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Introduction

Introduction

DRAM scheduling

- The order in which memory access requests from the CPU are
processed at DRAM.

- Impacts main memory fairness, throughput & power consumption.

Metrics for evaluating a scheduling algorithm

- harmonic speedup, execution time, sum-of-IPCs, maximum slowdown,
weighted speedup

- harmonic speedup = N∑
i

IPCalone
i

IPCshared
i

- Provides a good balance between fairness and system performance
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Related Work

Related Work

- ATLAS [2]: prioritizes threads that have attained the least service

- PAR-BS [5]: processes DRAM requests in batches, and uses the SJF
principle within a batch

- MORSE [4]: extends Ipek et.al’s learning technique [1] to target
arbitrary figures of merit.

- MISE [6]: estimates slowdown of each application and accordingly
redistributes bandwidth

Thread Cluster Memory Scheduling (TCMS) [3]

- divides threads into two clusters

- latency-sensitive cluster > bandwidth-sensitive cluster

- periodically shuffles priority in the bandwidth cluster
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Our Learning Automata-based Algorithm

Overview of a Learning Automaton (LA)

A simple model for dynamic decision making in unknown environments.

Structure of FALA (Finite Action Learning Automaton)

Formally, a FALA can be described by the quadruple (A,B, τ, p(k)) :

A = {α1, α2, ..., αr} : finite set of actions.

B : set of all possible reinforcements

τ : learning algorithm to update p(k)

p(k) = [p1(k), p2(k), ..., pr (k)]T : action probability vect at instant k

Higher the probability value for a thread, higher is its priority for DRAM
scheduling.
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Our Learning Automata-based Algorithm

Operation of a Single FALA

Environment

Learning Automaton (p)

α

1. Choose action (schedule a
memory request) based on
action probability vector.

2. Get reinforcement (harmonic
speedup) from the system.

3. Update the action probabilities
(thread priorities) using
equation 2.

- This cycle repeats forever

Aditya Kajwe and Madhu Mutyam (IITM) Improving Fairness in Memory Scheduling June 14, 2014 6 / 15



Our Learning Automata-based Algorithm

Operation of a Single FALA

Environment

Learning Automaton

β

1. Choose action (schedule a
memory request) based on
action probability vector.
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Our Learning Automata-based Algorithm

Operation of a Single FALA

Environment

Learning Automaton (p)

τ

1. Choose action (schedule a
memory request) based on
action probability vector.

2. Get reinforcement (harmonic
speedup) from the system.

3. Update the action probabilities
(thread priorities) using
equation 2.

- This cycle repeats forever
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Our Learning Automata-based Algorithm

The Learning Algorithm τ

Linear Reward-Inaction (LR−I ) [7] is one learning algorithm:

pi = pi + λ · β · (1− pi )
pj = pj − λ · β · pj , ∀j 6= i

The above 2 equations can be combined using vector notation:

p(k + 1) = p(k) + λβ(k)(ei − p(k)) (1)

Equation for a team of N FALA

pi (k + 1) = pi (k) + λβ(k)
[
eαi (k) − pi (k)

]
, 1 ≤ i ≤ N (2)

The automata implicitly cooperate to perform a stochastic search over the
space of rewards [7] : coordination among multiple memory controllers.
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Our Learning Automata-based Algorithm

Scheduling
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Our Learning Automata-based Algorithm

Implementation

- Storage cost per controller: 3.3 Kbits (TCMS = 2.6 Kbits)

- Additional logic is required for calculating the reward and updating
p(k)

- Calculating HS on-the-fly: Requires instantaneous IPC alone
i . We use

overall IPC alone
i , obtained by running a benchmark alone on the same

baseline system, to get a rough estimate of HS.

- Updating p(k) is not on critical path. Can be performed in many tens
of CPU cycles.

- As an approximation, we consider the latency for determining the
reward for a scheduling decision to be 90 cycles.
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Experiments

Experimental Setup

- Modified version gem5 simulator

- 16 CPU cores and 4 memory controllers

- PARSEC: Eight multi-threaded benchmarks with simmedium input
set.

- SPEC CPU2006: Eight multiprogrammed workloads of varying
memory intensity run for 500mn instructions
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Experiments

Results

SPEC CPU2006

PARSEC
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Experiments

Scalability
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Conclusion

Future Work

- Improve the reward mechanism

- Evaluate on a wider variety of workloads (SPLASH and NAS
benchmarks)

- Compare against more recent scheduling algorithms (MISE)

- A more accurate hardware feasibility analysis

- Evaluate on a synthetic workload where the outcome should be
predictable.
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Conclusion

Conclusion

- A learning technique is exploited to give improvement in fairness
without much additional hardware cost.

- Scalable and works on multiprogrammed as well as parallel workloads
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Conclusion

Questions ?

Aditya Kajwe and Madhu Mutyam (IITM) Improving Fairness in Memory Scheduling June 14, 2014 15 / 15



Conclusion References

E. Ipek, O. Mutlu, J. F. Mart́ınez, and R. Caruana.

Self-optimizing memory controllers: A reinforcement learning approach.
In Proceedings of the 35th Annual International Symposium on Computer Architecture, ISCA ’08, pages 39–50,
Washington, DC, USA, 2008. IEEE Computer Society.

Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter.

Atlas: A scalable and high-performance scheduling algorithm for multiple memory controllers.
In M. T. Jacob, C. R. Das, and P. Bose, editors, HPCA, pages 1–12. IEEE Computer Society, 2010.

Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter.

Thread cluster memory scheduling: Exploiting differences in memory access behavior.
In Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture, MICRO ’43, pages
65–76, Washington, DC, USA, 2010. IEEE Computer Society.

J. Mukundan and J. Martinez.

Morse: Multi-objective reconfigurable self-optimizing memory scheduler.
In High Performance Computer Architecture (HPCA), 2012 IEEE 18th International Symposium on, pages 1–12, Feb
2012.

O. Mutlu and T. Moscibroda.

Parallelism-aware batch scheduling: Enhancing both performance and fairness of shared DRAM systems.
In Proceedings of the 35th Annual International Symposium on Computer Architecture, ISCA ’08, pages 63–74,
Washington, DC, USA, 2008. IEEE Computer Society.

L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu.

Mise: Providing performance predictability and improving fairness in shared main memory systems.
In Proceedings of the 2013 IEEE 19th International Symposium on High Performance Computer Architecture (HPCA),
HPCA ’13, pages 639–650, Washington, DC, USA, 2013. IEEE Computer Society.

M. A. L. Thathachar and P. S. Sastry.

Networks of Learning Automata.
Springer, 2004.

Aditya Kajwe and Madhu Mutyam (IITM) Improving Fairness in Memory Scheduling June 14, 2014 15 / 15


	Introduction
	Related Work
	Our Learning Automata-based Algorithm
	Experiments
	Conclusion

