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- Provides a good balance between fairness and system performance
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Related Work

- ATLAS [2]: prioritizes threads that have attained the least service
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principle within a batch

- MORSE [4]: extends Ipek et.al's learning technique [1] to target
arbitrary figures of merit.

- MISE [6]: estimates slowdown of each application and accordingly
redistributes bandwidth

Thread Cluster Memory Scheduling (TCMS) [3]
- divides threads into two clusters

- latency-sensitive cluster > bandwidth-sensitive cluster

- periodically shuffles priority in the bandwidth cluster
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v

Higher the probability value for a thread, higher is its priority for DRAM
scheduling.
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Operation of a Single FALA

1. Choose action (schedule a
memory request) based on
action probability vector.

Environment

Learning Automaton (p)
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Environment

A

Learning Automaton (p)

. Choose action (schedule a

memory request) based on
action probability vector.

. Get reinforcement (harmonic

speedup) from the system.

. Update the action probabilities

(thread priorities) using
equation 2.
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Operation of a Single FALA

Environment

\

Learning Automaton (p)

. Choose action (schedule a
memory request) based on
action probability vector.

. Get reinforcement (harmonic
speedup) from the system.
Update the action probabilities
(thread priorities) using
equation 2.

- This cycle repeats forever
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The Learning Algorithm 7

Linear Reward-Inaction (Lg—/) [7] is one learning algorithm:

pi=pi+A-B-(1—pi)
pi=pi—A-B-pj, VjiFi

The above 2 equations can be combined using vector notation:

p(k +1) = p(k) + AG(k)(ei — p(k)) (1)
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The above 2 equations can be combined using vector notation:

p(k +1) = p(k) + AG(k)(ei — p(k))

Equation for a team of N FALA

p,'(k + 1) = pi(k) + Aﬁ(k) [ea,-(k) - pi(k)] 1<i<N
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The Learning Algorithm 7

Linear Reward-Inaction (Lg—/) [7] is one learning algorithm:

pi=pi+A-B-(1—pi)
pi=pi—A-B-pj, VjiFi

The above 2 equations can be combined using vector notation:

p(k +1) = p(k) + AG(k)(ei — p(k)) (1)

v

Equation for a team of N FALA
pi(k +1) = pi(k) + AB(K) [ea,k) — Pi(K)] ,1 <P <N (2)

The automata implicitly cooperate to perform a stochastic search over the
space of rewards [7] : coordination among multiple memory controllers.

v
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Scheduling

Algorithm 1 Request prioritization in each memory controller

1: Sampled action first: Select a request according to the action probability
vector.

2: Row hit first: Select a request which hits the row-butfer.

3: Oldest first: Select the oldest request.

Algorithm 2 Sampling an action

L cumn_prob|0] = p[0]
2: for count — 1, (numThreads — 1) do

3: if rnd < cum_probleount — 1] then

4 break

5 else

6: cum_prob|count] = cum_problcount — 1] + p[count|
T end if

s: end for

9: action +— count — 1
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Implementation

- Storage cost per controller: 3.3 Kbits (TCMS = 2.6 Kbits)
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Experiments
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Scalability
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Conclusion
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Conclusion

Questions ?
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