive rows. For each area, the refresh period
of each DRAM chip can be freely configured to any multiple
of the base refresh rate.

The refresh settings table stores phase and period
information for each DRAM chip. Every time a new area
is accessed, the controller determines which memory chips
should be refreshed within this area: The phase counters
for each memory chip are decremented and a counter reads
zero, the chip is refreshed and the phase is reset to the value
of the period information. A special period value can be
used to indicate to omit refresh completely, this be can be
another useful feature for some applications: Reading or
writing data from a row also causes a refresh of the data.
A GPU that renders a new image into a framebuffer every
16.6 ms does not need to refresh the framebuffer. The access
pattern guarantees refresh, even without explicit refresh cycles.

refresh addr next block

=

table entry

next

1
0

+1

phase period

Fig. 2: Refresh settings table
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Fig. 4: Effect of variable refresh on failure probability for
individual bits for Sparkk with 4 DRAM chips

Different software interfaces to such a storage system are
possible: It can be part of a system that is designed from top
to bottom for approximate computing and uses specialized
languages, specialized instruction sets and specialized
hardware such as proposed by Esmaeilzade et al. [7]. In
such a system specialized load and stored instructions could
select different permutations for each access based on the
data type. A compiler aware of these permutation rules
could create data structures containing a mix of data types.
Even with such a specialized instruction set, refresh settings
can only be selected on a per-page granularity. Applications
that organize data in arrays of structures thus often need
to make problematic trade-offs if the structure members
have different accuracy requirements. If applications operate
on structures of arrays as it is popular with GPU or DSP
applications or data such as pictures or audio, the interface
to software can be much simpler: Regular languages such as
C, C++ or OpenCL can be used and approximate memory
areas may simply be allocated using a specialized malloc.
The application must provide informations about size, data
type and quality requirements to the specialized malloc. The
operating system then calculates refresh settings for meeting
the quality requirements, reserves memory and inserts the
appropriate entries into the refresh list. If not enough space
is available in the refresh list to allocate a new block with a
new refresh list entry, the operating system can always choose
to provide better than requested storage quality. Adjacent list
entries can be merged by choosing the maximum refresh rate
from each of the two merged blocks. One important limitation
of the memory management of approximate storage blocks
should be noted: Approximately stored memory blocks should
not be moved from one approximate location to another, as

this will cause an accumulation of errors. In two different
blocks, different bit cells will fail at a selected refresh rate
and bit errors already added to the data will not disappear
by moving these bits into new bit cells. In some cases, it
might be required to reserve error headroom to allow for data
movement. Another possibility to allow data reallocation is
to ask the application to restore data to an error-free state
by, for example, recalculating the data or reloading it from a
compressed file.

5 MODELING OF SPARKK

We model the expected number of non-functional DRAM
cells at a given refresh period using data for a 50nm DRAM
provided by Kim and Lee [4]. Our model assumes that
non-functional cells will statically stick to either zero or one
on readout. We model cells as equally likely to stick to zero
or one. Thus, even a non-functional cell will return a correct
result in half the cases.

Pbytechange(k) =

7∏
i=0

{
Pbitflip(i) if biti in k = 1

1− Pbitflip(i) if biti in k = 0
(1)

As shown in Equation 1, the peak signal to noise ratio(PSNR)
can be estimated by first calculating the probabilities of the
255 possible changes to a byte, based on the probabilities of
changes to the individual bits. Pbitflip(i) is the probability of
a bitflip in bit i. As already mentioned, this is estimated using
the data from Kim and Lee [4]. Pbytechange(k) is the probability
of the change of a byte by mask k, e.g. Pbytechange(129) is the
probability of a byte with a bitflip in bit 7 and bit 0 and all
other bits without storage errors.

MSE =

255∑
k=1

k2Pbytechange(k) (2)

These probabilities are then weighted by their square error
to calculate the mean square error (MSE) as presented in Equa-
tion 2. This is slightly simplified and assumes that additional
bit flips always increase the error. This is true, if a single bit
per byte flips, but not necessarily true if multiple bits in a
single byte flip., e.g.: If 128 should be stored and bit 7 flips,
the absolute error is 128, but if bit 5 flips as well, the error is
reduced to 96. On the other hand, if 0 should be stored and bit 7
flips the error is 128 and if bit 5 flips as well, the error increases
to 160. We found that this effect is negligible in practice. This
simplification makes it possible to pick good refresh settings
for a given quality without knowledge of the data statistics.

PSNR = 10 log10

(
2552

MSE

)
(3)

From the mean square error the PSNR can be calculated,
using the well known equation 3. To compare Sparkk with
Flikker, the harmonic means of the per chip/subrank refresh
rates are calculated. Refresh schemes with an identical har-
monic mean trigger the same number of refresh operations per
chip/subrank.

Before we can estimate the benefits from Sparkk, it is nec-
essary to find suitable refresh settings that maximize quality
at a given energy. With Sparkk, the rows of one approximate
storage area within every DRAM subrank can be refreshed at
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Fig. 5: Pictures stored in DRAM with 8 seconds average refresh

multiples of the base refresh rate of 64ms. Thus a suitable set of
multiples of the base refresh rate must be found. We used hill
climbing to find our refresh settings: Starting from the base
refresh period the refresh periods of single DRAM chips is
gradually increased until a solution is found that meets the
average refresh requirements. During this process the refresh
period of the DRAM subrank is increased by one base period
length that offers the best ratio of newly introduced error and
energy saved by the prolonged refresh.

To enable a visual evaluation of Sparkk, we simulated the
effect of the approximate storage on image data. Our model
was used estimate how many bits of each significance would
flip at a given average refresh period. Then, this number of
bits of each type was randomly selected and flipped. Kim and
Lee modeled in their simulations that retention times of the
bit cells are distributed randomly over all cells [4]. Rahmati et
al. verified this assumption experimentally and did not find
any specific patterns in the retention times of the measured
DRAM [8]. There might be patterns regarding which bits tend
to stick to zero or one if their retention time is not met. We
assume that there are no such patterns and that both stuck-
at cases have the same likelihood. In case real DRAM shows
patterns, an address based scrambler could be used to prevent
patterns caused by the internal DRAM array architecture.

6 EVALUATION

Figure 3 shows the expected PSNR as predicted by our stochas-
tic model for Sparkk and Flikker. This model predicts the
mean PSNR over an infinite set of samples. The PSNR in
single samples can be better or worse, depending on the exact
distribution of weak bitcells within the used DRAM rows and
stored data, but large derivations from the expected PSNR are
unlikely. At all tested refresh rates, Sparkk performs better than
Flikker. Even Sparkk with just two subranks provides benefits
over Flikker. Sparkk with 4 subranks provides almost all the
benefits of Sparkk with 8 subranks.
Figure 4 displays how Flikker and Sparkk distribute the errors
over the bits on memory interface with 4 subranks. In Flikker,
all bits have the same error rate. In Sparkk, the subrank storing
Bits 0-3 is refreshed at lower rate than in Flikker, the subrank
with bit 4 & 5 is refreshed at approximately the same rate as
in Flikker and the subrank with the two most important bits

is refreshed at a higher rate than in Flikker.
To test if the PSNR also provides a good estimate of subjective
quality, we generated pictures simulating the effects of Sparkk
and Flikker. These pictures can be seen in Figure 5. For Sparkk
a configuration with 8 subranks was used. The average refresh
rate in both cases was 8 seconds. The image saved in the
Flikker storage shows many easy-to-spot bit errors of the most
significant bit. The Sparkk storage shows only a few of those
errors and despite the extremely long refresh period, the image
still seems to have an acceptable subjective quality for some
applications such as texturing. The background of the Sparkk
stored picture looks grainy which is the result of the high
number of bit errors in the less important bits.
Sparkk is able to reduce the number of refresh operations
on the DRAM arrays at a given quality level. This reduces
the power required for the chip internal refresh operation.
However Sparkk requires a more complex refresh signaling
and the additional energy consumed by this could potentially
mitigate the energy advantage in some use cases. While we
proposed one refresh signaling scheme that can be used using
unmodified DRAMs, with modifications to the DRAM many
other schemes are possible and likely more efficient. It remains
an open research question how much energy could be saved
exactly.

7 CONCLUSION

We proposed Sparkk, an effective approximate storage using
commodity DRAMs. It achieves more than 10dB PSNR im-
provement over Flikker at the same average refresh rate or
reaches the same quality at less than half the refresh rate of
Flikker. We also proposed a simple, small and flexible hardware
unit to control how the memory controller refreshes multiple
configurable memory areas for approximate storage.
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