
Improving Fairness in Memory Scheduling Using a
Team of Learning Automata

Aditya Arvind Kajwe and Madhu Mutyam
Department of Computer Science and Engineering,

Indian Institute of Technology - Madras
Email: {adityaka, madhu}@cse.iitm.ac.in

Abstract—Conventional memory controllers deliver relatively
low fairness partly because they do not learn from their past
decisions. This paper proposes an intelligent memory scheduling
technique for multiple memory controllers. The technique is
decentralized and the controllers implicitly cooperate with each
other without any exchange of information among them. Our
learning technique on a 16-core simulated system gives 3.12%
improvement in harmonic speedup for PARSEC workloads and
1.88% for SPEC CPU2006 workloads over Thread Cluster
Memory Scheduling algorithm.

I. INTRODUCTION

The order in which DRAM accesses are scheduled can have
a dramatic impact on main memory performance, power con-
sumption and fairness. This paper targets the fairness metric. A
system is fair if all the threads experience an equal slowdown
compared to their performance had they been executed alone.

A prior study [1] has demonstrated the need for coordi-
nation between multiple memory controllers. Without coordi-
nation, each memory controller (MC) is oblivious of others
and makes locally greedy scheduling decisions which could
hamper fairness of the system. For example, consider a system
with two memory controllers and four threads. Without coor-
dination there could be a situation where both controllers are
prioritizing the same thread’s requests, which could degrade
the system fairness.

Key idea: We propose to design a system of multiple mem-
ory controllers as a team of finite action learning automata
(FALA), with each memory controller acting as a single FALA,
whose goal is to automatically learn optimal thread priorities
via interaction with rest of the computer system.

Such a technique directly takes as input a system parameter,
and learns what actions to take so as to maximize that
parameter. It also eliminates the need for explicit coordination
between the memory controllers.

To evaluate our technique, we use a cycle-accurate multi-
core simulator with multiple memory channels. We compare
the performance and hardware overhead of our scheduler
against a state-of-the-art algorithm, using both parallel appli-
cations and multiprogrammed workloads.

II. BACKGROUND

We provide a brief overview of the operation of a memory
controller in modern DRAM systems and provide background
information on team of FALA.

A. Memory Scheduling

DRAM has a three-dimensional structure of bank, row and
column. The amount of time it takes to service a DRAM
request depends on the status of the row-buffer and there are
three possibilities:

• Row hit: The request is to the row that is currently
open in the row-buffer. The MC only needs to issue a
column access (CAS) command to the DRAM bank.

• Row closed : The row-buffer is empty. The MC needs
to first issue an activate command (ACT) to open the
required row, then a column access command.

• Row conflict: The request is to a row different from
the one currently in the row-buffer. The MC needs to
first close the row by issuing a precharge command
(PRE), then issue ACT and CAS commands.

It is clear that a row hit request has the least access latency.
Scheduling algorithms that focus solely on increasing the row-
buffer hits result in a degradation of system fairness because
they tend to unfairly prioritize threads with high row-buffer
locality over those with relatively low row-buffer locality. FR-
FCFS [2] is one of the earliest such scheduling algorithms.

Thread Cluster Memory Scheduling (TCMS) [3] is a state-
of-the-art technique that divides threads into two separate
clusters and employs different memory request scheduling
policies in each cluster. This is based on the applications’
memory intensity measured in last level cache misses per
thousand instructions. Threads in the latency-sensitive cluster
are always prioritized over threads in the bandwidth-sensitive
cluster. To ensure that no thread is disproportionately slowed
down, TCMS periodically shuffles the priority order among
threads in the bandwidth-sensitive cluster.

B. Overview of a Learning Automaton

A learning automaton (LA) is a simple model for dynamic
decision making in unknown environments. It tries different
actions, and chooses new actions based on the environment’s
response to previous actions.

Figure 1 shows a general block diagram of a LA operating
in a random environment.

FALA are a particular class of LA with finitely many
actions. Formally, a FALA can be described by the quadruple
(A,B, τ, p(k)) where

• A = {α1, α2, ..., αr} is the finite set of actions.



Fig. 1. Block diagram of a learning automaton

• B is the set of all possible reinforcements to the
automaton

• τ is the learning algorithm for updating action proba-
bilities

• p(k) is the action probability vector at instant k given
by

p(k) = [p1(k), p2(k)...pr(k)]
T (1)

Here pi(k) is the probability with which action αi is chosen
at instant k.

One of the popular FALA learning algorithms (τ ) is the
Linear Reward-Inaction (LR−I ) [4]. It updates action proba-
bilities using the equation:

p(k + 1) = p(k) + λβ(k)(ei − p(k)) (2)

Here ei is the unit vector with ith component unity where
the index i corresponds to the action selected in the current
instant. β(k)εB is a real number, and is the reinforcement from
the environment. λ is the learning parameter. Intuitively, we
increase the probability of the selected action, and decrease the
probability of others, depending on the magnitude of reward.

C. Games of FALA

In a multiautomata system, the automata can be viewed as
players involved in a game. It can then be called a team of
FALA. The update equation for a team of N FALA is just a
generalization of equation 2 :

pi(k+1) = pi(k)+λβ(k)
[
eαi(k) − pi(k)

]
, 1 ≤ i ≤ N (3)

Though this game model is completely decentralized, ef-
fectively the automata are cooperating with each other. For a
detailed mathematical treatment of the algorithm, the interested
reader is referred to [4]. Intuitively, the algorithm performs a
stochastic search over the space of rewards.

Fig. 2. Memory controller acting as a learning automaton

III. LA-BASED DRAM SCHEDULERS: STRUCTURE,
OPERATION AND IMPLEMENTATION

In this section we build upon the theoretical background
of the previous section to make a case for modelling multiple
memory controllers as a team of FALA.

A. Formulation

Figure 2 shows a single memory controller acting as a
learning automaton.

Actions (αi) : Executing an action αi is the same as
scheduling a DRAM request which belongs to thread i. In
a 16-core CMP, possible actions are 1 to 16.

Reward (β) : Harmonic speedup [5] is used as the rein-
forcement from the environment. It provides a good balance
between fairness and system performance.

Action probability vector (pi) : Each MC has 16 prob-
ability values, one for each thread in the system. Higher the
probability value for a thread, higher is its priority.

B. Algorithm (τ )

At each instant, all MCs choose actions based on their
respective action probability vectors. When the system is
booted up, each action has an equal probability of getting
selected. Reinforcement from the system is obtained. Knowing
the actions selected and reinforcement, each MC updates the
action probabilities using equation 3. This cycle of selecting
an action, eliciting reinforcement and updating probabilities
repeats.

In case there are multiple memory requests which belong
to the selected thread, a request which hits the row-buffer is
executed. If there are multiple row-hit requests, then the oldest
request is executed.

Algorithm 1 Request prioritization in each memory controller
1: Sampled action first: Select a request according to the

action probability vector.
2: Row hit first: Select a request which hits the row-buffer.
3: Oldest first: Select the oldest request.

The LR−I algorithm requires a stationary environment i.e.
the distribution of rewards should be constant. Though this



isn’t the case for our benchmarks running on a computer
system, the benchmarks run in phases which are long enough
for the algorithm to achieve some learning.

C. Implementation

Our technique relies on harmonic speedup to steer memory
scheduling. Calculating this parameter on-the-fly during pro-
gram execution is non-trivial because it requires the instanta-
neous value of IPCalone . We use average value of IPCalone,
obtained by running a benchmark alone on the same baseline
system, to get a rough estimate of harmonic speedup.

The hardware cost of LA-based scheduler consists of two
portions: 1) SRAM arrays required to store probability values
2) logic required to choose an action based on probabilities,
update the probability values and to calculate the reinforcement
value. The total storage cost of our algorithm for the baseline
16-core system is 3.3 Kbits. TCMS requires a storage of 2.6
Kbits.

Note that updating the probability vector is not on the criti-
cal path of making scheduling decisions, and can be performed
in many tens of processor cycles without significantly affecting
the quality of scheduling decisions.

The effect of a scheduling decision on harmonic speedup
won’t be apparent until some time has elapsed, and by using
timestamps on memory requests, we determine this to be
approximately 90 CPU cycles. Since this time is somewhat
variable, it is difficult to isolate the effect of a single schedul-
ing action on harmonic speedup (Harmonic speedup is also
influenced by factors other than memory scheduling). As
an approximation, we consider the latency from making a
scheduling decision to determining the reward for that decision
to be 90 cycles.

IV. EXPERIMENTS

We evaluate the fairness of our LA-based scheduling al-
gorithm using gem5 [6] simulator. Eight multiprogrammed
workloads were formed from SPEC CPU2006 benchmarks
(see table I) and and were run for 500 million instructions.
Eight multithreaded PARSEC [7] benchmarks were run with
the simmedium input set. Number of threads of each PARSEC
benchmark is equal to the number of processor cores. All
the numbers are for PARSEC benchmarks unless otherwise
specified. Table II shows the configuration of our baseline
system.

Parameters: For LA-based algorithm, we set λ = 0.1. For
TCMS we set ClusterThresh to 1/4, ShuffleInterval to 800, and
ShuffleAlgoThresh to 0.1.

Figure 3 shows percentage improvement in harmonic
speedup of our algorithm over TCMS. Higher improvement is
seen for programs like canneal, facesim and ferret which have
high bandwidth requirements and also large working sets. The
average improvement in fairness is 3.12 %.

Figure 4 shows percentage improvement in harmonic
speedup of our algorithm over TCMS, for SPEC CPU2006
benchmarks. Higher improvement is seen for workload mixes
having a higher percentage of memory-intensive benchmarks.

TABLE I. EIGHT SPEC CPU2006 WORKLOADS (FIGURE IN
PARENTHESES IS THE NUMBER OF INSTANCES SPAWNED)

Workload Memory-non-intensive
benchmarks

Memory-intensive
benchmarks

Mix 1 calculix(3), dealII, gcc(2),
gromacs(2)

xalancbmk, omnetpp(2), astar,
hmmer(2), lbm(2)

Mix 2 gobmk, namd, dealII GemsFDTD(3), h264ref(3),
hmmer(2), libquantum(2),
sphinx3(3)

Mix 3 calculix(2), gromacs(3),
namd(3), povray10(3)

omnetpp(2), bzip, soplex(2)

Mix 4 gcc(3), gromacs, povray(2),
sjeng(2), tonto

h264ref, astar,
GemsFDTD(3), bzip(2)

Mix 5 sjeng(3), namd(3), gcc(4),
gromacs(3)

astar, hmmer, bzip

Mix 6 gromacs(3), namd(2), gcc(2),
sjeng, calculix(3)

bzip, astar, hmmer, libquan-
tum(2)

Mix 7 povray(2), calculix, sjeng xalancbmk(4), omnetpp(2),
astar(2), hmmer(4)

Mix 8 gobmk, sjeng h264ref(4), libquantum(3), as-
tar(3), omnetpp(4)

TABLE II. BASELINE CMP AND MEMORY SYSTEM CONFIGURATION

L1 caches 32 KB per core, 4-way set associative

L2 caches 256 KB per core, 8-way set associative

Cache block size 64B

CPU cores 16 cores, 2Ghz

DRAM controllers 4

DRAM chip parameters Micron DDR3-1066

Ranks per channel 2

Address mapping row:rank:bank:channel:column

DRAM queue sizes 128-entry read, 64-entry write buffer

Row-buffer size 2KB

Page policy Open page

The average improvement in fairness is 1.88 %. The im-
provement is higher for PARSEC benchmarks as TCMS was
designed to target thread heterogeneity, and does not show
much improvement when applied to parallel workloads.

Figure 5 shows that our algorithm is also scalable as it
maintains its performance improvement over TCMS when the
number of cores and memory controllers are increased.

V. RELATED WORK

With the shift to many-core era, attention has shifted
from schedulers that do not distinguish between different

Fig. 3. Harmonic speedup for PARSEC benchmarks



Fig. 4. Harmonic speedup for SPEC CPU2006 benchmarks

Fig. 5. Scalability of harmonic speedup

threads, to thread-aware memory schedulers. A number of
algorithms have been proposed in the latter category in the
recent years. Kim et al. [1] prioritize threads that have attained
the least service over others in each time quantum. Multu and
Moscibroda [8] propose a mechanism which processes DRAM
requests in batches, and uses the shortest-job-first principle
to prioritize requests within a batch. Stall-time fair memory
scheduler [9] uses heuristics to estimate the slowdown of each
thread and prioritizes the thread that has been slowed down the
most. Ebrahimi et al. [10] prioritize threads that are likely to
be on the critical path. Ghose et al. [11] prioritize load requests
based on ranking information supplied from the processor
side. Ipek et al. [12] propose a memory controller that uses
reinforcement learning to dynamically optimize its scheduling
policy. MORSE [13] algorithm extends this technique to target
arbitrary figures of merit. However, both these algorithms incur
a significant hardware overhead (MORSE requires 1024 Kbits
of storage on our baseline system).

VI. CONCLUSION

We explored a novel memory scheduling algorithm that
tries to learn optimal thread priorities via interaction with the
computer system. It provides a reasonable improvement in
fairness over the TCMS algorithm for parallel workloads. Our
black-box technique directly targets the fairness metric and the
improvement implies that it implicitly captures the parameters
of system that help in increasing system fairness.

ACKNOWLEDGEMENT

We would like to thank B.Ravindran for insightful discus-
sions and providing valuable feedback on this work.

REFERENCES

[1] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “Atlas: A scalable
and high-performance scheduling algorithm for multiple memory
controllers,” in HPCA, M. T. Jacob, C. R. Das, and P. Bose,
Eds. IEEE Computer Society, 2010, pp. 1–12. [Online]. Available:
http://dblp.uni-trier.de/db/conf/hpca/hpca2010.html

[2] S.Rixner, W.J.Dally, U.J.Kapasi, P.Mattson, and J.D.Owens, “Memory
access scheduling,” in 27th Int’l Symp. on Computer Architecture, 2000,
pp. 128–138.

[3] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread
cluster memory scheduling: Exploiting differences in memory access
behavior,” in Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO ’43.
Washington, DC, USA: IEEE Computer Society, 2010, pp. 65–76.
[Online]. Available: http://dx.doi.org/10.1109/MICRO.2010.51

[4] M. A. L. Thathachar and P. S. Sastry, Networks of Learning Automata.
Springer, 2004.

[5] K. Luo, J. Gummaraju, and M. Franklin, “Balancing throughput and
fairness in smt processors,” in Performance Analysis of Systems and
Software, 2001. ISPASS. 2001 IEEE International Symposium on, 2001,
pp. 164–171.

[6] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit.
News, vol. 39, no. 2, pp. 1–7, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2024716.2024718

[7] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The parsec
benchmark suite: Characterization and architectural implications,”
in Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’08. New
York, NY, USA: ACM, 2008, pp. 72–81. [Online]. Available:
http://doi.acm.org/10.1145/1454115.1454128

[8] O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling:
Enhancing both performance and fairness of shared DRAM systems,”
in Proceedings of the 35th Annual International Symposium on
Computer Architecture, ser. ISCA ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 63–74. [Online]. Available:
http://dx.doi.org/10.1109/ISCA.2008.7

[9] ——, “Stall-time fair memory access scheduling for chip
multiprocessors,” in Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 40.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 146–160.
[Online]. Available: http://dx.doi.org/10.1109/MICRO.2007.40

[10] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A.
Joao, O. Mutlu, and Y. N. Patt, “Parallel application memory
scheduling,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-44.
New York, NY, USA: ACM, 2011, pp. 362–373. [Online]. Available:
http://doi.acm.org/10.1145/2155620.2155663

[11] S. Ghose, H. Lee, and J. F. Martı́nez, “Improving memory scheduling
via processor-side load criticality information,” in Proceedings of the
40th Annual International Symposium on Computer Architecture, ser.
ISCA ’13. New York, NY, USA: ACM, 2013, pp. 84–95. [Online].
Available: http://doi.acm.org/10.1145/2485922.2485930

[12] E. Ipek, O. Mutlu, J. F. Martı́nez, and R. Caruana, “Self-
optimizing memory controllers: A reinforcement learning approach,”
in Proceedings of the 35th Annual International Symposium on
Computer Architecture, ser. ISCA ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 39–50. [Online]. Available:
http://dx.doi.org/10.1109/ISCA.2008.21

[13] J. Mukundan and J. Martinez, “Morse: Multi-objective reconfigurable
self-optimizing memory scheduler,” in High Performance Computer
Architecture (HPCA), 2012 IEEE 18th International Symposium on, Feb
2012, pp. 1–12.


