

### **New Directions in Memory Architecture**

#### June 12, 2014



Bob Brennan, Senior Vice President Memory Solutions Lab Memory Bob.Brennan@Samsung.com Solutions Lab



## **Legal Disclaimer**

This presentation is intended to provide information concerning memory industry trends. We do our best to make sure that information presented is accurate and fully up-to-date. However, the presentation may be subject to technical inaccuracies, information that is not up-to-date or typographical errors. As a consequence, Samsung does not in any way guarantee the accuracy or completeness of information provided on this presentation. Samsung reserves the right to make improvements, corrections and/or changes to this presentation at any time.

The information in this presentation or accompanying oral statements may include forward-looking statements. These forward-looking statements include all matters that are not historical facts, statements regarding the Samsung Electronics' intentions, beliefs or current expectations concerning, among other things, market prospects, growth, strategies, and the industry in which Samsung operates. By their nature, forward-looking statements involve risks and uncertainties, because they relate to events and depend on circumstances that may or may not occur in the future. Samsung cautions you that forward looking statements are not guarantees of future performance and that the actual developments of Samsung, the market, or industry in which Samsung operates may differ materially from those made or suggested by the forward-looking statements contained in this presentation or in the accompanying oral statements. In addition, even if the information contained herein or the oral statements are shown to be accurate, those developments may not be indicative developments in future periods.



## Agenda

» Environment – BW & Capacity growth

- » DRAM BW & Capacity -> Tiering
- » Flash –Scales, Gets Intelligent, Tiers
- » New "Persistent Performance"



# **Environment: Mobile & Cloud**



2012: Mobile connected devices exceeded the world's population



### **Environment: Datacenter Infrastructure**

#### More applications for data

#### Data traffic: 78% CAGR



What about Exabytes?

5 EB: Total data created between the dawn of civilization and 2003



### Environment: Escalating Demand for DRAM and Storage



#### Escalating Memory-Intensive Workloads

**Financial** 

Graphics

**Big Data** 

Growing x86 Server Virtualization Density



#### Data Center Processor Growth





HPC

Gaming



### **Environment – Bandwidth Demand**





[Source: "Memory systems for PetaFlop to ExaFlop class machines" by IBM, 2007 & 2010]

Mobile: Display/GFX/Camera

Exponential Bandwidth Demand





## **Environment – Capacity Demand**





[Source: "Memory systems for PetaFlop to ExaFlop class machines" by IBM, 2007 & 2010]

Mobile: Display/GFX/Camera

~Linear Capacity Demand Server: Core Scaling

Linear - Exponential Capacity Demand



## Agenda

» Environment – BW & Capacity growth

### » DRAM – BW & Capacity -> Tiering

#### » Flash –Scales, Gets Intelligent, Tiers

### » New "Persistent Performance"



### The "Trade-off Triangles"





### Non-Volatile





**Optical (?)** 

DDR5 (?) & New I/F (?)



**DDR Wall?** 

2018

**Multi-Drop Bus Challenge:** 

**Higher BW, Lower VDD** 

DDR4

2015



3600

3200

2133 1866

1600 1333

2011

2400/2667

[Year]





Time

MSUNG

© Samsung

#### Refresh

- Difficult to build high-aspect ratio cell capacitors decreasing cell capacitance
- Leakage current of cell access transistors increasing

#### ✤ tWR

- Contact resistance between the cell capacitor and access transistor increasing
- On-current of the cell access transistor decreasing
- Bit-line resistance increasing

#### VRT

As cell capacitance shrinks, more frequent

#### Innovation needed to scale to 10nm & beyond



### **DRAM: "Go Wide" for Bandwidth**

| ITEM            |          | Mobile WIO2  | HBM (High B/W Memory)                                         |
|-----------------|----------|--------------|---------------------------------------------------------------|
|                 |          | DRAM         | Base die + DRAM                                               |
|                 |          | WIO2         | Si Interposer HBM<br>GPU<br>Base<br>PKG PCB<br>00 00 00 00 00 |
| Bottom die      |          | N/A          | Buffering & Signal re-routing                                 |
| BW (GB/s)       |          | 25.6~51.2    | 128~256                                                       |
| Pin             | Speed    | 0.4~0.8 Gbps | 1~2 Gbps                                                      |
|                 | # I/O    | 512          | 1,024                                                         |
| #Bump           | Logic    | 1~2K         | 6K~8K                                                         |
|                 | DRAM     | 1~2K         | ~3K                                                           |
| Cube (GB)       |          | 1 / 2        | 1 / 2 / 4                                                     |
| # TSV stack     |          | 1/2/4        | 1/2/4                                                         |
| DRAM density    |          | 8Gb          | 8Gb                                                           |
| Applica<br>tion | GFX card | 0            | 0                                                             |
|                 | ULT      | 0            | <u> </u>                                                      |
|                 | HPC      | -            | 0                                                             |
|                 | Server   | -            | <b>○(Cache)</b>                                               |
|                 | Mobile   | 0            | <u> </u>                                                      |



### Good BW & Latency – Still Need Capacity

Latenc

## **DRAM: Hybrid Memory Systems**



© Samsung

#### Tiered Capacity, Tiered Latency, TL-DRAM?

## **1<sup>st</sup> Step: System Tiering DRAM**





## Agenda

» Environment – BW & Capacity growth

» DRAM – BW & Capacity -> Tiering

### » Flash – Scales, Becomes Intelligent, Tiers

### » New "Persistent Performance"









AMSUNG

© Samsung

# Flash: Capacity Scaling



Scaling Becomes Difficult – Need a New Solution

## Breakthrough: 128Gb V-NAND



- Vertical-NAND Technology
- Chip Size : 133mm<sup>2</sup> → 0.96Gb/mm<sup>2</sup>
- 24-WL Stacked Layers
- 64Gb Array × 2-Plane
- One-sided Page Buffer : (8KB x 2) Page Size
- Asynchronous DDR Interface
  - : Wave-pipeline datapath
  - : 667Mbps at Mono Die
  - : 533Mbps at 8-stacked Dies



### World's 1st 3D V-NAND Mass Production Flash

### **V-NAND Array Structure**

Advanced V-NAND Technology with Damascened Metal Gate
Cell : All-around Gate Structure + Charge Trap Flash
String : 24-WL + 2-DWL + 2-Select WL
Block : 8 Strings with Shared BL (8KB)





### **V-NAND Features**

| Bits per Cell        | 2                                                      |  |
|----------------------|--------------------------------------------------------|--|
| Density              | 128Gb                                                  |  |
| Technology           | Three Dimensional<br>Vertical NAND, 3-metals           |  |
| Organization         | 8KB × 384 pages<br>× 5464 blocks × 8                   |  |
| Program Performance  | 50MB/s for Embedded App.,<br>36MB/s for Enterprise SSD |  |
| Data Interface Speed | 667Mbps@Mono, 533Mbps@8-stack                          |  |
| Power Supply         | Vcc=3.3V / Vccq=1.8V                                   |  |



## **Measured Active Power Improves**

✓ Over 50% Lower Energy Advantage is achieved
→ Increasing overall SSD Performance
by using 8-way Interleaving NAND Operation





# **Enterprise SSD Comparison**





### **Flash: Scaling Continues**





Capacity, Endurance, Power



## **Flash: MLC Endurance**

NAND Flash Endurance ✓ 36MB/s + 35K Endurance
for Data-center & Enterprise SSD Applications
✓ 50MB/s + 3K Endurance for Mobile Applications





Endurance improved dramatically



# **Flash: Performance**



Interface Unlocks Bandwidth: PCIeG2->G3->G4

Solution needs to scale: Controllers, Algorithms, & Flash Organization



Increasing Intelligence & Sophistication

### **Flash: Inherent Intelligence**



© Samsung

### 2<sup>nd</sup> Step: System Tiering Flash/HDDs





# **Today's Rack Scaling**



Acknowledgement: Krishna Malladi.

MSUNG

© Samsung

Disclaimer: conceptual model only. CPU data on different scale.

Flash Significantly Improves the DRAM-Disk Gap

## Agenda

» Environment – BW & Capacity growth

- » DRAM BW & Capacity -> Tiering
- » Flash –Scales, Becomes Intelligent, Tiers
- » New "Persistent Performance"



# **Opportunity for New Technology**



### **STT-MRAM**



#### Promising Technology, Not Mature Yet



# **3<sup>rd</sup> Step: New possibilities**



# **Future Rack Scaling Vision**

-CPU architecture -Rack Architecture



Acknowledgement: Krishna Malladi. Disclaimer: conceptual model only.



### Ideal Scaling: 1. V-NAND 2. NMT 3. System SW

### Thank you!

### **Questions: Bob.Brennan@Samsung.com**

