Improving Fairness in Memory Scheduling

Using a Team of Learning Automata

Aditya Kajwe and Madhu Mutyam

Department of Computer Science & Engineering,
Indian Institute of Tehcnology - Madras

June 14, 2014

AV LR ETERE R VEC TR VYT I (IRNYAW Improving Fairness in Memory Scheduling June 14, 2014 1/15

N —
Outline

© Introduction

© Related Work

© Our Learning Automata-based Algorithm
@ Experiments

© Conclusion

AV LN TR R VEC TR VYT I (IRNYAW Improving Fairness in Memory Scheduling June 14, 2014 2/15

Introduction

DRAM scheduling

- The order in which memory access requests from the CPU are
processed at DRAM.

AV LR TR R VEL TR VYT (IRl Improving Fairness in Memory Scheduling June 14, 2014 3/15

Introduction

DRAM scheduling

- The order in which memory access requests from the CPU are
processed at DRAM.

- Impacts main memory fairness, throughput & power consumption.

AV LR TR R VEL TR VYT (IRl Improving Fairness in Memory Scheduling June 14, 2014 3/15

Introduction

DRAM scheduling

- The order in which memory access requests from the CPU are
processed at DRAM.

- Impacts main memory fairness, throughput & power consumption.

Metrics for evaluating a scheduling algorithm

- harmonic speedup, execution time, sum-of-IPCs, maximum slowdown,
weighted speedup

A LN TR R VEL TR V=T (RO Improving Fairness in Memory Scheduling June 14, 2014 3/15

Introduction

DRAM scheduling

- The order in which memory access requests from the CPU are
processed at DRAM.

- Impacts main memory fairness, throughput & power consumption.

Metrics for evaluating a scheduling algorithm

- harmonic speedup, execution time, sum-of-IPCs, maximum slowdown,

weighted speedup

N

- harmonic speedup = — -

i |pcshared
1

AV LR TR R VEL TR VYT (IR Improving Fairness in Memory Scheduling June 14, 2014 3/15

Introduction

DRAM scheduling

- The order in which memory access requests from the CPU are
processed at DRAM.

- Impacts main memory fairness, throughput & power consumption.

Metrics for evaluating a scheduling algorithm

- harmonic speedup, execution time, sum-of-IPCs, maximum slowdown,

weighted speedup

N

- harmonic speedup = — -

i |pcshared
1

- Provides a good balance between fairness and system performance

AV LR TR R VEL TR VYT (IR Improving Fairness in Memory Scheduling June 14, 2014 3/15

Related Work

- ATLAS [2]: prioritizes threads that have attained the least service

AV LN TR R VEL TR VYT I (IRNYAW Improving Fairness in Memory Scheduling June 14, 2014 4/15

Related Work

- ATLAS [2]: prioritizes threads that have attained the least service

- PAR-BS [5]: processes DRAM requests in batches, and uses the SJF
principle within a batch

AV LN TR R VEC TR V=T (IRl Improving Fairness in Memory Scheduling June 14, 2014 4/15

Related Work

Related Work

- ATLAS [2]: prioritizes threads that have attained the least service

- PAR-BS [5]: processes DRAM requests in batches, and uses the SJF
principle within a batch

- MORSE [4]: extends Ipek et.al's learning technique [1] to target
arbitrary figures of merit.

AV LN TR R VEC TR V=T (IRl Improving Fairness in Memory Scheduling June 14, 2014 4/15

Related Work

- ATLAS [2]: prioritizes threads that have attained the least service
- PAR-BS [5]: processes DRAM requests in batches, and uses the SJF
principle within a batch

- MORSE [4]: extends Ipek et.al's learning technique [1] to target
arbitrary figures of merit.

- MISE [6]: estimates slowdown of each application and accordingly
redistributes bandwidth

AV LN TR R VEC TR V=T (IRl Improving Fairness in Memory Scheduling June 14, 2014 4/15

Related Work

- ATLAS [2]: prioritizes threads that have attained the least service
- PAR-BS [5]: processes DRAM requests in batches, and uses the SJF
principle within a batch

- MORSE [4]: extends Ipek et.al's learning technique [1] to target
arbitrary figures of merit.

- MISE [6]: estimates slowdown of each application and accordingly
redistributes bandwidth

Thread Cluster Memory Scheduling (TCMS) [3]

- divides threads into two clusters

AV LN TR R VEL TR V=T (IRl Improving Fairness in Memory Scheduling June 14, 2014 4/15

Related Work

- ATLAS [2]: prioritizes threads that have attained the least service
- PAR-BS [5]: processes DRAM requests in batches, and uses the SJF
principle within a batch

- MORSE [4]: extends Ipek et.al's learning technique [1] to target
arbitrary figures of merit.

- MISE [6]: estimates slowdown of each application and accordingly
redistributes bandwidth

Thread Cluster Memory Scheduling (TCMS) [3]
- divides threads into two clusters

- latency-sensitive cluster > bandwidth-sensitive cluster

AV LN TR R VEL TR V=T (IRl Improving Fairness in Memory Scheduling June 14, 2014 4/15

Related Work

- ATLAS [2]: prioritizes threads that have attained the least service
- PAR-BS [5]: processes DRAM requests in batches, and uses the SJF
principle within a batch

- MORSE [4]: extends Ipek et.al's learning technique [1] to target
arbitrary figures of merit.

- MISE [6]: estimates slowdown of each application and accordingly
redistributes bandwidth

Thread Cluster Memory Scheduling (TCMS) [3]
- divides threads into two clusters

- latency-sensitive cluster > bandwidth-sensitive cluster

- periodically shuffles priority in the bandwidth cluster

AV LR ETERE R VEL TR V=T I (INNYAW Improving Fairness in Memory Scheduling June 14, 2014 4/15

Overview of a Learning Automaton (LA)

A simple model for dynamic decision making in unknown environments. J

AV LR TR R VEL TR VYT (IR Improving Fairness in Memory Scheduling June 14, 2014 5/15

Our Learning Automata-based Algorithm

Overview of a Learning Automaton (LA)

A simple model for dynamic decision making in unknown environments.

)

Structure of FALA (Finite Action Learning Automaton)

Formally, a FALA can be described by the quadruple (A, B, 7, p(k)) :

A LN TR R VEL TR V=T (IR Improving Fairness in Memory Scheduling June 14, 2014 5/15

Our Learning Automata-based Algorithm

Overview of a Learning Automaton (LA)

A simple model for dynamic decision making in unknown environments.

)

Structure of FALA (Finite Action Learning Automaton)

Formally, a FALA can be described by the quadruple (A, B, 7, p(k)) :

o A={a1,ay,...,a,} : finite set of actions.

A LN TR R VEL TR V=T (IR Improving Fairness in Memory Scheduling June 14, 2014 5/15

Our Learning Automata-based Algorithm

Overview of a Learning Automaton (LA)

A simple model for dynamic decision making in unknown environments.

Structure of FALA (Finite Action Learning Automaton)
Formally, a FALA can be described by the quadruple (A, B, 7, p(k)) :
o A={a1,ay,...,a,} : finite set of actions.

@ B : set of all possible reinforcements

AV LN TR R VEC TR VYT I (IRNYAW Improving Fairness in Memory Scheduling June 14, 2014

5/15

Our Learning Automata-based Algorithm

Overview of a Learning Automaton (LA)

A simple model for dynamic decision making in unknown environments.

Structure of FALA (Finite Action Learning Automaton)

Formally, a FALA can be described by the quadruple (A, B, 7, p(k)) :
o A={a1,ay,...,a,} : finite set of actions.
@ B : set of all possible reinforcements

e 7 : learning algorithm to update p(k)

AV LN TR R VEC TR VYT I (IRNYAW Improving Fairness in Memory Scheduling June 14, 2014

5/15

Our Learning Automata-based Algorithm

Overview of a Learning Automaton (LA)

A simple model for dynamic decision making in unknown environments.

Structure of FALA (Finite Action Learning Automaton)
Formally, a FALA can be described by the quadruple (A, B, 7, p(k)) :
o A={a1,ay,...,a,} : finite set of actions.
@ B : set of all possible reinforcements
e 7 : learning algorithm to update p(k)
o p(k) = [p1(k), p2(k), ..., p-(k)]" : action probability vect at instant k

v

AV LN TR R VEC TR VYT I (IRNYAW Improving Fairness in Memory Scheduling June 14, 2014 5/15

Our Learning Automata-based Algorithm

Overview of a Learning Automaton (LA)

A simple model for dynamic decision making in unknown environments.

J

Structure of FALA (Finite Action Learning Automaton)
Formally, a FALA can be described by the quadruple (A, B, 7, p(k)) :
o A={a1,ay,...,a,} : finite set of actions.
@ B : set of all possible reinforcements
e 7 : learning algorithm to update p(k)
o p(k) = [p1(k), p2(k), ..., p-(k)]" : action probability vect at instant k

v

Higher the probability value for a thread, higher is its priority for DRAM
scheduling.

AV LN TR R VEC TR VYT I (IRNYAW Improving Fairness in Memory Scheduling June 14, 2014 5/15

Operation of a Single FALA

1. Choose action (schedule a
memory request) based on
action probability vector.

Environment

Learning Automaton (p)

AV LN TR R VEC TR VYT (IRl Improving Fairness in Memory Scheduling June 14, 2014 6 /15

Operation of a Single FALA

Environment

Learning Automaton

Choose action (schedule a
memory request) based on
action probability vector.

Get reinforcement (harmonic
speedup) from the system.

AV LN TR R VEC TR VYT (IRl Improving Fairness in Memory Scheduling June 14, 2014

6/15

Operation of a Single FALA

Environment

A

Learning Automaton (p)

. Choose action (schedule a

memory request) based on
action probability vector.

. Get reinforcement (harmonic

speedup) from the system.

. Update the action probabilities

(thread priorities) using
equation 2.

AV LN TR R VEL TR V=T I (INNYAW Improving Fairness in Memory Scheduling June 14, 2014 6 /15

Operation of a Single FALA

Environment

\

Learning Automaton (p)

. Choose action (schedule a
memory request) based on
action probability vector.

. Get reinforcement (harmonic
speedup) from the system.
Update the action probabilities
(thread priorities) using
equation 2.

- This cycle repeats forever

AV LN TR R VEL TR V=T I (INNYAW Improving Fairness in Memory Scheduling June 14, 2014 6 /15

The Learning Algorithm 7

Linear Reward-Inaction (Lg—/) [7] is one learning algorithm:

pi=pi+A-B-(1—pi)
pi=pi—A-B-pj, VjiFi

The above 2 equations can be combined using vector notation:

p(k +1) = p(k) + AG(k)(ei — p(k)) (1)

AV LN TR R VEL TR VYT I (INNYAW Improving Fairness in Memory Scheduling June 14, 2014 7/15

The Learning Algorithm 7

Linear Reward-Inaction (Lg—/) [7] is one learning algorithm:

pi=pi+A-B-(1—pi)
pi=pi—A-B-pj, VjiFi

The above 2 equations can be combined using vector notation:

p(k +1) = p(k) + AG(k)(ei — p(k))

Equation for a team of N FALA

p,'(k + 1) = pi(k) + Aﬁ(k) [ea,-(k) - pi(k)] 1<i<N

AV LN TR R VEL TR VYT I (INNYAW Improving Fairness in Memory Scheduling June 14, 2014

The Learning Algorithm 7

Linear Reward-Inaction (Lg—/) [7] is one learning algorithm:

pi=pi+A-B-(1—pi)
pi=pi—A-B-pj, VjiFi

The above 2 equations can be combined using vector notation:

p(k +1) = p(k) + AG(k)(ei — p(k)) (1)

v

Equation for a team of N FALA
pi(k +1) = pi(k) + AB(K) [ea,k) — Pi(K)] ,1 <P <N (2)

The automata implicitly cooperate to perform a stochastic search over the
space of rewards [7] : coordination among multiple memory controllers.

v

AV LR ETERE R VEL TR V=T I (IRNYAW Improving Fairness in Memory Scheduling June 14, 2014 7/15

Scheduling

Algorithm 1 Request prioritization in each memory controller

1: Sampled action first: Select a request according to the action probability
vector.

2: Row hit first: Select a request which hits the row-butfer.

3: Oldest first: Select the oldest request.

Algorithm 2 Sampling an action

L cumn_prob|0] = p[0]
2: for count — 1, (numThreads — 1) do

3: if rnd < cum_probleount — 1] then

4 break

5 else

6: cum_prob|count] = cum_problcount — 1] + p[count|
T end if

s: end for

9: action +— count — 1

AV LN TR R VEC TR V=T (IR Improving Fairness in Memory Scheduling June 14, 2014 8/15

Implementation

- Storage cost per controller: 3.3 Kbits (TCMS = 2.6 Kbits)

AV LN TR R VEL TR V=T (IRl Improving Fairness in Memory Scheduling June 14, 2014 9/15

Implementation

- Storage cost per controller: 3.3 Kbits (TCMS = 2.6 Kbits)

- Additional logic is required for calculating the reward and updating
p(k)

AV LN TR R VEL TR V=T (IRl Improving Fairness in Memory Scheduling June 14, 2014 9/15

Implementation

- Storage cost per controller: 3.3 Kbits (TCMS = 2.6 Kbits)

- Additional logic is required for calculating the reward and updating
p(k)

- Calculating HS on-the-fly: Requires instantaneous IPCia’O”e. We use
overall IPCf”""e, obtained by running a benchmark alone on the same
baseline system, to get a rough estimate of HS.

AV LN TV R VEC TR V=T I (IRNYAW Improving Fairness in Memory Scheduling June 14, 2014 9/15

Implementation

- Storage cost per controller: 3.3 Kbits (TCMS = 2.6 Kbits)

- Additional logic is required for calculating the reward and updating
p(k)

- Calculating HS on-the-fly: Requires instantaneous IPCia’O”e. We use
overall IPCf”""e, obtained by running a benchmark alone on the same
baseline system, to get a rough estimate of HS.

- Updating p(k) is not on critical path. Can be performed in many tens
of CPU cycles.

AV LN TV R VEC TR V=T I (IRNYAW Improving Fairness in Memory Scheduling June 14, 2014 9/15

Implementation

- Storage cost per controller: 3.3 Kbits (TCMS = 2.6 Kbits)

- Additional logic is required for calculating the reward and updating
p(k)

- Calculating HS on-the-fly: Requires instantaneous IPCia’O”e. We use
overall IPCf”""e, obtained by running a benchmark alone on the same
baseline system, to get a rough estimate of HS.

- Updating p(k) is not on critical path. Can be performed in many tens
of CPU cycles.

- As an approximation, we consider the latency for determining the
reward for a scheduling decision to be 90 cycles.

AV LN TV R VEC TR V=T I (IRNYAW Improving Fairness in Memory Scheduling June 14, 2014 9/15

Implementation

- Storage cost per controller: 3.3 Kbits (TCMS = 2.6 Kbits)

- Additional logic is required for calculating the reward and updating
p(k)

- Calculating HS on-the-fly: Requires instantaneous IPCia’O”e. We use
overall IPCf”""e, obtained by running a benchmark alone on the same
baseline system, to get a rough estimate of HS.

- Updating p(k) is not on critical path. Can be performed in many tens
of CPU cycles.

- As an approximation, we consider the latency for determining the
reward for a scheduling decision to be 90 cycles.

AV LN TR R VEC TR V=T (IR Improving Fairness in Memory Scheduling June 14, 2014 9/15

Experimental Setup

- Modified version gem5 simulator

AV LN TR R VEL TR VYT I (IRNYAW Improving Fairness in Memory Scheduling June 14, 2014 10 / 15

Experimental Setup

- Modified version gem5 simulator

- 16 CPU cores and 4 memory controllers

AV LN TR R VEL TR VYT I (IRNYAW Improving Fairness in Memory Scheduling

June 14, 2014

10/ 15

Experimental Setup

- Modified version gem5 simulator

- 16 CPU cores and 4 memory controllers

- PARSEC: Eight multi-threaded benchmarks with simmedium input
set.

AV LN TR R VEL TR VYT I (IRNYAW Improving Fairness in Memory Scheduling June 14, 2014 10 / 15

Experimental Setup

Modified version gem5 simulator

- 16 CPU cores and 4 memory controllers

PARSEC: Eight multi-threaded benchmarks with simmedium input
set.

SPEC CPU2006: Eight multiprogrammed workloads of varying
memory intensity run for 500mn instructions

AV LN TR R VEL TR VYT I (IRNYAW Improving Fairness in Memory Scheduling June 14, 2014 10 / 15

Experimental Setup

Modified version gem5 simulator

- 16 CPU cores and 4 memory controllers

PARSEC: Eight multi-threaded benchmarks with simmedium input
set.

SPEC CPU2006: Eight multiprogrammed workloads of varying
memory intensity run for 500mn instructions

AV LN TR R VEL TR V=T (IR Improving Fairness in Memory Scheduling June 14, 2014 10 / 15

Experiments

3
| I I
o I I

freqmire | canneal |blacksch. x264 | dedup |bodytrack | facesim | femet | Average

SPEC CPU2006 : I I I I I

ix7 | Mix8 |Average

Results

N

PARSEC ‘

@

%improvement over TCMS
-

°
@

-
w

9% improvement over TCMS
o
&

AV LN TR R VEL TR VYT (IR Improving Fairness in Memory Scheduling June 14, 2014 11 /15

Scalability

32
315
31

3.06

295

% improvement over TCMS

29
81z 1674 2416

Number of cores / memory contollers

AV LN TR R VEC TR V=T (IR Improving Fairness in Memory Scheduling June 14, 2014 12 / 15

Future Work

- Improve the reward mechanism

AV LN TR R VEL TR V=T I (IRNYAW Improving Fairness in Memory Scheduling June 14, 2014 13 / 15

Future Work

- Improve the reward mechanism

- Evaluate on a wider variety of workloads (SPLASH and NAS
benchmarks)

AV LN TR R VEL TR V=T I (IRNYAW Improving Fairness in Memory Scheduling June 14, 2014 13 / 15

Future Work

- Improve the reward mechanism

- Evaluate on a wider variety of workloads (SPLASH and NAS
benchmarks)

- Compare against more recent scheduling algorithms (MISE)

AV LN TR R VEL TR V=T (IR Improving Fairness in Memory Scheduling June 14, 2014 13 / 15

Future Work

Improve the reward mechanism

Evaluate on a wider variety of workloads (SPLASH and NAS
benchmarks)

- Compare against more recent scheduling algorithms (MISE)

- A more accurate hardware feasibility analysis

AV LN TR R VEL TR V=T (IR Improving Fairness in Memory Scheduling June 14, 2014 13 / 15

Future Work

Improve the reward mechanism

Evaluate on a wider variety of workloads (SPLASH and NAS
benchmarks)

- Compare against more recent scheduling algorithms (MISE)
- A more accurate hardware feasibility analysis

- Evaluate on a synthetic workload where the outcome should be
predictable.

AV LN TR R VEL TR V=T I (INNYAW Improving Fairness in Memory Scheduling June 14, 2014 13 / 15

Future Work

Improve the reward mechanism

Evaluate on a wider variety of workloads (SPLASH and NAS
benchmarks)

- Compare against more recent scheduling algorithms (MISE)
- A more accurate hardware feasibility analysis

- Evaluate on a synthetic workload where the outcome should be
predictable.

AV LN TR R VEL TR V=T I (INNYAW Improving Fairness in Memory Scheduling June 14, 2014 13 / 15

Conclusion

- A learning technique is exploited to give improvement in fairness
without much additional hardware cost.

AV LR TR R VEC TR VYT (IRl Improving Fairness in Memory Scheduling June 14, 2014 14 / 15

Conclusion

- A learning technique is exploited to give improvement in fairness
without much additional hardware cost.

- Scalable and works on multiprogrammed as well as parallel workloads

AV LR TR R VEC TR VYT (IRl Improving Fairness in Memory Scheduling June 14, 2014 14 / 15

Conclusion

- A learning technique is exploited to give improvement in fairness
without much additional hardware cost.

- Scalable and works on multiprogrammed as well as parallel workloads

AV YN TR R VEC TR VYT (IRl Improving Fairness in Memory Scheduling June 14, 2014 14 / 15

Conclusion

Questions ?

AV LN TR R VEC TR V=T (IR Improving Fairness in Memory Scheduling June 14, 2014 15 / 15

Conclusi References

ﬁ E. Ipek, O. Mutlu, J. F. Martinez, and R. Caruana.

Self-optimizing memory controllers: A reinforcement learning approach.
In Proceedings of the 35th Annual International Symposium on Computer Architecture, ISCA '08, pages 39-50,
Washington, DC, USA, 2008. IEEE Computer Society.

Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter.

Atlas: A scalable and high-performance scheduling algorithm for multiple memory controllers.
In M. T. Jacob, C. R. Das, and P. Bose, editors, HPCA, pages 1-12. IEEE Computer Society, 2010.

Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter.

Thread cluster memory scheduling: Exploiting differences in memory access behavior.

In Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO '43, pages
65-76, Washington, DC, USA, 2010. IEEE Computer Society.

J. Mukundan and J. Martinez.
Morse: Multi-objective reconfigurable self-optimizing memory scheduler.

In High Performance Computer Architecture (HPCA), 2012 IEEE 18th International Symposium on, pages 1-12, Feb
2012.

O. Mutlu and T. Moscibroda.

Parallelism-aware batch scheduling: Enhancing both performance and fairness of shared DRAM systems.
In Proceedings of the 35th Annual International Symposium on Computer Architecture, ISCA '08, pages 63-74,
Washington, DC, USA, 2008. IEEE Computer Society.

L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu.

Mise: Providing performance predictability and improving fairness in shared main memory systems.
In Proceedings of the 2013 IEEE 19th International Symposium on High Performance Computer Architecture (HPCA),
HPCA '13, pages 639-650, Washington, DC, USA, 2013. IEEE Computer Society.

=) =) =) &) &

M. A. L. Thathachar and P. S. Sastry.

Networks of Learning Automata.
Springer, 2004.

Aditya Kajwe and Ma Mutyam (IIT Improving Fairness in Memory Scheduling June 14, 2014 15 / 15

	Introduction
	Related Work
	Our Learning Automata-based Algorithm
	Experiments
	Conclusion

