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Abstract

Our experimental compiler translates Java to PLT Scheme; it en-
ables the use of Java libraries within Scheme programs, and it
makes our Scheme programming tools available when program-
ming with Java. With our system, a programmer can extend and
use classes from either language, and Java programmers can em-
ploy other Scheme data by placing it in a class using the Java native
interface.

PLT Scheme’s class-system, implemented with macros, provides a
natural target for Java classes, which facilitates interoperability be-
tween the two languages, and PLT Scheme’smodule maintains Java
security restrictions in Scheme programs. Additionally,module ’s
restrictions provide a deeper understanding of a Java compilation
unit and make Java’s implicit compilation units explicit.

1 Why Compile Java to Scheme?

Scheme implementations that compile to Java (or JVM bytecode)
benefit from the extensive infrastructure available for Java pro-
grams, including optimizing just-in-time compilers, JVM debug-
ging tools, and an impressive roster of Java-based libraries. For PLT
Scheme, we have inverted the equation, compiling Java to Scheme.
We thus obtain a Java implementation with access to PLT Scheme’s
libraries and facilities—especially the DrScheme environment and
its teaching modes [5], which is the primary motivation for our ef-
fort [9].

By compiling Java to Scheme, we also gain access to the many
libraries implemented in Java, as long as we can bridge the gap
between Java and Scheme. In many ways, the translation is the
same for Java-to-Scheme compilation as it is for Scheme-to-Java,
but the trade-offs are somewhat different. In particular, libraries
that contain native calls are no problem for Scheme-to-Java compi-
lation, but Java-to-Scheme must provide special support for native
methods. In contrast, a Scheme compilation model with expressive
macros accommodates Java code more easily than Java’s model of

Permission to make digital or hard copies, to republish, to post on servers or to redis-
tribute to lists all or part of this work is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. To otherwise copy or redistribute requires
prior specific permission.
Fifth Workshop on Scheme and Functional Programming.September 22, 2004, Snow-
bird, Utah, USA. Copyright 2004 Kathryn E Gray and Matthew Flatt.

compilation accommodates Scheme.

Our Java-to-Scheme compiler remains a work in progress. Even so,
we have gained experience that may be useful to future implemen-
tors of Java-to-Scheme compilers.

In the long run, we expect that many useful Java libraries will fit into
our implementation, as PLT Scheme provides a significant set of
libraries of its own. For example, we expect that the subset of AWT
used by Swing can be mapped onto PLT Scheme’s GUI primitives,
thus enabling Swing-based applications to run in PLT Scheme. In
other words, we believe that many Java libraries can be made to run
by re-implementing certain “native” Java methods in PLT’s native
language, Scheme.

In this report, we describe

• a strategy for compiling Java classes to PLT Scheme, which
exploits a macro-implemented extension of Scheme for
object-oriented programming;

• the interaction of the strategy with PLT Scheme’s module sys-
tem;

• how we define the translation of run-time values between Java
and Scheme; and

• open problems that we have not yet addressed.

Before introducing our compilation strategy, we begin with a de-
scription of two libraries that we would like to embed in Scheme,
and the strategy of doing so. One is relatively easy to support, and
the other is more difficult.

2 Java Libraries

Kyle Siegrist’s probability and statistics library (PSOL) [16] pro-
vides various mathematical procedures. The library also deploys a
graphical interface to experiment with the procedures, but the inter-
face is not necessary to use the library’s primary functionality.

Terence Parr’s ANTLR [13] provides parsing technology that per-
mits grammar inheritance.

These two libraries are representative of the kinds of code and de-
pendencies found in non-graphical Java libraries. We estimate that
roughly 10 to 15% of Java libraries have requirements similar to
PSOL, while 30 to 40% are similar to ANTLR. The remaining li-
braries tend to depend on graphic capabilities.



Naturally, both packages rely on the basic components of Java’s
class system, including classes and interfaces, overloading, and
static (as well as instance) members, as well as loops and arrays.
Both libraries also depend on some of Java’s core libraries, includ-
ing Object , String , andThrowable .

PSOL depends on Java’sMath library and numeric wrapper classes.
The latter provides the ability to use primitive values (such as1.2 )
as objects, as well as functionality over numbers. These libraries
rely on native methods with existing counterparts in PLT Scheme.

ANTLR requires several language features that we do not yet
support: nested classes (commonly known as inner classes), the
switch statement, and reflection. The first two, nested classes and
switch , simply have not been implemented yet in our system, but
there are no technical challenges. Reflection is more difficult than
the other two, though, and we discuss this problem in Section 5.5.2.
ANTLR further relies on utility libraries andIO , which in turn rely
on nested classes and reflection. SeveralIO classes rely on native
methods that have counterparts in PLT Scheme.

Neither PSOL nor ANTLR immediately ran in our current imple-
mentation. In the case of PSOL, we easily implemented the rele-
vantMath methods and wrapper classes, so that PSOL now runs in
non-graphical mode. We expect that implementing theIO methods
needed for ANTLR will be similarly easy, but reflection support is
a much larger obstacle. Support for graphical PSOL is completely
out of reach in the short term.

3 Classes and Objects in PLT Scheme

PLT Scheme was designed from the start to support GUI program-
ming with class-based, object-oriented constructs. Originally, the
class implementation was built into the interpreter’s core, and each
object was implemented as a record of closures. Our current sys-
tem is more Java-like, in that an object is a record of fields plus a
per-class method table, and it is implemented outside the core by a
collection of (an extended)syntax-case macros.

3.1 Class Constructs

A class is created with the keywordclass , and the resulting form is
much like Java’s. It creates a new class given a superclass and a col-
lection of method overrides, new methods, and new fields. Syntac-
tically, class consists of an expression for the superclass followed
by a sequence of declarations.

The following is a partial grammar forclass clauses:

expr = · · ·
| (class super-expr clause ...)

clause = (field init-decl ...)
| expr
| (init init-decl ...)
| (public name ...)
| (override name ...)
| (private name ...)
| (define name method )
| (inherit name ...)

init-decl = name
| ( name init-expr )

method = (lambda formals expr 0 expr ...)

Instead of a constructor, a class containsfield declarations and
other expr s to evaluate each time the class is instantiated. An
init introduces a keyword-based initialization argument (possibly
with a default value) to be supplied when the class is instantiated.
The public form names the new public methods defined in the
class,override names the overriding methods defined in the class,
private names private methods. Each method definition looks
like a function definition usingdefine and a name declared as
public , override , or private . Macros such asdefine/public
(not shown in the grammar) combine the declaration and definition
into a single form.

The inherit form names methods to be inherited from the su-
perclass. Inherited methods must be declared explicitly because
classes are first-class values in PLT Scheme, and a class’s super-
class is designated by an arbitrary expression. The advantage of
first-class classes is that a mixin can be implemented by placing a
class form inside alambda [6]. Obviously, Java code contains
no mixin declarations, but as we note later in Section 7.2, mixins
provide a convenient solution to certain interoperability problems.

The built-in classobject% serves as the root of the class hierar-
chy, and by convention,% is used at the end of an identifier that
is bound to a class. As in Java, theclass system supports only
single-inheritance. A class explicitly invokes the body expressions
of its superclass usingsuper-new .

Within a class body, fields and methods of the class can be ac-
cessed directly, and fields can be modified usingset! . Initializa-
tion arguments can be accessed only from field initializers and other
expressions, and not in method bodies. For example, a stack class
can be implemented as follows:

(define stack%
(class object%

(public push pop )
(init starting-item )
(field ( content (list starting-item )))
(define push

(lambda ( v )
(set! content (cons v content ))))

(define pop
(lambda ()

(let (( v (car content )))
(set! content (cdr content ))
v )))

(super-new)))

Thenew form instantiates a class. Its syntax is

(new class-expr ( init-name expr ) ...)
; ⇒ an object

where eachinit-name corresponds to aninit declaration in the
class produced byclass-expr . For example, a stack instance
(that initially contains a5) is created as follows:

(define a-stack (new stack% ( starting-item 5)))

Thesend form invokes a method of an instance,

(send obj-expr method-name arg-expr ...)
; ⇒ method result



wheremethod-name corresponds to apublic method declara-
tion in obj-expr ’s class (or one of its super classes). For exam-
ple,send is used to push and pop items ofa-stack :

(send a-stack push 17)
(send a-stack pop ) ; ⇒ 5

Each execution ofsend involves a hash-table lookup for
method-name ; to avoid this overhead for a specific class, a pro-
grammer can obtain a generic function usinggeneric and apply it
with send-generic :

(generic class-expr method-name ); ⇒ a generic
(send-generic obj-expr generic-expr

arg-expr ...) ; ⇒ method result

In accessing fields, the formsclass-field-accessor and
class-field-mutator produce procedures that take an instance
of the given class and get or set its field.

(class-field-accessor class-expr field-name )
(class-field-mutator class-expr field-name )

where field-name corresponds to afield declaration in the
class.

By default, afield , init , or method name has global scope, in the
same sense as a symbol. By using global scope for member names,
classes can be easily passed among modules and procedures (for
mixins or other purposes).

A name can be declared to have lexical scope using
define-local-member-name :

(define-local-member-name name ...)

When aname is so declared and used withinit , field , orpublic ,
then it is only accessible throughoverride , inherit , new, send ,
generic , class-field-accessor , and class-field-mutator
in the scope of the declaration. At PLT Scheme’s module
level, local member names can be imported and exported, just
like macros. At run-time, the values produced bygeneric ,
class-field-accessor , andclass-field-mutator can be used
to communicate a method or field to arbitrary code.

For example, we can usedefine-local-member-name to make
the content field private1 to the scope of thestack% declara-
tion:

(define-local-member-name content )
(define stack% (class ...))
(define stack-content

(class-field-accessor stack% content ))
(define ( empty-stack? s )

(null? ( stack-content s )))

To support interfaces, PLT Scheme offers aninterface form, plus
a class ∗ variant ofclass that includes a sequence of expressions
for interfaces. An interface consists of a collection of method names
to be implemented by a class, and like a class, it is a first-class
object. As in Java, an interface can extend multiple interfaces.

1The class form also supports private field declarations, but we
omit them for brevity.

expr = · · ·
| (class ∗ super-expr

( interface-expr ...)
clause ...)

| (interface ( super-expr ...) name ...)

Thegeneric form accepts an interface in place of a class, but the
current implementation of generics offers no performance advan-
tage for interfaces.

3.2 PLT Scheme vs. Java

If PLT Scheme’s class system were not already Java-like, we
would have implemented new forms via macros to support Java-
to-Scheme compilation. This layering allows us to develop and test
the core class system using our existing infrastructure for Scheme,
including debugging and test support.

PLT Scheme’s class system does not include inner classes or static
methods, so the Java-to-Scheme step transforms those Java con-
structs specially. Static methods are easily converted to procedures,
and inner classes have strange scoping rules that seem better han-
dled before shifting to macro-based expansion. Similarly, Java’s
many namespaces are transferred into Scheme’s single namespace
by the compiler, rather than by macros. In other words, we use
macros to implement the parts of the compiler that fit naturally with
lexical scope and local expansion, and we perform other tasks in the
compiler.

4 Compilation Model

A single Java source file typically contains onepublic class (or
interface). Often, the file itself corresponds to a compilation unit,
so that one.java file can be compiled to one.class (or, in our
case, to one.scm file).

In general however, reference cycles can occur among.java files,
as long as they do not lead to inheritance cycles. Thus, the compi-
lation unit corresponds to several mutually dependent.java files.
For example, one class may refer to a field of another class, and
compiling this reference requires information about the structure of
the referenced class. In contrast, merely using a class as an identi-
fier’s type does not necessarily require information about the class,
especially if the identifier is not used.

More concretely, the code in Figure 1 corresponds to three source
files, one for each class. CompilingEmpty requires knowledge of
the superclassList , while compilingList requires knowledge of
Empty for the constructor call. Similarly,List refers toCons and
Cons refers toList . Thus the three classes must all be compiled at
the same time. This kind of cyclic reference appears frequently in
real Java code.

Java’s packages are orthogonal to compilation units because a
group of mutually dependent.java files might span several Java
package s. Furthermore, a mutually dependent group of files rarely
includes all files for a package, so forcing a compilation unit to be
larger than a package would lead to needlessly large compilation
units. Finally, in most settings, a Java package can be extended
by arbitrary files that simply declare membership in the package,
which would cause an entire package to recompile unnecessarily.



To a first approximation, our Java-to-Scheme compiler produces a
single Schememodule for each collection of mutually dependent
Java sources, wheremodule is the unit of compilation for PLT
Scheme code [7]. Each class used by, but not a member of, the
dependent group isrequire -ed into themodule . The Java specifi-
cation [8] requires that each class be initialized and available prior
to its first use, which therequire statement ensures.

Themodule is also a unit of organization at the Scheme level, and
for interoperability, we would like to maintain the organization of
the Java library in the Scheme program. Thus, our Java-to-Scheme
compiler actually producesN + 1 modules forN mutually depen-
dent Java sources: one that combines the Java code into a compila-
tion unit, and then one for each source file to re-export the parts of
the compilation unit that are specific to the source.2 Thus Scheme
and Java programmer alike import each class individually. For ex-
ample, compiling Figure 1 results in four modules: A composite
module that contains the code of all three classes and exports all
definitions, aList module that re-exportsList andmain , anEmpty
module that re-exportsEmpty , and aCons module that re-exports
Cons and field-relevant information.

In practice, we find that groups of mutually dependent files are
small, so that the resulting compilation units are manageable. This
is no coincidence, since any Java compiler would have to deal with
the group as a whole. In other words, this notion of compilation
unit is not really specific to our compiler. Rather, having an explicit
notion of a compilation unit in our target language has forced us
to understand precisely what compilation units are in Java, and to
reflect those units in our compiler’s result.

Currently, our compiler produces an additional file when generat-
ing Scheme from Java code. The extra file contains Java signature
information, such as the types and names of fields and methods in
a class, which the compiler needs to process additional compilation
units. Other Java compilers typically store and access this infor-
mation in a.class directly, and in a future version of our com-
piler, we intend to explore storing this compile-time information
in a module in much the same way that compile-time macros are
stored inmodule s.

5 Compilation Details

Our compiler begins by parsing Java code using a LEX-/YACC-
style parser generator. Source tokens are quickly converted into
location-preserving syntax identifiers, as used in macros. Thus, as
the generated Scheme code is processed by the Scheme compiler,
source information from the original Java program can be preserved
during Scheme compilation. This source-location information is
used mainly by DrScheme tools or for reporting run-time errors.

As our primary motivation for this work (pedagogic Java subsets)
requires control over all error messages reported from the compiler,
we chose to compile Java source instead of Java bytecode. While
this limits the libraries available to our system, in the future we can
use existing bytecode interpreting libraries to alleviate this limita-
tion.

Java and PLT Scheme both strictly enforce an evaluation order on
their programs. Coincidentally, both enforce the same ordering on
function arguments and nested expressions. Therefore, those Java

2If a class is not a member of any dependency cycle, then the
compiler produces only one module.

abstract class List {
abstract int length();

static void main() {
Test.test(new Empty().length(), 0);
Test.test(new Cons(1,

new Empty()).length(),
1);

}
}

class Empty extends List {
int length() { return 0; }

}

class Cons extends List {
int car;
List cdr;
Cons( int c, List cdr ) {

this.car = c;
this.cdr = cdr;

}
int length() { return 1 + cdr.length(); }

}
Figure 1. A Cyclic Java program

constructs which differ from Scheme only in syntax have a straight-
forward translation. For example,

int a = varA + varB, b = varA - varB;
if (a+b <= 2)

res = a;
else

res = b;

translates into

(let (( a ( + varA varB ))
( b ( − varA varB )))

(if ( <= ( + a b) 2)
(set! res a )
(set! res b )))

wrapped with the appropriate source location and other informa-
tion. Indeed, the majority of Java’s statements and expressions
translate as expected.

Currently, mathematical operations directly use standard Scheme
operations where possible. Thus, unlike the Java specification,
numbers do not have a limited range and will automatically be-
come bignums. In the future, our compiler will use mathematical
operations that overflow as in the Java specification.

5.1 Classes

A Java class can contain fields, methods, nested classes (and inter-
faces), and additional code segments, each of which can be static.
Our Scheme class is similar, except that it does not support static
members. Nevertheless, a static member closely corresponds to a
Scheme function, value, or expression within a restricted names-
pace, i.e., amodule , so static Java members are compiled to these
scheme forms.



An instance of a class is created with thenew form described in
Section 3.1. As noted in that section, PLT Scheme’snew triggers
the evaluation of the expressions in the top level of the class body.
These expressions serve the same purpose as a single Java construc-
tor. However, a Java class can contain multiple constructors, pre-
venting a direct translation from a Java constructor to a sequence
of top-level expressions. Instead, we translate Java constructors as
normal methods in the Scheme class, and we translate a Javanew
expression into a Schemenew followed by a call to a constructor
method. This behavior adheres to the guidelines for class instantia-
tion provided by Java’s specification [8].

5.2 Fields & Methods

Non-static Java fields translate into Schemefield declarations.
A static Java field, meanwhile, translates into a Scheme top-level
definition. Thus, the fields

static int avgLength;
int car;

within the classCons become, roughly

(define avgLength 0)

and

(define Cons
(class · · ·

(field (car 0)) · · ·))

However, the above translation does not connect the variable
avgLength to the containing classCons. If multiple classes within
a compilation unit contain a static fieldavgLength , the definitions
would conflict. For non-static fields, Scheme classes do not al-
low subclasses to shadow field names again potentially allowing
conflicts. Additionally, to avoid conflicts between Java’s distinct
namespaces for fields, methods, and classes, we append a˜f to the
name. Therefore, we combineavgLength with the class name
and˜f , forming the result asCons-avgLength˜f , andcar be-
comesCons-car˜f . Note that Scheme programmers using this
name effectively indicate the field’s class.

Compilation generates a mutator function for both of these fields,
plus an accessor function for the instance (non-static ) field. Since
themodule form prohibits mutating an imported identifier, the mu-
tator functionCons-avgLength-set! provides the only means
of modifying the static field’s value. If the static field isfinal , this
mutator is not exported. Also, instance field mutators are not gener-
ated when they arefinal . Thus, even without compile-time check-
ing, Scheme programmers cannot violate Java’sfinal semantics.

Similarly, instance methods translate into Scheme methods and
static methods into function definitions with the class name ap-
pended, but the name must be further mangled to support overload-
ing. For example, the classList in Figure 2 contains two methods
namedmax, one with zero arguments, the other expecting one in-
teger. The methodmax(int) translates intomax-int , andmax
translates intomax. This mangling is consistent with the Java byte-
code language, where a method name is a composite of the name
and the types of the arguments. Also, since “- ” may not appear in
a Java name, our convention cannot introduce a collision with any
other methods in the source.3

3We do not add a-m to method names, because˜f distin-
guishes fields from methods, and method and class names must be

abstract class List {
abstract int max();
abstract int max(int min);

}
Figure 2. Overloaded methods

As mentioned in Section 5.1, constructors are compiled as methods,
which we identify with special names. The constructor forCons in
Figure 1 translates intoCons-int-List-constructor . The
-constructor suffix is not technically necessary to avoid con-
flicts, but it clarifies that the method corresponds to a constructor.

A private Java memberdoes nottranslate to aprivate Scheme
member, becausestatic Java members are not part of the Scheme
class, but Java allows them to access all of the class’s members. We
protectprivate members from outside access by making the mem-
ber name local to a module withdefine-local-member-name ; the
Java-to-Scheme compiler ensures that all accesses within a com-
pilation unit are legal. Our compiler does not currently preserve
protection forprotected and package members.

5.3 Statements

Most Java statements (and expressions) translate directly into
Scheme. The primary exceptions arereturn , break , continue ,
and switch , which implement statement jumps. For all except
switch ,4 we implement these jumps withlet/cc :5

(define-syntax let/cc
(syntax-rules ()

((let/cc k expr ...)
(call-with-current-continuation

(lambda ( k ) expr ...)))))

A return translates into an invocation of a continuation that was
captured at the beginning of the method. For example, the method
length from Empty in Figure 1 becomes

(define/public length
(lambda ()

(let/cc return-k
( return-k 0))))

The statementsbreak andcontinue terminate and restart afor ,
while , or do loop, respectively. To implement these, we capture
suitable continuations outside and inside the loop, such that

while(true) {
if (x == 0)

break;
else if (x == 5)

continue;
x++;

}

becomes

distinguished already at the Java source level.
4We have not implementedswitch .
5We actually uselet/ec , which captures an escape-only con-

tinuation.



(let/cc break-k
(let loop ()
(let/cc continue-k

(when #t
(if ( = x 0)

( break-k )
(if ( = x 5)

( continue-k )
(set! x ( + x 1))))

( loop )))))

As it happens,let/cc is expensive in PLT Scheme. We plan to ap-
ply a source-to-source optimizer to our Java-to-Scheme compiler’s
output to eliminate theselet/cc patterns, putting each statement in
a separateletrec -bound function and chaining them. Although we
could avoidlet/cc in the output of our Java-to-Scheme compiler,
it is easier to translate most Java statements directly to Scheme, and
then work with Scheme code to optimize.

5.4 Native Methods

Most Java implementations use C to provide native support. Our
system, naturally, uses Scheme as the native language. When our
compiler encounters a class usingnative methods, such as

class Time {
static native long getSeconds(long since);
native long getLifetime();

}

the resulting module for Time require s a Scheme module
Time-native-methods which must provide a function for
each native method. The name of the native method must be
the Scheme version of the name, with-native appended at the
end. Thus a native function forgetSeconds should be named
Time-getSeconds-long-native andgetLifetime should
begetLifetime-native .

Within the compiled code, a stub method is generated for each
native method in the class, which calls the Scheme native func-
tion. When getSeconds is called, its argument is passed to
Time-getSeconds-long-native by the stub, along with the
class value, relevant accessors and mutators, and generics for pri-
vate methods. An instance method, such asgetLifetime , addi-
tionally receivesthis as its first argument.

5.5 Constructs in Development

We have not completed support ofswitch , labeled statements,
nested classes, and reflection. The first two are straightforward, and
we discuss our design of the other two further in this section. Our
partial implementation of nested classes suggests that this design is
close to final.

5.5.1 Nested Classes

In Java, a nested class may either bestatic or an instance class,
also known as an inner class. An inner class can appear within
statement blocks or afternew (i.e. an anonymous inner class).

Static nested classes are equivalent to top-level classes that have the
same scope as their containing class, with the restriction that they
may not contain inner classes. These can be accessed without di-
rectly accessing the containing class. When compiled to Java byte-

codes, nested classes are lifted out and result in separate.class
files. We equivalently lift a nested class, and provide a separate
module for external access. We treat a nested class and its container
as members of a cycle, placing both in the same module.

Inner classes are also compiled to separate classes. Unlike static
nested classes, they may not be accessed except through an instance
of their containing class. A separate module is therefore not pro-
vided, and construction may only occur through a method within
the containing class.

The name of a nested class is the concatenation of the containing
class’s name with the class’s own name. ClassB in

class A {
class B {
}

}

is accessed asA.B . For anonymous inner classes, we intend to
follow the bytecode strategy: the class will be given a name at
compile-time, the containing class name appended with a call to
gensym , and then lifted as other nested classes.

5.5.2 Reflection

Java supports multiple forms of reflection: examining and inter-
acting with classes and objects specified at runtime; dynamically
extending classes; and modifying the means of class loading and
compilation. The first one can be supported either with macros or
generating methods during compilation to provide the data. We do
not yet know how the second will be supported, or what support for
the third would mean within our system.

The first form of reflection allows users to create new class in-
stances with strings, inspect and modify fields, call methods, and
inspect what fields and methods are available. The last of these is
easily supported by generating the information during compilation
and storing it in an appropriate method. The other functionality can
be supported through Scheme functions.

6 Run-Time Support

Java provides two kinds of built-in data: primitive values, such as
numbers and characters, and instances of predefined classes. The
former translate directly into Scheme, and most of the latter (in
java.lang ) can be implemented in Java. For the remainder of the
built-in classes, we define classes directly in Scheme.

6.1 Strings

Although theString class can be implemented in Java using an
array ofchar s, we implementString in Scheme. This implemen-
tation allows a Scheme string to hold the characters of a Java string,
thus facilitating interoperability. From the Scheme perspective, a
JavaString provides aget-mzscheme-string method to re-
turn an immutable Scheme string.

6.2 Arrays

A Java array cannot be a Scheme vector, because a Java array can be
cast to and fromObject and because assignments to the array in-
dices must be checked (to ensure that only objects of a suitable type
are placed into the array). For example, an array created to contain



List objects might be cast toObject[] . Assignments into the ar-
ray must be checked to ensure that onlyList , Cons, andEmpty
objects appear in the array.

To allow casts and implement Java’s restrictions, a Java array is an
instance of a class that descends fromObject . The class is entirely
written in Scheme, and array content is implemented through a pri-
vatevector . Access and mutation to thevector are handled by
methods that perform the necessary checks.

6.3 Exceptions

PLT Scheme’s exception system behaves much like Java’s. A value
can be raised as an exception usingraise , which is like Java’s
throw , and an exception can be caught usingwith-handlers .
The with-handlers form includes a predicate for the excep-
tion and a handler, which is analogous to Java’s implicit in-
stance test withcatch and the body of thecatch form. The
body of a with-handlers form corresponds to the body of a
try before catch . We implement Java’sfinally clause using
dynamic-wind .

Unlike Java’sthrow , the PLT’sraise accepts any value, not just
instances of a throwable. Nevertheless, PLT tools work best when
the raised value is an instance of theexn record. This record con-
tains fields specifying the message, source location of the error, and
tracing information.

Our implementation of theThrowable class connects Java excep-
tion objects to PLT Scheme exception records. AThrowable in-
stance contains a PLT exception record, and when theThrowable
is given tothrow , the exception record is extracted and raised. This
exception record is an extension of the base PLT exception record,
with an added field referencing theThrowable instance. If acatch
form catches the exception, theThrowable can be extracted.

Besides generally fostering interoperability, this re-use of PLT
Scheme’s exception system ensures that Java programs running
within DrScheme get source highlighting and stack traces for er-
rors, etc. All of Java’s other built-in exception classes (which derive
from Throwable) are compiled from source.

7 Interoperability

Java–Scheme interoperability is not seamless in our current imple-
mentation, but programs written in one language can already access
libraries written in the other.

7.1 Java from Scheme

A compiled Java library is amodule containing Scheme definitions,
so that importing the library is therefore as simple as importing
a Scheme library. Scheme programmers gain access to the class,
(non-private) static members, field accessors, and nested classes of
the Java code, and they can derive new classes and interfaces from
the Java classes and interfaces. In general, they may treat bindings
from Java code without regard to the original language, except to
the degree that data types and protocols expose that language.

In particular, to interact with Java classes, a Scheme programmer
must remember certain protocols regarding constructors and inner
classes. As discussed in Section 5.1, the constructor must be called
after an object is instantiated, which means that the programmer
must explicitly invoke the constructor when instantiating or extend-

Figure 3. Java Box

ing the class. Inner classes must not be instantiated directly with
new, but instead instantiated through a method supplied by the con-
taining class. (In all probability we can make inner classes module-
local, and expose only an interface for instance tests, but we are
uncertain whether this strategy will work with reflection.)

As a practical matter, a Scheme programmer will think of a Java-
implemented library in Java terms, and therefore must manually
mangle member names, as discussed in Section 5.2. Mangled
names can potentially be quite long. Consider the methodequals ,
which takes an instance ofObject . The mangled version is
equals-java.lang.Object , to fully qualify which Object
is meant. We are investigating ways to avoid this problem.

One strategy, which presently partially works within DrScheme, is
to insert a graphical box representing a Java expression (see Fig-
ure 3), instead of plain text. The expression within the box contains
Java instead of Scheme and results in a value. Assigning types to
the arguments (to resolve overloading) remains an open problem,
thus Scheme values cannot be accessed within a box.

Another remaining problem is that, while our compiler is designed
to produce modules that are compatible with PLT Scheme’s com-
pilation model, the compilation manager itself does not know how
to invoke the compiler (given a reference to a.java file). We are
working on an extension of the compilation manager that locates
a compiler based on a file’s suffix. For now, manual compilation
meets our immediate needs.

7.2 Scheme from Java

Thenative mechanism described in Section 5.4 provides a way to
make Scheme functionality available to Java, butnative is not a
suitable mechanism for making a Scheme class available as a Java
class. Instead, our compiler can use a Scheme class directly as a
Java class, for instantiation, extension and overriding, or instance
tests. At compile time, the compiler needs specific type informa-
tion for the class, its fields, and its methods. This information is
currently supplied in a separate file, with the extension.jinfo .

Every class in Java extendsObject , but not every Scheme class
does so. To resolve this mismatch, the compiler does not actually
treatObject as a class. Instead:



• The core Object methods are implemented in a mixin,
Object-mixin . Therefore,Object methods can be added
to any Scheme class that does not already supply them, such
as when a non-Object Scheme class is used in Java.

• Indeed theObject class used for instantiation or class exten-
sion in Java code is actually( Object-mixin object%) .

• Object instance tests are implemented through an interface,
instead of a class. This works becauseObject has no fields
(fortunately) so the class is never needed.

A .jinfo file indicates whether a Scheme class already extends
Object or not, so that the compiler can introduce an application
of Object-mixin as necessary. A Scheme class can explicitly
extend a use ofObject-mixin to overrideObject methods.

We used the native interface to quickly develop a pedagogic graph-
ics library, based on existing Scheme functionality. Java program-
mers are presented with a canvas class, which supports drawing
various geometric shapes in a window. This class can be subclassed
with changes to its functionality. Internally, the Java class connects
to a functional graphics interface over MrEd’s graphics.

8 Performance

So far, we have invested little effort in optimizing the code that our
compiler generates. As a result, Java programs executed through
our compiler perform poorly compared to execution on a standard
JVM. In fact, Java programs perform poorly even compared to
equivalent programs written directly in Scheme. The current per-
formance problems have many sources (including the use of con-
tinuations, as noted in Section 5.3), all of which we expect to elim-
inate in the near future. Ultimately, we expect performance from
Java code that is comparable to that of PLT Scheme code.

9 Related work

The J2S compiler [3] compiles Java bytecodes into Scheme to
achieve good performance of Java-only programs. This compiler
additionally targets Intel X86 with its JBCC addition. J2S globally
analyzes and optimizes the bytecode to enhance performance. Java
classes compile into vectors containing method tables, where meth-
ods are implemented as top-level definitions. Instances of a class
are also represented as vectors. Unlike our system, this compila-
tion model does not facilitate conceptual interoperability between
Scheme and Java programs. Native methods may be written in
Scheme, C, C++, or assembly, which allows greater flexibility than
with our system at the cost of potential loss of security. As with our
system, J2S does not support reflection.

Several Scheme implementations compile to Java (either source or
bytecode) [1, 2, 4, 12, 15]. All of these implementations address
the interaction between Scheme and Java, but whereas we must ad-
dress the problem of handling object-oriented features in Scheme,
implementors of Scheme-to-Java implementors must devise means
of handling closures, continuations, and other Scheme data within
Java:

• JScheme [1, 2] compiles an almost-R4RS Scheme to Java.
Within Scheme, the programmer may use static methods and
fields, create instances of classes and access its methods and
fields, and implement existing interfaces. Scheme names
containing certain characters are interpreted automatically as
manglings of Java names. Java’s reflection functionality is
employed to select (based on the runtime type of the argu-

ments) which method to call. This technique is slower than
selecting the method statically, but requires less mangling.

• SISC [11] interpretsR5RS, with a Java class representing each
kind of Scheme value. Closures are represented as Java in-
stances containing an explicit environment. Various SISC
methods provide interaction with Java [12]. As with JScheme
the user may instantiate Java objects, access methods and
fields, and implement an interface. When passing Scheme val-
ues into Java programs, they must be converted from Scheme
objects into the values expected by Java, and vice-versa. To
access Scheme from Java, the interpreter is invoked with ap-
propriate pointers to the Scheme code.

• The Kawa [4] compiler takesR5RScode to Java bytecode.
Functions are represented as classes, and Scheme values are
represented by Java implementations. Java static methods
may be accessed through a special primitive function class.
Values must be converted from Kawa specific representations
into values expected by Java. In general, reflection is used
to select the method called, but in some cases, the compiler
can determine which overloaded method should be called and
specifies it statically.

• In addition to a C back end, Bigloo [14, 15] also offers a byte-
code back end. For this, functions are compiled into either
loops, methods or classes (to support closures). Scheme pro-
grammers may access and extend Java classes.

PLT Scheme developers have worked on embedding other lan-
guages in Scheme, including Python [10], OCaml, and Standard
ML. At present, the Java-to-Scheme compiler described here is the
most complete.

10 Conclusion

Our strategy for compiling Java to Scheme is straightforward: we
first develop macro-based extensions of Scheme that mirror Java’s
constructs, and then we translate Java code to the extended variant
of Scheme. This strategy facilitates interoperability between the
two languages. It also simplifies debugging of the compiler, since
the compiler’s output is human-readable, and the target macros can
be developed and tested independently from the compiler.

For PLT Scheme, the main target constructs for the compiler are
module andclass (plus standard Scheme constructs, such as pro-
cedures). These forms preserve most of the safety and security
properties of Java code, ensuring that the Java programmer’s ex-
pected invariants hold when the code is used by a Scheme pro-
grammer. Scheme programmers must follow a few protocols when
interacting with Java libraries, and manually include type informa-
tion within method calls. However, we believe that future work will
reduce these obstacles.

While still in development, our Java-to-Scheme compiler has de-
ployed with PLT Scheme since version 205. We continue to add
language constructs and interoperability features.
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