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Abstract—To gain higher density and lower leakage, STT-RAM has been considered an alternative to SRAM for implementing last-level
caches (LLCs). However, STT-RAM requires high write energy to program. Consequently, frequent write-backs from the upper-level
caches or cache fills from the main memory will result in high LLC power.
Both the broadcast and write-back traffic are affected by the cache coherence protocol. In this paper, we study the impact of coherence
protocols on the power consumption of the STT-RAM LLC, and the entire cache hierarchy (including the interconnection power). Based
on full-system simulation executing multi-threaded benchmarks, we show that although for some of the workloads, different protocols
produce very different broadcast or write-back traffic, for these workloads, the interconnection and the write-back power are only a
small fraction of the overall power consumption. Cache coherence protocol thus has very little impact on the power of the STT-RAM
LLC and the cache hierarchy.

Index Terms—Cache design, cache power analysis.
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1 INTRODUCTION

Traditional processors use SRAMs (static random access mem-
ories) for cache implementations. SRAM-based caches are fast
but dissipate high leakage, making them the major contributor
to the processor power consumption, especially when idle. For
instance, for a typical 32nm multi-core processor, an SRAM-
based last-level cache (LLC) contributes around 15% of the
processor peak power and 30% of the standby power [1].

To reduce the high SRAM-based LLC power consumption,
one solution is to implement LLCs with STT-RAM (spin-
transfer torque magnetic random access memory), an emerging
non-volatile memory technology. STT-RAM offers low leakage
and high density, with satisfying read performance and en-
durance. However, it requires long write time and high write
energy to program [2]. Frequent writes to an STT-RAM cache
would therefore result in high cache power.

There are two sources to LLC writes: (1) write-backs from
upper-level caches; and (2) cache fills from the main memory.
The number of write-backs is affected by both the replace-
ment policy and the cache coherence protocol. For example,
compared to the MESI coherence protocol, using the MOESI
protocol reduces the number of write-backs by as high as 24%.
The goal of this work is to study the impact of coherence
protocols on the power consumption of STT-RAM (read-write
asymmetric) LLC.

The main contributions of this paper are as follows:

• We evaluate the power consumption of an STT-RAM-
based shared LLC with respect to various cache coher-
ence implementations, including MSI, MESI, MOSI, and
MOESI. To the best of our knowledge, this paper is the
first work to explore the impact of coherence protocols
on STT-RAM LLC power. We also evaluate the power
consumption of the entire cache hierarchy, including the
SRAM-based L1 caches, the STT-RAM-based L2 cache
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(LLC), and the interconnections between each of the cache
elements.

• We show that cache coherence protocol has insignificant
impact on both the STT-RAM LLC power and the cache hi-
erarchy power. Based on full-system simulations executing
PARSEC multi-threaded benchmarks, although different
protocols result in different number of broadcasts or write-
backs for some workloads, the interconnection and write-
back power are not the deciding factors for the overall
power consumption.

The remainder of this paper is structured as follows: Sec-
tion 2 presents a qualitative comparison of different cache co-
herence protocols. Section 3 describes our experimental setup.
Section 4 shows the results and analysis. Section 5 concludes
this work.

2 CACHE COHERENCE PROTOCOLS

This section summarizes the differences between the MSI,
MESI, MOSI, and MOESI cache coherence protocols. MSI is the
basis of the three other protocols. When using MSI, a cache
line is in one of the three states: Modified, Shared, or Invalid.
The MESI protocol [3] adds an additional Exclusive state. The
benefit of adding the Exclusive state is to reduce the number of
broadcasts when writing to a line that is present in only one of
the caches. Because an Exclusive line exists in only one cache,
when writing to it, broadcasting an invalidation signal becomes
unnecessary. On the contrary, when writing to a Shared line,
broadcasting an invalidation signal is required because the
remote caches may contain the shared copy.

The MOSI protocol adds an additional Owned state to MSI,
which potentially reduces the number of write-backs. Owned
is similar to Shared, in which other caches can hold a shared
copy of the data. However, unlike the Shared state in MSI, an
Owned line can be dirty. When a Modified line is read by a
remote cache, the local copy will transition to Owned, and the
line filled in the remote cache will become Shared. Different
from the MSI protocol, write-back is not required on a remote
read hit.
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The MOESI protocol [4] adds both the Exclusive state and the
Owned state, with the benefit of both reducing the number of
broadcasts and the number of write-backs.

Table 1 compares the MSI, MESI, MOSI, and MOESI cache
coherence protocols.

TABLE 1: Comparison of cache coherence protocols.
Protocol Feature
MSI Low complexity
MESI Reduce #broadcasts; medium complexity
MOSI Reduce #write-backs; medium complexity
MOESI Reduce #broadcasts and #write-backs; high complexity

3 EXPERIMENTAL SETUP

3.1 Methodology
Our experiments are based on a full-system, multi-core sim-
ulator, MARSS [5]. Currently, MARSS supports a snoopy-
based coherence protocol, MESI; and a directory-based co-
herence implementation based on the MOESI protocol. We
extend the simulator with three other snoopy-based coherence
implementations: MSI, MOSI, and MOESI. Furthermore, we
modify MARSS such that it supports asymmetric cache read
and write latencies. This allows users to evaluate caches based
on asymmetric memory technologies, such as STT-RAM.

The baseline processor model is an 8-core, Atom processor,
with two-levels of caches. The L1 caches are private to each
core, implemented using SRAM. The last-level L2 cache is
shared between all cores, implemented using STT-RAM. More-
over, cache coherence is maintained via snoopy-based coher-
ence protocols (MSI, MESI, MOSI, and MOESI), and a pseudo-
LRU replacement policy [6] is utilized for all the caches. Table 2
summarizes the system configuration.

We use a modified version of CACTI [7] to obtain the
power and performance parameters for the caches [8]. To
estimate the bus energy and speed, we utilize the on-chip
bus model and parameters described in [9]. Both the cache
and the bus models are based on the 32nm technology node.
The leakage component of the STT-RAM cache comes from
the peripheral circuitry (e.g., decoders, multiplexers, sense-
amplifiers, precharge circuits, write drivers). They are based
on the PTM low power CMOS model [10]. The performance
and power/energy parameters are summarized in Table 3.

TABLE 2: Baseline system configuration. Note that the private
L1 caches are managed using the MSI, MESI, MOSI, or the
MOESI snoopy-based coherence protocols.

Processor 8-core Atom, 2GHz, 4-wide issue width
L1D (SRAM) Private 32KB per core, 8-way, 64B lines
L1I (SRAM) Private 32KB per core, 8-way, 64B lines
L2 (STT-RAM) Shared 16MB write-back cache, 16-way, 64B lines
Main memory 8GB

3.2 Workloads
We simulate multi-threaded benchmarks to evaluate various
cache coherence protocols. These benchmarks include blacksc-
holes, bodytrack, canneal, facesim, fluidanimate, freqmine, raytrace,
and swaptions, all from the PARSEC benchmark suite [11].
For each of the workloads, we simulate with three different
input sizes: simsmall, simmedium, and simlarge. In general, a
larger input size has a larger working set size, and is more
memory intensive. All of them executes on top of Ubuntu 9.04
(Linux 2.6.31), executing 2.4 billion instructions starting from
the region of interest.

TABLE 3: Performance and power/energy parameters used for
the experiments.

L1 Latency: 2 cycles
Read energy: 0.2 nJ/access
Write energy: 0.2 nJ/access
Leakage: 8 mW

L2 Read latency: 5 cycles
Write latency: 62 cycles
Read energy: 0.8 nJ/access
Write energy: 20 nJ/access
Leakage: 480 mW

Bus 0.16 nJ/broadcast

4 RESULTS AND ANALYSIS

In this section, we first show the differences in the number
of broadcasts and the number of write-backs when applying
different coherence protocols. Then, we demonstrate the STT-
RAM LLC power breakdown and the cache hierarchy (L1, L2,
and bus) power breakdown with respect to various protocols.
Finally, we show the sensitivity to number of cores.

4.1 Number of Broadcasts and Write-backs
Table 4 shows the normalized number of broadcasts and the
normalized number of write-backs, when using the MSI, MESI,
MOSI, and MOESI protocols. Across all the benchmarks and
input sizes, MESI and MOESI reduce the number of broadcasts
by 7% on average (up to 24%). On the other hand, when using
MOSI and MOESI, the number of write-backs is reduced by
5% on average (up to 23%). These numbers indicate that the
MOESI protocol has the best potential to reduce the bus energy
and the LLC write-back power.

4.2 STT-RAM LLC Power Breakdown
Figure 1 shows the STT-RAM LLC power breakdown when us-
ing the MSI coherence protocol. Applying MSI, MESI, MOSI,
or MOESI results in very similar LLC power consumption.
This is because of the following:

• Although MOSI and MOESI substantially reduce the num-
ber of write-backs for workloads such as blackscholes-
simsmall, bodytrack, and fluidanimate, the power consumed
by write-back operations for these workloads is relatively
low (see Figure 1). The biggest contributor of LLC power
is leakage instead. Recall that although STT-RAM cells are
non-volatile, the peripheral circuitry of an STT-RAM cache
dissipates leakage.

• Write-back power is shown to be the main source of LLC
power for canneal, facesim, swaptions (see Figure 1). How-
ever, for canneal and facesim, cache coherence protocols has
negligible impact on the number of write-backs, therefore
applying different cache coherence protocols has very little
effect on the total write-back power consumption. For
swaptions-simmedium, MOSI and MOESI reduce the LLC
power by around 4%. Among the workloads considered,
the 4% reduction is the biggest power saving we have
observed.

4.3 Cache Hierarchy Power Breakdown
Figure 2 illustrates the power breakdown of the entire cache
hierarchy, including the energy consumed by the interconnec-
tion. Our simulation results show that for canneal, fluidanimate,
freqmine, the MESI and MOESI protocols substantially reduce
the number of broadcasts (see Table 4). However, although



3

TABLE 4: Normalized number of broadcasts and write-backs. The MESI and MOESI protocols result in fewer broadcasts on
average; the MOSI and MOESI protocols result in fewer write-backs on average.

#Broadcasts #Write-backs
Benchmark Input MSI MESI MOSI MOESI MSI MESI MOSI MOESI

blackscholes
simsmall 1 0.96 0.99 0.95 1 0.98 0.77 0.77

simmedium 1 1 1 0.99 1 1 0.96 0.96
simlarge 1 1 1 0.99 1 1 0.98 0.98

bodytrack
simsmall 1 0.99 0.99 0.99 1 1 0.92 0.92

simmedium 1 0.99 1 0.99 1 1 0.90 0.90
simlarge 1 0.98 1 0.98 1 1 0.90 0.90

canneal
simsmall 1 0.81 1 0.81 1 1 0.99 0.99

simmedium 1 0.81 1 0.81 1 1 0.99 0.99
simlarge 1 0.82 1 0.82 1 1 1 1

facesim
simsmall 1 0.96 1 0.96 1 1 1 1

simmedium 1 0.97 1 0.97 1 1 1 1
simlarge 1 0.96 1 0.96 1 1 1 1

fluidanimate
simsmall 1 0.83 0.98 0.83 1 1 0.84 0.84

simmedium 1 0.87 0.98 0.87 1 1 0.89 0.89
simlarge 1 0.88 1 0.86 1 1 0.91 0.91

freqmine
simsmall 1 0.91 1 0.91 1 1 1 1

simmedium 1 0.88 1 0.88 1 1 1 1
simlarge 1 0.76 1 0.76 1 1 1 1

raytrace
simsmall 1 0.99 1 1 1 1 0.96 0.96

simmedium 1 0.98 1 0.97 1 1 0.95 0.94
simlarge 1 0.98 1 0.98 1 1 0.95 0.95

swaptions
simsmall 1 0.99 1 0.99 1 1 0.94 0.93

simmedium 1 0.94 1 0.94 1 0.99 0.90 0.91
simlarge 1 0.98 1 0.98 1 1 0.96 0.95

Average 1 0.93 1 0.93 1 1 0.95 0.95
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Fig. 1: STT-RAM LLC power breakdown when using the MSI cache coherence protocol. The total LLC power is normalized to
100%. Note that for blackscholes-simsmall, bodytrack, and fluidanimate, MOSI and MOESI result in substantially fewer write-backs,
but write-back is not the key factor that determines the total LLC power. Also note that for canneal, facesim, although write-back
contributes to a significant portion of the LLC power, different coherence protocols result in similar number of write-backs (see
Table 4). Applying different cache coherence protocols thus bring very similar LLC power consumption.

MESI and MOESI reduce the number of broadcasts and thus
the L1-L2 interconnection power, from Figure 2, the power
consumption of the interconnections is relatively low compared
to the power consumed by the L1 and L2 caches. Cache
coherence protocol therefore has very little impact on the
power consumption of the cache hierarchy.

4.4 Sensitivity to Number of Cores

We also conduct a sensitivity analysis showing the number
of broadcasts and write-backs with respect to the number of
cores, as shown in Figure 3. On average, as the number of cores
increases, MESI and MOESI bring more reduction in broadcast
traffic. This is because in general, a snoopy-based multi-core
processor will experience more bus traffic when there are more

cores; therefore it is more likely to see the effectiveness of MESI
and MOESI.

Contrary to the observation regarding broadcast traffic ver-
sus core count, the reduction in write-back traffic when using
MOSI (or MOESI) is almost the same for 2-, 4-, and 8-core
processors. Although the number of write-backs grows with
higher core counts in general, MOSI and MOESI are only
showing very little increasing benefits with regard to write-
back traffic reduction.

To sum up, from the results of using an 8-core processor, we
already conclude that on average, cache coherence policy has
insignificant effect on the power of the LLC as well as the entire
cache hierarchy. Given that with fewer cores, cache coherence
policy has less impact on the broadcast and write traffic, the
implication is that it also has negligible effect on cache power
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Cache hierarchy power breakdown 

L1D L1I LLC Bus
Fig. 2: Cache hierarchy power breakdown when using the MSI cache coherence protocol. The total cache hierarchy power is
normalized to 100%. Note that although for canneal, fluidanimate, and freqmine, MESI and MOESI result in a lot fewer broadcasts,
the bus energy is not the determining factor of the total power. Coherency protocol therefore has insignificant impact on the
cache hierarchy power consumption.
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Fig. 3: Sensitivity to number of cores. (a) Broadcast reduction with respect to number of cores. (b) Write-back reduction with
respect to number of cores. The results are normalized using MSI as the baseline.

consumption for 2- and 4-core processors.

5 CONCLUSION

STT-RAM has been considered a potential replacement for
SRAM in the context of LLC, due to features including high
density and low leakage. However, because STT-RAMs require
high write energy to program, frequent write-backs from the
upper-level caches will result in high LLC power. The number
of write-backs is affected by the coherence protocol used by
the upper-level caches. In this paper, we model four typical
cache coherence protocols (MSI, MESI, MOSI, MOESI) and
demonstrate their impact on the power consumption of STT-
RAM-based LLC. Based on full-system simulations, we show
that coherence protocol has insignificant impact on STT-RAM
LLC power and the power of the entire cache hierarchy.
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