
Debugging with Domain-Specific Events via Macros
Xiangqi Li

University of Utah
USA

xiangqi@cs.utah.edu

Matthew Flatt
University of Utah

USA
mflatt@cs.utah.edu

Abstract
Extensible languages enable the convenient construction of
many kinds of domain-specific languages (DSLs) by mapping
domain-specific surface syntax into the host language’s core
forms in a layered and composable way. The host language’s
debugger, however, reports evaluation and data details in
ways that reflect the host language, instead of the DSL in its
own terms, and closing the gap may require more than cor-
relating host evaluation steps to the original DSL source. In
this paper, we describe an approach to DSL construction with
macros that pairs the mapping of DSL terms to host terms
with a mapping to convert primitive events back to domain-
specific concepts. Domain-specific events are then suitable
for presenting to a user or wiring into a domain-specific visu-
alization. We present a core model of evaluation and events,
and we present a language design—analogous to pattern-
based notations for macros, but in the other direction—for
describing how events in a DSL’s expansion are mapped to
events at the DSL’s level.

CCS Concepts • Software and its engineering → Ex-
tensible languages; Macro languages; Software testing
and debugging;

Keywords Debugging, domain-specific languages, events

ACM Reference Format:
Xiangqi Li and Matthew Flatt. 2017. Debugging with Domain-
Specific Events via Macros. In Proceedings of 2017 ACM SIGPLAN
International Conference on Software Language Engineering (SLE’17).
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3136014.
3136019

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SLE’17, October 23–24, 2017, Vancouver, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5525-4/17/10. . . $15.00
https://doi.org/10.1145/3136014.3136019

1 Introduction
Domain-specific languages (DSLs) are designed to improve
ease of use and productivity [Mernik et al. 2005; Ward 1994]
by offering expressive, domain-specific notation and abstrac-
tions [van Deursen et al. 2000]. Although they are specific
to a domain, many DSLs are still recognizably program-
ming languages, and a good debugging experience is indis-
pensable to using any programming language. With current
DSL-construction tools, however, debugging support for ex-
ecutable DSLs remains unsatisfactory. Sometimes, the prob-
lem is that debugging operations are limited to traditional
debugging techniques for imperative languages, such as set-
ting breakpoints and stepping [Henriques et al. 2005; Van
Den Brand et al. 2005;Wu et al. 2008]. Even in an event-based
debugging framework, often the events are insufficiently gen-
eral [Chis et al. 2014; Lindeman et al. 2011] and expose too
much the constructs of the general-purpose language (GPL)
that hosts the DSL implementation.
In the realm of debugging for GPLs, a programmer is

usually presented with an interface to step through impera-
tive statements and set breakpoints. A more general model,
which is supported by many debuggers, views the activity
of a program as a generator of events that can be inspected
and to some degree controlled [Bates 1995; Marceau et al.
2006; Olsson et al. 1990]. An event-based view enables reuse
and extension of a debugger, and we take this view as one of
our starting points. In the same way that GPLs can host DSL
implementations, an environment that provides GPL debug-
ging events can host DSL debugging events. This approach
adapts well to many different kinds of problems, including
domain-specific problems where the evaluation rules might
not follow a conventional imperative flow. A gap remains,
however, for mapping GPL events back to a DSL in a precise,
reusable, and extensible way.
We combine an event-oriented view of DSL debugging

with a view of DSL construction based on macros, as they
are commonly implemented in Lisp environments and es-
pecially in Racket [Felleisen et al. 2015; Tobin-Hochstadt et
al. 2011]. Macros provide high-level support for converting
the constructs of a DSL into lower-level constructs of a host
language. Macros compose well, so that multiple DSLs can
coexist in a larger application along with the host language.
Macros also naturally enable towers of languages [Ward
1994], where terms in a source language are expanded to suc-
cessively simpler languages, while each intermediate point

https://doi.org/10.1145/3136014.3136019
https://doi.org/10.1145/3136014.3136019
https://doi.org/10.1145/3136014.3136019

SLE’17, October 23–24, 2017, Vancouver, Canada Xiangqi Li and Matthew Flatt

serves as a well-defined and reusable language in its own
right.

An event-oriented view of debugging meshes well with a
macro-expansion view of language implementation. Macros
specify the runtime semantics of a DSL through elaboration
into lower-level constructs. Meanwhile, debugging events
from the lower-level language can be filtered, combined, and
transformed to describe debugging events in terms of the
DSL. In the same way that static elements of a language
can be associated with macros to implement, say, a type
system [Chang et al. 2017], a protocol for debugging events
can be integrated with macro transformations. As a result,
the programmer gets support for DSL debugging on par with
support for DSL type systems and runtime evaluation. We
further imagine a suite of visualization and interaction tools
to allow programmers to view and interact with events to
debug programs, where the visualizations and interactions
can be tailored to the DSL as needed.
In this paper, we lay a foundation for evaluation and de-

scribe events that support our vision. First, we present a
core programming-language model that supports debugging
events, where the events are sufficient to fully reconstruct
the state of an evaluation. We then describe the constructs
that DSL implementers use to map events from one language
level (either the core language or a derived language) to a new
language level; those constructs are ultimately implemented
in terms of the core language’s event-reporting mechanism,
but with conversion layers that aggregate and transform
core events into domain-specific events. To help validate the
design of our event framework, we have implemented debug-
ging support for three DSLs, and we report our experience
with domain-specific event creation and generation for those
languages.

2 Motivation
To see the need for domain-specific events to implement a
DSL debugger, consider the case of POP-PL [Florence et al.
2015]. POP-PL is a “patient-oriented prescription program-
ming language” that is meant to enable a doctor to describe
and automate a course of treatment. The language is message-
based, where a message might correspond to adjusting a
medical device or calling a nurse to take a specific action.
POP-PL is implemented by macro expansion to conventional
functional and imperative programming constructs. If we
try to rely on the underlying GPL’s stepping-based debugger
and map POP-PL source terms to those debugging events,
the debugger would not match a health-care professional’s
view of the computation.

A debugger for POP-PL should instead present debug-
ging in terms of the events that capture domain concepts.
Concretely, we have a debugging interface as shown in Fig-
ure 1. To capture the concepts of an arriving message and
an outgoing message from prescription handlers, we should

Figure 1. POP-PL debugger. The interface presents a de-
bugging scenario where a click of a message entry in the
top-right Messages window triggers a display of the handler
information in the bottom-right window. Clicking a mes-
sage in the bottom-right window navigates us to the source
context on the left, which is highlighted in yellow.

rely on domain-specific events such as receive-msg-e and
send-msg-e events.

3 Implementing DSLs with Macros
Our approach of mapping general-purpose events to domain-
specific events fits together naturally with an evaluation
approach that maps DSL programs into GPL programs via
macros. In Racket specifically, building a DSL typically in-
volves a reader-level extension to parse a DSL program into
parenthesized forms (S-expressions), and then an expander-
level extension that relies on macros to expand the parenthe-
sized forms. We will review enough of Racket’s macro and
module system for the rest of the paper to make sense.

A module in Racket is both a unit of compilation and the
mechanism for organizing macros and language layers. In
the simplest case, a DSL program resides in its own mod-
ule, while the implementation of the DSL itself resides in
another module that is referenced by the DSL program. The
DSL implementation is written in some language as defined
by module imports, and the DSL’s macros expand into the
imported constructs—where the imports can be macros that
expand to another language, and so on.

Figure 2 illustrates the overall process of expanding a sin-
gle DSL module via macros and through multiple language
layers. (The figure does not show the implementations of the
layers, but only the way that the original module expands
into each layer.) Box 1 shows a program written in a toy
DSL called point. The point language contains initialization
statements for the x and y properties and operations such as
move x by and move y by to manipulate the two properties.

Debugging with Domain-Specific Events via Macros SLE’17, October 23–24, 2017, Vancouver, Canada

Figure 2. Macro expansion

The #lang point declaration in the box selects the reader
that parses the program into a define-point S-expression,
which is sketched in box 2. In addition to that S-expression,
box 2 must import a module-begin macro (referred to as
“macro 1” among the figure’s arrows) and a define-point
macro (referred to as “macro 2”). The module-beginmacro’s
job is to add a definition of point to the beginning of the
module, and the define-point macro’s job is to make an
instance of point and call some of its methods.
To a first approximation, each of those macros can be

implemented as a simple pattern-based macro, which uses
the form
(define-syntax-rule pattern template)

to indicate that each instance of pattern should be replaced
by an instance of template. Pattern variables bound in pat-
tern are replaced as template is instantiated. So, module-
begin and define-point also can be defined as
(define-syntax-rule (module-begin decl ...)

(base-module-begin
; add a point class declaration
(define point

(class
details omitted, but see box 3 in the fgure))

decl ...))

(define-syntax-rule (define-point name (x x-exp) (y y-exp)
(op arg ...) ...)

(begin
(define name (point x-exp y-exp))
(send name op arg ...) ...))

The pattern (module-begin decl ...) matches any term
that starts with module-begin followed by any number of

terms bound to the pattern variable decl. The ... after
decl causes decl to stand for zero or more matches. The
expansion of the macro is a base-module-begin form that
defines the name point and continues with all the supplied
decls. Similarly, the pattern for define-pointmatches that
name followed by at least two terms, where x-exp stands for
the second part of the first term, y-exp stands for the second
part of the second term, op stands for the called method in
each subsequent term, and arg stands for the arguments of
each of the called methods (i.e., arg is effectively a list of
lists). Note that the number of ...s after a pattern variable
in a template matches the number of ...s after the same
pattern variable in the pattern. The base-module-begin,
define, class and send forms used in the macro expansion
are all imported into the module that defines the macros.
Although simple pattern-based macros work for many

cases, these macros are not quite right for module-begin
and define-point. The define-point macro wants x and
y to be literally the identifiers x and y, instead of pattern vari-
ables that match any term. In addition, the macros module-
begin and define-point independently introduce a defini-
tion and references to point, so macro hygiene keeps them
separate [Kohlbecker et al. 1986] instead of shared as in-
tended.
To solve these problems, we can rewrite module-begin

and define-point as general compile-time functions us-
ing syntax-case expression forms that help with pattern
matching and template instantiation:
(define-syntax id function-expr)

(syntax-case source-expr (literal-id ...)
[pattern optional-guard-expr template-expr]

SLE’17, October 23–24, 2017, Vancouver, Canada Xiangqi Li and Matthew Flatt

...)

The module-begin definition above can be rewritten as
(define-syntax module-begin

(lambda (stx)
(syntax-case stx ()

[(_) #'(base-module-begin)] ; no decls ñ no class
[(_ decl ...)
#'(base-module-begin

(define point details omitted)

decl ...)])))

where define-syntax binds module-begin to a compile-
time function that receives a representation stx of the macro
use. The syntax-case form dispatches on that stx to match
one of the subsequent patterns; we add a new pattern here,
as a kind of optimization, to drop the definition of point
if there are no decls to use it. After matching a pattern in
syntax-case, the corresponding clause can perform arbi-
trary compile-time work, but #' produces a compile-time
value from a template instantiation, just like a simple pattern-
matching macro.

From now on, we’ll abbreviate a definition
(define-syntax id (lambda (arg-id) body-expr))
ñ

(define-syntax (id arg-id) body-expr)

To fix module-begin, the point identifier in the template
needs to be replaced with point as if it appeared in the
macro-use site. The expression (syntax-local-introduce
#'point) generates such an identifier,1 and we can inject
it into the pattern world using with-syntax, which binds
a left-hand-side pattern to the result of a right-hand-side
compile-time expression:
(define-syntax (module-begin stx)
(syntax-case stx ()

[(_) #'(base-module-begin)]
[(_ decl ...)
(with-syntax ([point-id

(syntax-local-introduce #'point)])
#'(base-module-begin

(define point-id details omitted)

decl ...))]))

The repair to define-point is similar, but also uses the
parentheses that appear after the first argument to syntax-
case, which hold identifiers to be treated as literals instead
of pattern variables:
(define-syntax (define-point stx)
(syntax-case stx (x y)

[(_ name (x x-expr) (y y-expr) (op arg ...) ...)
(with-syntax ([point-id

(syntax-local-introduce #'point)])
#'(begin

(define name (point-id x-expr y-expr))
(send name op arg ...) ...))]))

1Using syntax-local-introduce is rarely the best strategy, but it suffices
for the example here.

The expansion of the module-begin and define-point
macros on the code in box 2 of Figure 2 produces the code
in box 3 of the figure. Box 3 shows another module-begin
in place of base-module-begin on the assumption that
the form imported by the macro-implementing module as
base-module-begin is exported from its defining module
as module-begin.
For the language of box 3, assume that module-begin

adds nothing to its content, and consider further the class
and send macros that must be imported there. The class
macro implements a class abstraction in terms of procedures,
and the send macro accordingly transforms method calls
into nested procedure calls.

(define-syntax (class stx)
(syntax-case stx (field define)

[(class (field f ...)
(define (method-name arg ...) expr ...) ...)

(andmap identifier?
(syntax->list #'(method-name ...

arg)))
#'(lambda (f ...)

(define (method-name arg ...) expr ...) ...
(define (dispatch op)

(cond
[(eq? op 'method-name)
method-name] ...))

dispatch)]))

(define-syntax (send stx)
(syntax-case stx ()

[(send obj method-name arg ...)
(identifier? #'method-name)
#'((obj 'method-name) arg ...)]))

That is, a class form turns into a function that accepts field
values for an instance and returns a dispatch function for the
instance, and a send form turns into a call of that dispatch
function passing the method name as a symbol. These macro
implementations contain additional compile-time code as
guards to check that each method name and method argu-
ment is an identifier (as opposed to, say, a number) before
generating the expansion, which illustrates another use of
compile-time computation.
Using the class and send forms, the original DSL pro-

gram is further expanded into the forms in box 4. If the
procedure language is created through more macro trans-
formations into some other existing language, then the ex-
pansion of the DSL program requires additional steps. The
general case of a module expansion is depicted on the left-
hand side of Figure 3, where a DSL is eventually compiled to
a core language, and each dotted line represents the macro
transformations in a compilation step.

The right-hand side of Figure 3 is the contribution of this
paper. We define a set of events that are produced by the
evaluation of a program in the core language, and we show
how to enrich and complement the macro-expansion steps

Debugging with Domain-Specific Events via Macros SLE’17, October 23–24, 2017, Vancouver, Canada

DSL

Langn-1

...

Lang2

Lang1

Core Lang

DSL Event

Langn-1 Event

...

Lang2 Event

Lang1 Event

Core Event

Figure 3. An overview of layered DSL implementation and
domain-specific event support

on the left-hand side with event-mapping rules for the right-
hand side.

4 Core Events
The core language in the bottom left of Figure 3 can be any
simple programming language. For Racket, the core language
is a variant of the λ-calculus with primitives and mutable
variables, so we can model it with a CESK machine [Felleisen
and Friedman 1987]. A CESK machine explicitly manages a
lexical environment, continuation, and store, so it serves as
a general model of a GPL that exposes features relevant for
debugging—but it has no notion of events.
Figure 4 defines an extension of the CESK machine that

includes a slot for an event trace, and Figure 5 shows the asso-
ciated grammars. Each step in our CESKT machine adds one
or more events to the trace component of the machine. The
resulting trace models the sequence of events that a debugger
can receive to report on the progress of the computation.
An event reports some interesting point in the dynamic

execution of a program. Core events include construct-e,
function-e, variable-update-e, cont-add-e, and cont-
rmv-e. Evaluation of a program generates event instances
of these event classes, and each kind of event carries event-
specific debugging information. Figure 6 shows the updt-t

metafunction, which defines themechanism of event-specific
information encapsulation. Each event instance is a data
structure (evnt in Figure 8) containing its event class name,
source information, an event tag indicating the event’s origin
in the core language, and an event attribute mapping (A).

Every reduction rule in Figure 4 starts with a construct-
e event to reflect the occasion of a single-step reduction of
an expression. The function-e event and the variable-
update-e event capture the store changes in the [apply] and
[assign] rules. To monitor the continuation changes of the
CESKmachine, we include continuation-related events: cont-
add-e and cont-rmv-e.

〈〈(M N), ε〉, Σ, K, T〉 [to-apply]

〈〈M, ε〉, Σ, 〈ar, 〈N, ε〉, K〉, Tnew〉
 subject to updt-t⟦T, (M N), 〈construct-e, M, ε〉,

〈cont-add-e, 〈ar, 〈N, ε〉〉〉⟧ = Tnew

〈〈(o M N ...), ε〉, Σ, K, T〉 [to-prim]

〈〈M, ε〉, Σ, 〈op, 〈o〉, 〈〈N, ε〉, ...〉, K〉, Tnew〉
 subject to updt-t⟦T, (o M N ...), 〈construct-e, M, ε〉,

〈cont-add-e, 〈op, 〈o〉, 〈〈N, ε〉, ...〉〉〉⟧ = Tnew

〈〈V, ε〉, Σ, 〈fn, 〈(λ X M), ε1〉, K〉, T〉 [apply]

〈〈M, ε1[X σ]〉, Σ[σ 〈V, ε〉], K, Tnew〉
 subject to V ∉ X, σ ∉ dom(Σ),

updt-t⟦T, V, 〈construct-e, M, ε1〉,
〈function-e, X, 〈σ, 〈V, ε〉〉〉,
〈cont-rmv-e〉⟧ = Tnew

〈〈V, ε〉, Σ, 〈ar, 〈N, εN〉, K〉, T〉 [apply-arg]

〈〈N, εN〉, Σ, 〈fn, 〈V, ε〉, K〉, Tnew〉
 subject to V ∉ X,

updt-t⟦T, V, 〈construct-e, N, εN〉,
〈cont-rmv-e〉, 〈cont-add-e, 〈fn, 〈V, ε〉〉〉⟧ = Tnew

〈〈bm, ε〉, Σ, 〈op, 〈〈brest, εrest〉, ..., 〈b1, ε1〉, o〉, 〈 〉, K〉, T〉 [prim]

〈〈b, ∅〉, Σ, K, Tnew〉
 subject to δ(o, b1, brest, ..., bm) = b,

updt-t⟦T, bm, 〈construct-e, b, ∅〉, 〈cont-rmv-e〉⟧ = Tnew

〈〈V, ε〉, Σ, 〈op, 〈vR, ..., o〉, 〈〈N, εN〉, vL, ...〉, K〉, T〉 [prim-arg]

〈〈N, εN〉, Σ, 〈op, 〈〈V, ε〉, vR, ..., o〉, 〈vL, ...〉, K〉, Tnew〉
 subject to V ∉ X,

updt-t⟦T, V, 〈construct-e, N, εN〉, 〈cont-rmv-e〉,
〈cont-add-e, 〈op, 〈〈V, ε〉, vR, ..., o〉, 〈vL, ...〉〉〉⟧ = Tnew

〈〈X, ε〉, Σ, K, T〉 〈〈V, εV〉, Σ, K, Tnew〉 [var]

 subject to Σ(ε(X)) = 〈V, εV〉,
updt-t⟦T, X, 〈construct-e, V, εV〉⟧ = Tnew

〈〈(set X M), ε〉, Σ, K, T〉 [to-assign]

〈〈M, ε〉, Σ, 〈set, 〈X, ε〉, K〉, Tnew〉
 subject to updt-t⟦T, (set X M), 〈construct-e, M, ε〉,

〈cont-add-e, 〈set, 〈X, ε〉〉〉⟧ = Tnew

〈〈V, ε〉, Σ, 〈set, 〈X, εX〉, K〉, T〉 [assign]

〈Σ(σ), Σ[σ 〈V, ε〉], K, Tnew〉
 subject to V ∉ X, εX(X) = σ, Σ(σ) = 〈V1, ε1〉,

updt-t⟦T, V, 〈construct-e, V1, εX〉,
〈variable-update-e, X, 〈σ, 〈V, ε〉〉〉,
〈cont-rmv-e〉⟧ = Tnew

Figure 4. The CESKT machine

If an implementation of the CESKT machine implements
environments and program fragments with sharing, then
each event logged to the trace component is a bounded in-
crement in space consumption. Nevertheless, the machine’s
trace component contains enough information to reconstruct
the rest of the machine state after each step. The ability to re-
construct the machine state provides evidence that the trace

SLE’17, October 23–24, 2017, Vancouver, Canada Xiangqi Li and Matthew Flatt

M, N, L ::= V
 | (M M)
 | (o M M ...)
 | (set X M)

o ::= + | - | * | add1 | sub1 | ...

V ::= X | (λ X M) | b | bool
bool ::= true | false

b ::= number

v ::= 〈V, ε〉

ε ::= ∅ | {(X σ) ...}

B ::= ∅ | {〈σ, v〉 ...}
Σ ::= ∅ | {〈σ, v〉 ...}
A ::= ∅ | {(name attr-val) ...}

T ::= mt | 〈evnt, T〉
σ ::= a location

store-e ::= function-e
 | variable-update-e

X ::= variable-not-otherwise-mentioned

Figure 5. Grammars for the extended CESK machine

updt-t⟦T, N, 〈construct-e, M, ε〉⟧ = 〈evnt, T〉
 subject to {(expression M) (bindings ε)} = A,

〈construct-e, N, core, A〉 = evnt

updt-t⟦T, N, 〈store-e, X, 〈σ, 〈V, ε〉〉〉⟧ = 〈evnt, T〉
 subject to {(name X) (slot σ) (value 〈V, ε〉)} = A,

〈store-e, N, core, A〉 = evnt

updt-t⟦T, N, 〈cont-add-e, cont〉⟧ = 〈evnt, T〉
 subject to {(continuation cont)} = A,

〈cont-add-e, N, core, A〉 = evnt

updt-t⟦T, N, 〈cont-rmv-e〉⟧ = 〈evnt, T〉
 subject to 〈cont-rmv-e, N, core, ∅〉 = evnt
updt-t⟦T, N, et, etrest, ...⟧ = Tnew
 subject to updt-t⟦T, N, et⟧ = T1,

updt-t⟦T1, N, etrest, ...⟧ = Tnew

Figure 6. The updt-t metafunction

component contains all of the information that a debugger
will need.

Consider an input program, M, and a reduction sequence,
M = M0 ↦ M1 ↦ ... ↦ Mm = V. In the CESK machine, the machine
state after i reduction steps is 〈〈Mi, εi〉, Σi, Ki〉 for i ∈ [0, m]. Events
generated in the parallel reduction steps can reconstruct the
machine states in the CESK machine. At each reduction
step, Mi ↦ Mj, in the CESK machine, events generated by the
parallel step, Mi ↦ Mj, can reconstruct the next machine state,
〈〈Mj, εj〉, Σj, Kj〉 from a transitioning state, 〈〈Mi, εi〉, Σi, Ki〉.
The trace does not contain all of the information that

will be needed to construct a domain-specific view of the
computation, however. Although domain-specific details can
be encoded in aspects of the CESKT machine (analogous to
encoding numbers as Church numerals), a more direct and
useful approach is to add an extra instruction to the machine
to support the logging of arbitrary events:

〈〈(core-emit ename L A), ε〉, Σ, K, T〉
〈〈true, ∅〉, Σ, K, 〈evnt, T〉〉
 subject to 〈ename, L, core, A〉 = evnt

In fact, this rule makes the logging parts of all other CESKT
rules redundant in the sense that a source program can be
instrumented with core-emit forms to generate exactly the
events that the other rules would record in the event trace. A

separate report2 contains an instrumentation metafunction
and a proof that an instrumented program without built-in
event logging produces the same trace as relying on built-in
event logging.

The core-emit form, therefore, is our basis of generating
events for debugging. Since core-emit can simulate built-in
events, and since built-in events can reconstruct the CESKT
machine’s entire state, we know that core-emit provides
all of the primitive debugging power that we will need.

5 Mapping Events
Using core-emit directly to implement DSL events would
be as painful as programming DSLs using a pure λ-calculus
directly to implement the DSL’s evaluation. Our next step is
to build a language for conveniently mapping events at one
level of a language tower to events at the next level. That is,
just as amodule can implement a language layer by exporting
macros that translate into the forms of a lower language level,
a language-implementing module should export events that
adapt the ones reporting during evaluation in the lower
language level. Besides translating lower-level events to a
new level, the macros of a language-implementing module
can inject fresh emit calls (which are ultimately translated
into core-emit core forms), and the events generated by
those emit forms are part of the language’s event interface.

5.1 Declaring Events
In the same way that define-syntax binds an identifier to
a macro, the define-event form binds an identifier to an
event description:
(define-event event-id composition-expr option ...)

composition-expr = event-id
| (seq composition-expr ...)
| (disj composition-expr ...)
| (conj composition-expr ...)
| (rep composition-expr n)

option = #:when expr
| #:attributes ([id expr] ...)
| #:specific

The event-id in a composition-expr is a previously de-
fined event, especially one from the language layers that
the current module extends. The composition operators in a
composition-expr are similar to the event expression op-
erators in EBBA [Bates 1995] and involve the sequence oper-
ator, (seq), the disjunction operator, (disj), the conjunction
operator, (conj), and the repetition operator, (rep).

The options of a define-event form further control the
generation and content of an event. A #:when expression
is evaluated each time the event might be generated, and
the generation is blocked if the #:when expression’s result is

2http://www.cs.utah.edu/~xiangqi/dsl-events-appendix.pdf

http://www.cs.utah.edu/~xiangqi/dsl-events-appendix.pdf

Debugging with Domain-Specific Events via Macros SLE’17, October 23–24, 2017, Vancouver, Canada

false. An #:attributes option adds symbol-keyed informa-
tion to the event. The #:specific option connects an event
declaration to the evaluation of an (emit event-id) form.

An exprwithin an #:attributes option can access fields
of the event matching composition-expr through an attr
form to propagate or transform attributes values. When the
event is declared with #:specific, then the expressions can
additionally access variables that are in the environment of
an associated (emit event-id) form.
To support parameterization over additional values for

matching, an event can be defined as

(define-event (event-id arg-id ...) composition-expr
option ...)

In that case, the arg-ids can be used in option expressions,
and all references to event-id must have the form (emit
(event-id arg-expr ...)).

An emit expression, which is typically generated by a
macro, has either the form (emit event) or (emit event
syntax-expr), where event is either event-id or (event-
id arg-expr). When syntax-expr is included, it is used to
associate program-source information with the event, and
syntax-expr is typically a #' form that produces a template.
An emit form can have an associated define-event form
to specify the shape of the emitted event’s event-id and
adjust the way the event is reported.

Only events that are declared with define-event or emit
and then exported with export-event are part of a module’s
event interface:

(export-event event-id ...)

Events generated by lower language levels are not automat-
ically propagated as events from the new language layer.
In the unusual case that a module imports from different
language modules, the macros and events of all imported
languages become visible to the importing module. More
typically, however, a module imports a single language mod-
ule, and so it sees only the syntactic forms (implemented by
macros) and events of that language.

5.2 Examples and Kinds of Event Mappings
When performing event mapping from one language over
another language, a variety of situations arise. Sometimes,
events from the lower-level language can be propagated with
small changes to the next layer. In other cases, events in a
language correspond to a combination of events from a lower-
level language and only when they happen in a particular
evaluation context.
Suppose that we have a DSL program expanded to the

forms in the right box:

Each statement in the DSL program is parsed as a message
S-expression, such as book "5/20" parsed as
(message book "5/20")

and the following macro specifies the message syntax expan-
sion in terms of the lower-level language’s handle-query
and handle-book constructs:
(define-syntax (message stx)

(syntax-case stx (query book)
[(_ query m)
#'(handle-query m)]
[(_ book date)
#'(handle-book date)]))

A message statement in the DSL translates to a function call
in a procedural language. Suppose further that the procedural
language generates a subroutine-e event when a defined
function is called, where subroutine-e is parameterized by
the name of the function to constrain an event consumption.
If we want a message-e event to be associated with the

execution of a message statement, we can take advantage of
the fact that each statement is equal to the call of a handle-
query or handle-book function.We can define the message-
e event in terms of events associated with handle-query
and handle-book:
(define-event message-e

(disj (subroutine-e #:name 'handle-query)
(subroutine-e #:name 'handle-book)))

We categorize message-e as a generic event, since the
event can just be defined through define-event to spec-
ify the composition relationship of events.
As another example, suppose we have an L2 language

that just extends a lower-level L1 language with conditional
clauses, such as when, cond, and a new assignment syntax
set-x.

The related macros are:
(define-syntax (when stx)

(syntax-case stx ()
[(_ test then ...)

SLE’17, October 23–24, 2017, Vancouver, Canada Xiangqi Li and Matthew Flatt

#'(if)])) ; details omitted
(define-syntax (cond stx)

(syntax-case stx ()
[(_ (test then ...) rest ...)
#'(if)]))

(define-syntax (set-x stx)
(syntax-case stx ()

[(_ v)
#'(set! x v)]))

with when and cond expanded into if forms and set-x ex-
panded into set!.

Because L2 is an embedded language, without instrumen-
tation of event mapping for L2, the surface syntax in L2 that
belongs to L1 should automatically have event support de-
fined by L1. For example, suppose that set! is associated
with a variable-update-e event in L1 where the event is
exported to L2. The execution of the (set! x 5) statement in
L2 will automatically generate a variable-update-e event.
We call that kind of event a host event.

Even though (set-x 10) expands to (set! x 10), the
variable-update-e event associated with set! in L1 will
not be lifted to L2’s event stream automatically. The event
must be specifically propagated with an emit declaration.
Avoiding automatic propagation helps hide internal imple-
mentation details. For example, a macro for a form that in-
volves no explicit assignment might be transformed into a
sequence that involves assignment,
....
(set!)
....
(set!)
....

but where the effects are local and not exposed. In the case
of set-x, however, the effect is exposed and explicit; the
set-x acts as a syntactic sugar over set! and shares the
same semantics. Instrumenting the set-x macro with an
explicit emit specification makes it part of the language’s
interface in the case of a set-x expansion.
(define-syntax (set-x stx)

(syntax-case stx ()
[(_ v)
(with-syntax ([cur-stx stx])

#'(begin
(emit variable-update-e #'cur-stx)
(set! x v)))]))

We call this kind of variable-update-e event an embed-
ded event.

Finally, if we want to create a cond-e event for L2’s cond
construct, we can express cond-e in terms of events associ-
ated with the underlying if expansion:
(define-event cond-e if-e)

This declaration registers a listener for the low-level if-e
event and triggers cond-e recognition upon if-e event gen-
eration. However, the cond form can expand into several if
forms along with the if form generated by the when macro

expansion, which would cause multiple cond-e event gen-
eration even if our program just contains one cond form.
In consequence, we need a different kind of event—an ex-
plicit event—to specify runtime context. The explicit event
is declared with a #:specific option:
(define-event cond-e if-e #:specific)

andwe need to add an (emit cond-e) form inside themacro
transformations for cond to specify the desired emission
point in evaluation:
(define-syntax (cond stx)

(syntax-case stx ()
[(_ (test then ...) rest ...)
(with-syntax ([cur-stx stx])

#'(begin
(emit cond-e #'cur-stx)
(if)))]))

5.3 Environment Information in Events
The define-event form supports capturing debugging in-
formation in event attributes either by extracting informa-
tion from constituent events or by obtaining information at
emit sites by directly using identifiers when the #:specific
option is used. The state-e and receive-msg-e events il-
lustrate the uses.
(define-event state-e construct-e

#:attributes ([state
(attr construct-e 'bindings)]))

By using the attr form, the state-e event can access the
bindings attribute value of construct-e.
(define-event receive-msg-e construct-e

#:attributes ([message m]
[type (last (message-tags m))]
[values (message-values m)]
[msg-time (message-time m)])

#:specific)

(define-syntax (module-begin stx)
(syntax-case stx ()

[(_ decl ...)
(with-syntax ([cur-stx stx])

#'(base-module-begin
....
(define handle-msg

(lambda (m)
(emit receive-msg-e #'cur-stx)
(eval-msg m)))

....
decl ...))]))

By declaring #:specific, the receive-msg-e event is able
to access m, message-tags, message-values, and message-
time identifiers that are available in the environment of the
associated emit.
In the CESKT model, construct-e captures all bindings

in the environment at the point that the continuation is
extended. Propagating all such bindings in an expanded
program would reveal too many implementation details of

Debugging with Domain-Specific Events via Macros SLE’17, October 23–24, 2017, Vancouver, Canada

expansion. For example, in Figure 2, the expansion of the
point program into the procedure language introduces a
new point identifier representing a function, which is irrel-
evant to the DSL program; a user of the DSL should see only
that the program creates a p binding.

Consequently, the bindings created inside a macro expan-
sion are not automatically collected by construct-e. To help
programmers declare which bindings should be exposed for
a given language layer, our system includes a new-bindings
form that cooperates with construct-e. For the point ex-
ample, we can add new-bindings to the previous define-
point macro in section 3:
(define-syntax (define-point stx)

(syntax-case stx (x y)
[(_ name (x x-expr) (y y-expr) (op arg ...) ...)
(with-syntax ([point-id

(syntax-local-introduce #'point)])
#'(begin

(new-bindings name #'name)
(define name (point-id x-expr y-expr))
(send name op arg ...) ...))]))

This new-bindings declaration causes construct-e emit-
ted by the lower-level language to include the instantiation
of name in its environment attribute.

5.4 Continuation Information in Events
Similar to environment information in emitted events, lan-
guage implementations that expose continuation events need
to control the emission of events to reflect the language’s
own continuation points, as opposed to the continuation
points of the underlying language. The continuation events
of the lower-level language will typically be too fine-grained
and expose too much information. For example, using a sim-
ple incr form defined by
(define-syntax (incr stx)

(syntax-case stx ()
[(_ v amt)
#'(set v (+ v amt))]))

an expression (incr v 20) expands into (set v (+ v
20)), which has three subexpressions that generate contin-
uation frames, as opposed to the original expression’s single
subexpression.

To aid the construction of suitable continuation events, our
implementation provides new-continuation and remove-
continuation forms, which expand to emit cont-add-e
and cont-rmv-e events. The following is an example of spec-
ifying continuation events for the incr construct:
(define-syntax (incr stx)

(syntax-case stx ()
[(incr v amt)
(with-syntax ([cur-stx stx])

#'(begin0
(set v

(begin
(new-continuation "incr" #'cur-stx)
(+ v amt)))

(remove-continuation #'cur-stx)))]))

The begin and begin0 forms both create sequences, but
the begin0 form returns the result of its first expression
instead of its last expression. The form (new-continuation
"incr" #'incr) emits a cont-add-e before the evaluation
of (+ v amt), and (remove-continuation #'cur-stx)
emits a cont-rmv-e event afterward.

6 Runtime Event Generation
Our CESKT model with core-emit (section 4) shows how
the expanded version of a DSL program can generate core-
level events, although it leaves abstract how the resulting
event stream is consumed. The define-event form and as-
sociated constructs (section 5), meanwhile, help language
implementers specify filters and transformations of events
to create a language-specific event interface. Runtime event
generation and filtering ties these two pieces together. It con-
sumes the low-level events generated by the core language,
and based on the specification of events at each language
layer between the core and a DSL, it emits events that are
suitable for consumption by a DSL-specific debugger.

Figure 7 illustrates the overall pipeline. A DSL implemen-
tation implies both a compiler from the DSL forms to core
forms, an instrumentation of the resulting core forms to
emit events, and a dependency graph of output events on
core events. The events emitted at runtime are triggered and
transformed, based on the dependency graph, and a DSL
debugger presents them to the user.

6.1 Event Dependency Construction
Figure 8 shows the representation of event-related structures
as used by dependency construction. The dependency graph
is represented by G. Each event node t has associated node
information cmpt, and layer distinguishes events generated
at different language layers. An export-event declaration
modifies the layer tag to reflect each language layer.

The construction process starts with the bottom language
and establishes event dependencies in a bottom-up fash-
ion. According to the define-event definition for an event,
event dependencies are created by connecting the event to
the events that it depends on. For every event, e, exported
by export-event, if there exists no event dependency for
e at this language layer, which means that the e event is
inherited from the lower-level language, we create a new
dependency connecting e to the lower-level e.
The semantics of define-event can be formulated as a

register-dep metafunction, which adds an event dependency
into the G graph:

register-dep⟦ename, comp, layer, cond-exp, attr-exp, bool, G⟧

 = G[t cmpt]
 subject to ename@layer = t, convert⟦comp, layer⟧ = cnv,

get-node-type⟦ename⟧ = ntype,

〈cnv, 〈cond-exp, attr-exp, ntype〉, bool〉 = cmpt

SLE’17, October 23–24, 2017, Vancouver, Canada Xiangqi Li and Matthew Flatt

Compile Time

Run Time

DSL Implementation Event Mapping
Instrumentation

DSL Program Event Dependency
Construction

Core Debugger
Core Event
Generation

DSL Event
Generation

DSL Debugger

Figure 7. An event framework for domain-specific event creation and generation

ename ::= etype | (etype V ...)

evnt ::= 〈ename, src, layer, A〉
t ::= ename@layer

state ::= evnt | LIST(evnt, ...)
mem ::= LIST(ename, ...)

R ::= {(t LIST(t, ...)) ...}
F ::= {(t bool) ...}

C ::= {(t 〈ctype, S, mem〉) ...}

D ::= {(t 〈cond-exp, attr-exp, ntype〉) ...}

G ::= {(t cmpt) ...}

P ::= {(t 〈bool, A, emit-src〉) ...}
S ::= {(t state) ...}

cmpt ::= 〈cnv, 〈cond-exp, attr-exp, ntype〉, bool〉
cnv ::= t | 〈ctype, LIST(t, ...)〉

ctype ::= disj | conj | seq | 〈rep, ro〉
ntype ::= internal | abstraction | false

ro ::= + | * | integer
emit-src ::= srcloc

srcloc ::= 〈src, line, col〉

bool ::= true | false
layer ::= a layer tag
comp ::= a composition expression

Figure 8. Event-related structure representation

where comp, cond-exp, attr-exp, and bool are obtained from the
event definition. comp is a representation of the event defi-
nition’s composition-expr, and the convert tags every event
type in comp with the correct layer information. The cond-exp
and attr-exp represent the expressions specified in an event
definition’s #:when and #:attributes options, and the bool
denotes if an event is an explicit event. The ntype encodes the
type of a node, whether it is an internal node created by the
system or another kind of node.

6.2 DSL Event Generation
The preparation step for DSL event generation involves trim-
ming event dependencies and building reverse references. To
reduce the size of events, we keep only event dependencies
needed by the top language level. As events originate from
the core level, we need a push notification mechanism to
trigger events at a higher language level. Every dependency,
e1 Ñ e2, creates a reverse reference, e2 Ñ e1, and at
runtime, the event processing unit listens to core events and
generates a DSL event according to the reverse mapping of
event dependencies and the event definition’s constraints.

Formally speaking, after the completion of G construction,
the reverse references to event nodes, R, is constructed, and
the F, C, and D tables store different aspects of node infor-
mation. The C table stores a mapping of a high-level tagged

event to its recognition constraint and a recognition progress
table, S.
The emission of core events initiates the DSL event gen-

eration process where the event processing unit looks up
the parent nodes of an event in R, a list of event nodes to be
triggered, and tries to trigger the parent node, tp, one-by-one
through trigger. Because the emit form affects the generation
of an explicit event and an embedded event, a P table is used
to record the evaluation of (emit ename stx) forms along
with relevant event information:

update-emit⟦ename, A, stx⟧ = P[t 〈true, A, srcloc〉]
 subject to get-layer-info⟦stx⟧ = layer, ename@layer = t,

get-srcloc⟦stx⟧ = srcloc

A is a set of attribute mappings associated with the ename

event. The triggermetafunction first checks if a tp is an explicit
event by looking up the F table and then attempts to generate
an explicit event instance after the evaluation of emit. To
illustrate, the case of trigger for a high-level, explicit tp event
is:
trigger⟦evnt, tp, srcs, P, F, C, D⟧ = 〈enamep, srcs, layerp, Ap〉
 subject to tp = enamep@layerp,

evnt = 〈ename, src, layer, A〉,
F(ename@layer) = true,

P(ename@layer) = 〈true, Aemit, srcloc〉,
C(tp) = 〈ctype, S, mem〉, updt-s⟦S, evnt⟧ = Snew,
check-comp-constraint⟦Snew, ctype, mem⟧ = true,

D(tp) = 〈cond-exp, attr-exp, ntype〉,
get-comp-events⟦C, D, tp, mem⟧ = LIST(evntc, ...),
check-cond-constraint⟦cond-exp, LIST(evntc, ...)⟧ = true,
get-attributes⟦attr-exp, LIST(evntc, ...), Aemit⟧ = Ap

The check-comp-constraintmetafunction checks whether the cur-
rent recognition state meets its composition requirement
on constituent events, and the check-cond-constraint metafunc-
tion checks if the cond-exp constraint is satisfied by obtain-
ing its current matched constituent event values through
get-comp-events. Since emit can either obtain attribute values
from the emit evaluation context or from its event defini-
tion’s constituent events, get-attributes returns the appropriate
attribute values. The get-attributes metafunction also uses the
updt-attributes metafunction to enrich the event with a time
attribute and updates the loc attribute value if necessary.
The other cases of trigger generate a higher-level event

dispatching on the tp kind. If tp is an embedded event, the
generation rule is:

Debugging with Domain-Specific Events via Macros SLE’17, October 23–24, 2017, Vancouver, Canada

trigger⟦evnt, tp, srcs, P, F, C, D⟧ = 〈enamep, srcp, layerp, Ap〉
 subject to tp = enamep@layerp,

evnt = 〈ename, src, layer, A〉,
P(ename@layer) = 〈true, Aemit, srcloc〉,
get-source⟦srcloc, src⟧ = srcp,
updt-attributes⟦A, srcloc⟧ = Ap

Depending on the value of srcloc, get-source chooses a source
value between srcloc and src.

If tp is a primitive, generic event and the runtime condition
of the event is satisfied, a new event instance is generated
by packing appropriate attribute values from the event it
depends on:

trigger⟦evnt, tp, srcs, P, F, C, D⟧ = 〈enamep, src, layerp, Ap〉
 subject to tp = enamep@layerp,

evnt = 〈ename, src, layer, A〉, C(tp) = NONE,

D(tp) = 〈cond-exp, attr-exp, ntype〉,
check-cond-constraint⟦cond-exp, evnt⟧ = true,
get-attributes⟦attr-exp, evnt⟧ = Ap

Otherwise, if tp is a high-level, generic event, the event
generation rule is similar to the high-level, explicit event
case but with a different mechanism for generating Ap:
trigger⟦evnt, tp, srcs, P, F, C, D⟧ = 〈enamep, srcs, layerp, Ap〉
 subject to tp = enamep@layerp, C(tp) = 〈ctype, S, mem〉,

updt-s⟦S, evnt⟧ = Snew,
check-comp-constraint⟦Snew, ctype, mem⟧ = true,

D(tp) = 〈cond-exp, attr-exp, ntype〉,
get-comp-events⟦C, D, tp, mem⟧ = LIST(evntc, ...),
check-cond-constraint⟦cond-exp, LIST(evntc, ...)⟧ = true,
get-attributes⟦attr-exp, LIST(evntc, ...)⟧ = Ap

In the process of upward event generation, the triggermeta-
function updates events with appropriate src information so
that events belonging to different language layers can be dif-
ferentiated. In the end, the event processing unit just keeps
the event instances at the DSL level and directs these events
to event handlers set up for a debugger implementation.

7 Application
We implemented a debugging framework, Ripple, on top of
the event framework presented in this paper. Ripple relies
on the event framework to instrument DSLs with domain-
specific events, where the generated events interact with
the debugger front end to enable domain-specific debugging
techniques. We worked with three DSLs:

‚ Scratchy:3 an imperative language for writing Scratch-
like applications.

‚ POP-PL [Florence et al. 2015]: a declarative, reactive
prescription language for automating medical treat-
ment.

‚ Medic [Li and Flatt 2015]: a metaprogramming lan-
guage for trace-oriented debugging.

We built three domain-specific debuggers: a Scratchy debug-
ger, a POP-PL debugger (Figure 1), and a Medic debugger.
Because Scratchy is imperative, the Scratchy debugger pro-
vides a statement-by-statement stepping facility similar to
a step-based debugger. The POP-PL debugger records all
3https://docs.racket-lang.org/scratchy

message logs in the system and enables navigation to mes-
sage origins, and the Medic debugger allows users to observe
Medic program transformation effects on another program.
Instead of mapping DSL concepts to the traditional GPL

debugging events, we started with a front-end design to de-
cide what domain concepts to show and mapped domain
concepts to domain-specific events for debugger interac-
tion. For example, the domain-specific events we created are:
construct-e with customized bindings for Scratchy, send-
msg-e and receive-msg-e for POP-PL (explicit events de-
fined in terms of construct-e), and module-entry-e and
insert-e for Medic (an explict event defined in terms of
construct-e). Debugging events serve as back-end repre-
sentation of program states, and the debugger front-end
component operates on the debugging events and imple-
ments debugging techniques tailored to domain needs. The
debugger interface reacts to debugging events according to
specified event handlers.
Domain-specific events free us from a dependence on

GPL debugging events, and they have helped us to build
domain-specific debuggers with flexible debugging opera-
tions. Since our event design allows reusing events from
other languages, and since the pattern matching abilities of
macros allow central event instrumentation for a category
of language constructs, the amount of event instrumentation
work is relatively small compared to the debugger interface
implementation. For example, Scratchy provides 17 opera-
tions for object manipulation, such as move x by expr and
forward by expr, but these operations are implemented by
just one define-sprite-method macro as a single point of
control. Event instrumentation with define-event or emit
for Scratchy, POP-PL, and Medic involves 18, 12, and 11 lines
of code, respectively, while the interface implementation is
mostly over 100 lines of code.

8 Related Work
Event-based debugging for GPLs include Coca [Ducasse
1999], RAIDE [Johnson 1977], Dalek [Olsson et al. 1990],
EBBA [Bates 1995], UFO [Auguston et al. 2003], and Mz-
Take [Marceau et al. 2006]. Each system employs a different
event model, but the event models in Dalek and EBBA are
similar to ours. In addition to primitve events, Dalek provides
a machanism for defining high-level events. EBBA views de-
bugging as a process of building models of expected program
behavior where the model is based on events. EBBA uses
sequential, choice, concurrency, and repetition event expres-
sion operators to model the behavior of a program, which
inspired our design for high-level events.

Debugging support for DSLs is relatively new compared to
debugging support for GPLs. DDF [Wu et al. 2008], LISA [Hen-
riques et al. 2005], and TIDE [Van Den Brand et al. 2005]
rely on the DSL grammar or language specification to enable
debugger support. In DDF, the DSL grammar is augmented

https://docs.racket-lang.org/scratchy

SLE’17, October 23–24, 2017, Vancouver, Canada Xiangqi Li and Matthew Flatt

with additional code to address the abstraction gap from a
GPL debugger to a DSL debugger, and the code can also be
weaved with an aspect-oriented approach [Wu et al. 2005].
Lindeman et al. [2011] propose implementing a debugger
declaratively with event mappings to four fixed events. The
moldable debugger [Chis et al. 2014] supports customizing
events based on a common set of primitive events. However,
we allow event customization on top of flexible events.

In the realm of domain-specificmodeling languages, events
are also used to observe and control the behavior of a model.
BCOoL [Deantoni 2016] relies on domain-specific events
to coordinate the behavior of heterogeneous languages. A
partly generic omniscient debugging [Bousse et al. 2015],
which was proposed for executable domain-specific model-
ing languages, uses events to capture execution states needed
for omniscient debugging. In comparison, our core events
aim at capturing whole machine states including informa-
tion about continuations, and our more general event model
offers a means to capture a variety of information. For non-
executable models, model simulators and model transfor-
mations define the semantics of models, which can also be
enabled with debugging support. Simulators can be instru-
mented with debugging operations [Van Mierlo et al. 2017],
and an omniscient debugging technique can also be provided
for model transformations [Corley et al. 2017].

Acknowledgments
This workwas supported by the National Science Foundation
through grant number CNS-1526324.

References
Mikhail Auguston, Clinton Jeffery, and Scott Underwood. A Moni-

toring Language for Run Time and Post-Mortem Behavior Anal-
ysis and Visualization. In Proc. Fifth Intl. Wksp. on Automated
Debugging, 2003.

Peter C. Bates. Debugging Heterogeneous Distributed Systems
Using Event-Based Models of Behavior. ACM Transactions on
Computer Systems 13(1), 1995.

Erwan Bousse, Jonathan Corley, Benoit Combemale, Jeff Gray, and
Benoit Baudry. Supporting Efficient and Advanced Omniscient
Debugging for xDSMLs. In Proc. Software Language Engineering,
2015.

Stephen Chang, Alex Knauth, and Ben Greenman. Type Systems as
Macros. In Proc. ACM Sym. Principles of Programming Languages,
2017.

Andrei Chis, Tudor Girba, and Oscar Nierstrasz. The Moldable
Debugger: a Framework for Developing Domain-Specific De-
buggers. Software Language Engineering 8706, 2014.

Jonathan Corley, Brian P. Eddy, Eugene Syriani, and Jeff Gray. Effi-
cient and Scalable Omniscient Debugging for Model Transfor-
mations. Software Quality Journal 25(1), 2017.

Julien Deantoni. Modeling the Behavioral Semantics of Heteroge-
neous Languages and their Coordination. In Proc. Architecture
Centric Virtual Integration, 2016.

Mireille Ducasse. Coca: An Automated Debugger for C. In Proc. Intl.
Conf. on Software Engineering, 1999.

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram
Krishnamurthi, Eli Barzilay, Jay McCarthy, and Sam Tobin-
Hochstadt. The Racket Manifesto. In Proc. 1st Summit on Ad-
vances in Programming Languages, 2015.

Mattias Felleisen and Daniel P. Friedman. A Calculus for Assign-
ments in Higher-Order Languages. In Proc. ACM Sym. Principles
of Programming Languages, 1987.

Spencer P. Florence, Burke Fetscher, Matthew Flatt, William H.
Temps, Tina Kiguradze, Dennis P. West, Charlotte Niznik, Paul
R. Yarnold, Robert Bruce Findler, and Steven M. Belknap. POP-
PL: A Patient-Oriented Prescription Programming Language.
In Proc. Generative Programming and Component Engineering,
2015.

Pedro Rangei Henriques, Maria Joao Varanda Pereira, Marjan
Mernik, Mitja Lenic, Jeff Gray, and Hui Wu. Automatic Gen-
eration of Language-Based Tools Using the LISA System. IEE
Proceedings - Software 152(2), 2005.

Mark Scott Johnson. The Design of a High-Level, Language-
Independent Symbolic Debugging System. In Proc. ACM ’77
Annual Conf., 1977.

Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and
Bruce Duba. Hygienic Macro Expansion. In Proc. ACM Sym. on
Lisp and Functional Programming, 1986.

Xiangqi Li and Matthew Flatt. Medic: Metaprogramming and Trace-
Oriented Debugging. In Proc. Wksp. on Future Programming,
2015.

Ricky T. Lindeman, Lennart C. L. Kats, and Eelco Visser. Declara-
tively Defining Domain-Specific Language Debuggers. In Proc.
Generative Programming and Component Engineering, 2011.

Guillaume Marceau, Gregory H. Cooper, Jonathan P. Spiro, Shri-
ram Krishnamurthi, and Steven P. Reiss. The Design and Imple-
mentation of a Dataflow Language for Scriptable Debugging.
Automated Software Engineering 14(1), 2006.

Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and
How to Develop Domain-Specific Languages. ACM Computing
Surveys 37(4), 2005.

Ronald A. Olsson, Richard H. Crawford, and W. Wilson Ho. Dalek:
A GNU, Improved Programmable Debugger. In Proc. USENIX
Technical Conf., 1990.

Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper,
Matthew Flatt, and Matthias Felleisen. Languages as Libraries.
In Proc. ACM Conf. Programming Language Design and Imple-
mentation, 2011.

Mark G. J. Van Den Brand, B. Cornelissen, Pieter A. Olivier, and
Jurgen J. Vinju. TIDE: A Generic Debugging Framework — Tool
Demonstration. Electronic Notes in Theoretical Computer Science
141(4), 2005.

Arie van Deursen, Paul Klint, and Joost Visser. Domain-Specific
Languages: An Annotated Bibliography. ACM SIGPLAN Notices
35(6), 2000.

Debugging with Domain-Specific Events via Macros SLE’17, October 23–24, 2017, Vancouver, Canada

Simon Van Mierlo, Claudio Gomes, and Hans Vangheluwe. Explicit
Modelling and Synthesis of Debuggers for Hybrid Simulation
Languages. In Proc. Sym. on Theory of Modeling and Simulation,
2017.

Martin P. Ward. Language Oriented Programming. Software—
Concepts and Tools 15(4), 1994.

Hui Wu, Jeff Gray, and Marjan Mernik. Grammar-Driven Genera-
tion of Domain-Specific Language Debuggers. Software—Practice
& Experience 38(10), 2008.

Hui Wu, Jeff Gray, Suman Roychoudhury, and Marjan Mernik.
Weaving a Debugging Aspect into Domain-Specific Language
Grammars. In Proc. Sym. on Applied Computing, 2005.

	Abstract
	1 Introduction
	2 Motivation
	3 Implementing DSLs with Macros
	4 Core Events
	5 Mapping Events
	5.1 Declaring Events
	5.2 Examples and Kinds of Event Mappings
	5.3 Environment Information in Events
	5.4 Continuation Information in Events

	6 Runtime Event Generation
	6.1 Event Dependency Construction
	6.2 DSL Event Generation

	7 Application
	8 Related Work
	Acknowledgments
	References

