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Abstract
Our new macro expander for Racket builds on a novel approach to
hygiene. Instead of basing macro expansion on variable renamings
that are mediated by expansion history, our new expander tracks
binding through a set of scopes that an identifier acquires from
both binding forms and macro expansions. The resulting model
of macro expansion is simpler and more uniform than one based
on renaming, and it is sufficiently compatible with Racket’s old
expander to be practical.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Macros, hygiene, binding, scope

1. Introduction: Lexical vs. Macro Scope
Racket supports a family of languages—including the main Racket
language, Typed Racket, teaching languages, a documentation lan-
guage, an Algol 60 implementation, and more—where the lan-
guages interoperate in natural and useful ways. Furthermore, pro-
grammers can create new languages and language extensions with
the same level of support and interoperability as the predefined lan-
guages. Racket’s support for multiple languages and extensions is
enabled by its macro system, which provides a representation of
syntax fragments and constructs for manipulating and composing
those fragments.

Racket’s representation of syntax builds on a long line of work
on macros in Lisp and Scheme (Kohlbecker et al. 1986; Kohlbecker
and Wand 1987; Clinger and Rees 1991; Dybvig et al. 1993). A
result of that line of work is often referenced by the shorthand of
hygienic macro expansion, meaning that macros can both introduce
bindings and refer to binding from the macro’s definition context,
and macro expansion will not trigger accidental name capture in the
way that naive textual expansion would. Although Racket does not
restrict language extension to forms that can be expressed as hy-
gienic macros, a representation of syntax fragments that supports
hygienic expansion is an essential ingredient to more general, com-
posable language extensions.

Roughly, hygienic macro expansion is desirable for the same
reason as lexical scope: both enable local reasoning about bind-
ing so that program fragments compose reliably. The analogy sug-
gests specifying hygienic macro expansion as a kind of translation
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into lexical-scope machinery. In that view, variables must be re-
named to match the mechanisms of lexical scope as macro expan-
sion proceeds. A specification of hygiene in terms of renaming ac-
commodates simple binding forms well, but it becomes unwieldy
for recursive definition contexts (Flatt et al. 2012, section 3.8), es-
pecially for contexts that allow a mixture of macro and non-macro
definitions. The renaming approach is also difficult to implement
compactly and efficiently in a macro system that supports “hygiene
bending” operations, such as datum->syntax, because a history
of renamings must be recorded for replay on an arbitrary symbol.

In a new macro expander for Racket, we discard the renaming
approach and start with a generalized idea of macro scope, where
lexical scope is just a special case of macro scope when applied
to a language without macros. Roughly, every binding form and
macro expansion creates a scope, and each fragment of syntax
acquires a set of scopes that determines binding of identifiers within
the fragment. In a language without macros, each scope set is
identifiable by a single innermost scope. In a language with macros,
identifiers acquire scope sets that overlap in more general ways.

Our experience is that this set-of-scopes model is simpler to use
than the old macro expander, especially for macros that work with
recursive-definition contexts or create unusual binding patterns.
Along similar lines, the expander’s implementation is simpler than
the old one based on renaming, and the implementation avoids
bugs that were difficult to repair in the old expander. Finally, the
new macro expander is able to provide more helpful debugging
information when binding resolution fails. All of these benefits
reflect the way that scope sets are precise enough for specification
but abstract enough to allow high-level reasoning.

This change to the expander’s underlying model of binding can
affect the meaning of existing Racket macros. A small amount of
incompatibility seems acceptable and even desirable if it enables
easier reasoning overall. Drastic incompatibilities would be sus-
pect, however, both because the old expander has proven effective
and because large changes to code base would be impractical. Con-
sistent with those aims, purely pattern-based macros work with the
new expander the same as with the old one, except for unusual
macro patterns within a recursive definition context. More gener-
ally, our experiments indicate that the majority of existing Racket
macros work unmodified, and other macros can be adapted with
reasonable effort.

2. Background: Scope and Macros
An essential consequence of hygienic macro expansion is to en-
able macro definitions via patterns and templates—also known as
macros by example (Kohlbecker and Wand 1987; Clinger and Rees
1991). Although pattern-based macros are limited in various ways,
a treatment of binding that can accommodate patterns and tem-
plates is key to the overall expressiveness of a hygienic macro sys-
tem, even for macros that are implemented with more general con-
structs.



As an example of a pattern-based macro, suppose that a Racket
library implements a Java-like object system and provides a send
form, where

(send a-pt rotate 90)

evaluates a-pt to an object, locates a function mapped to the
symbol 'rotate within the object, and calls the function as a
method by providing the object itself followed by the argument
90. Assuming a lookup-method function that locates a method
within an object, the send form can be implemented by a pattern-
based macro as follows:

(define-syntax-rule (send obj-expr method-name arg)
(let ([obj obj-expr])

((lookup-method obj 'method-name) obj arg)))

The define-syntax-rule form declares a pattern that is
keyed on an initial identifier; in this case, the pattern is keyed on
send. The remaining identifiers in the parenthesized send pattern
are pattern variables. The second part of the definition specifies a
template that replaces a match of the pattern, where each use of a
pattern variable in the template is replaced with the corresponding
part of the match.

With this definition, the example use of send above matches
the pattern with a-pt as obj-expr, rotate as method-
name, and 90 as arg , so the send use expands to

(let ([obj a-pt])
((lookup-method obj 'rotate) obj 90))

Hygienic macro expansion ensures that the identifier obj is not
accidentally referenced in an expression that replaces arg in a use
of send (Kohlbecker et al. 1986). For example, the body of

(lambda (obj)
(send a-pt same? obj))

must call the same? method of a-pt with the function argument
obj, and not with a-pt itself as bound to obj in the macro tem-
plate for send. Along similar lines, a local binding of lookup-
method at a use site of send must not affect the meaning of
lookup-method in send’s template. That is,

(let ([lookup-method #f])
(send a-pt rotate 90))

should still call the rotate method of a-pt.
Macros can be bound locally, and macros can even expand to

definitions of macros. For example, suppose that the library also
provides a with-method form that performs a method lookup
just once for multiple sends:

(with-method ([rot-a-pt (a-pt rotate)]) ; find rotate
(for ([i 1000000])

(rot-a-pt 90))) ; send rotate to point many times

The implementation of with-method can make rot-a-pt a
local macro binding, where a use of rot-a-pt expands to a
function call with a-pt added as the first argument to the function.
That is, the full expansion is

(let ([obj a-pt])
(let ([rot-a-pt-m (lookup-method obj 'rotate)])

(for ([i 1000000])
(rot-a-pt-m obj 90))))

but the intermediate expansion is

(let ([obj a-pt])
(let ([rot-a-pt-m (lookup-method obj 'rotate)])

(let-syntax ([rot-a-pt (syntax-rules ()
[(rot-a-pt arg)

(rot-a-pt-m obj arg)])])
(for ([i 1000000])

(rot-a-pt 90)))))

where let-syntax locally binds the macro rot-a-pt. The
macro is implemented by a syntax-rules form that produces
an anonymous pattern-based macro (in the same way that lambda
produces an anonymous function).

In other words, with-method is a binding form, it is a macro-
generating macro, it relies on local-macro binding, and the macro
that it generates refers to a private binding obj that is also macro-
introduced. Nevertheless, with-method is straightforwardly im-
plemented as a pattern-based macro:

(define-syntax-rule
(with-method ([local-id (obj-expr method-name)])

body)
(let ([obj obj-expr])

(let ([method (lookup-method obj 'method-name)])
(let-syntax ([local-id (syntax-rules ()

[(local-id arg)
(method obj arg)])])

body))))

Note that the obj binding cannot be given a permanently distinct
name within with-method. A distinct name must be generated
for each use of with-method, so that nested uses create local
macros that reference the correct obj.

In general, the necessary bindings or even the binding struc-
ture of a macro’s expansion cannot be predicted in advance of
expanding the macro. For example, the let identifier that starts
the with-method template could be replaced with a macro ar-
gument, so that either let or, say, a lazy variant of let could
be supplied to the macro. The expander must accommodate such
macros by delaying binding decisions as long as possible. Mean-
while, the expander must accumulate information about the origin
of identifiers to enable correct binding decisions.

Even with additional complexities—where the macro-generated
macro is itself a binding form, where uses can be nested so the dif-
ferent uses of the generated macro must have distinct bindings, and
so on—pattern-based macros support implementations that are es-
sentially specifications (Kohlbecker and Wand 1987). A naive ap-
proach to macros and binding fails to accommodate the specifica-
tions (Adams 2015, sections 4.2-4.5), while existing formalizations
of suitable binding rules detour into concepts of marks and renam-
ings that are distant from the programmer’s sense of the specifica-
tion.

The details of a formalization matter more when moving be-
yond pattern-matching macros to procedural macros, where the
expansion of a macro can be implemented by an arbitrary compile-
time function. The syntax-case and syntax forms provide
the pattern-matching and template-construction facilities, respec-
tively, of syntax-rules, but they work as expressions within
a compile-time function (Dybvig et al. 1993). This combination
allows a smooth transition from pattern-based macros to proce-
dural macros for cases where more flexibility is needed. In fact,
syntax-rules is itself simply a macro that expands to a proce-
dure:

(define-syntax-rule (syntax-rules literals
[pattern template] ...)

(lambda (stx)
(syntax-case stx literals

[pattern #'template] ; #'_ is short for (syntax _)
...)))

Besides allowing arbitrary computation mixed with pattern match-
ing and template construction, the syntax-case system pro-
vides operations for manipulating program representations as syn-
tax objects. Those operations include “bending” hygiene by attach-
ing the binding context of one syntax object to another. For exam-
ple, a macro might accept an identifier point and synthesize the
identifier make-point, giving the new identifier the same con-



text as point so that make-point behaves as if it appeared in
the same source location with respect to binding.

Racket provides an especially rich set of operations on syntax
objects to enable macros that compose and cooperate (Flatt et al.
2012). Racket’s macro system also relies on a module layer that
prevents interference between run-time and compile-time phases
of a program, since interference would make macros compose less
reliably (Flatt 2002). Finally, modules can be nested and macro-
generated, which enables macros and modules to implement facets
of a program that have different instantiation times—such as the
program’s run-time code, its tests, and its configuration meta-
data (Flatt 2013). The module-level facets of Racket’s macro sys-
tem are, at best, awkwardly accommodated by existing models
of macro binding; those models are designed for expression-level
binding, where α-renaming is straightforward, while modules ad-
dress a more global space of mutually recursive macro and variable
definitions. A goal of our new binding model is to more simply and
directly account for such definition contexts.

3. Scope Sets for Pattern-Based Macros
Like previous models of macro expansion, our set-of-scopes ex-
pander operates on a program from the outside in. The expander
detects bindings, macro uses, and references as part of the outside-
to-inside traversal. The difference in our expander is the way that
bindings and macro expansions are recorded and attached to syntax
fragments during expansion.

3.1 Scope Sets
A scope corresponds to a binding context, and every identifier in
a program has a set of scopes. For example, if we treat let and
lambda as primitive binding forms, then in the fully expanded
expression

(let ([x 1])
(lambda (y)

z))

the let form corresponds to a scope alet, and the lambda form
corresponds to blam. That is, everything in the let’s body is in
alet, and everything in the inner lambda’s body is in blam; the set
of scopes associated with z is {alet, blam}. (Notation: the subscripts
on alet and blam are just part of the names that we use to refer to
abstract scope tokens; they have no meaning beyond indicating the
scope’s origin.)

In a macro-extensible language, expanding a use of a macro
creates a new scope in the same way that a binding form creates
a new scope. Starting with

(let ([x 1])
(let-syntax ([m (syntax-rules ()

[(m) x])])
(lambda (x)

(m))))

the right-hand side of the m binding has the scope set {alet}, while
the final m has scope set {alet, bls, clam} corresponding to the let,
let-syntax, and lambda forms. We can write the scope sets
next to each x and m at the point where macro expansion reaches
the (m) form:

(let ([x{alet} 1])
(let-syntax ([m{alet , bls} (syntax-rules ()

[(m) #'x{alet}])])
(lambda (x{alet , bls , clam})

(m{alet , bls , clam}))))

The expansion of (m) produces x with the scope set {alet, dintro},
where dintro is a new scope for identifiers that are introduced by the
macro’s expansion:

(let ([x{alet} 1])
(let-syntax ([m{alet , bls} (syntax-rules ()

[(m) #'x{alet}])])
(lambda (x{alet , bls , clam})

x{alet , dintro})))

The absence of clam on the final x explains why it doesn’t refer to
the inner binding of x. At the same time, if a different m places a
macro-introduced x in a binding position around an x from a macro
use (m x), the x from the use is not macro-introduced and doesn’t
have the scope dintro, so it wouldn’t refer to the macro-introduced
binding.

Lexical scoping corresponds to sets that are constrained to a
particular shape: For any given set, there’s a single scope s that
implies all the others (i.e., the ones around s in the program). As
a result, s by itself is enough information to identify a binding for
a given reference. We normally describe lexical scope in terms of
the closest such s for some notion of “closest.” Given scope sets
instead of individual scopes, we can define “closest” as the largest
relevant set.

More generally, we can define binding based on subsets: A
reference’s binding is found as one whose set of scopes is a subset
of the reference’s own scopes (in addition to having the same
symbolic name). The advantage of using sets of scopes is that
macro expansion creates scope sets that overlap in more general
ways; there’s not always a s that implies all the others. Absent a
determining s, we can’t identify a binding by a single scope, but
we can identify it by a set of scopes.

If arbitrary sets of scopes are possible, then two different bind-
ings might have overlapping scopes, neither might be a subset of the
other, and both might be subsets of a particular reference’s scope
set. In that case, the reference is ambiguous. Creating an ambigu-
ous reference with only pattern-based macros is possible, but it re-
quires a definition context that supports mingled macro definitions
and uses; we provide an example in section 3.5.

3.2 Bindings
When macro expansion encounters a primitive binding form, it

• creates a new scope;
• adds the scope to every identifier in binding position, as well as

to the region where the bindings apply; and
• extends a global table that maps a xsymbol, scope sety pair to a

representation of a binding.

In a simplified language where bindings are local, an identifier with
its scope set could be its own representation of a binding. In a more
complete language, bindings can also refer to module imports. We
therefore represent a local binding with a unique, opaque value
(e.g., a gensym).

For example,

(let ([x 1])
(let-syntax ([m (syntax-rules ()

[(m) x])])
(lambda (x)

(m))))

more precisely expands after several steps to

(let ([x{alet} 1])
(let-syntax ([m{alet , bls}

(syntax-rules ()
[(m) #'x{alet}])])

(lambda (x{alet , bls , clam})
x{alet , dintro})))

x{alet} Ñ x4
m{alet , bls} Ñ m8
x{alet , bls , clam} Ñ x16

where the compile-time environment along the way (not shown)
maps x4 to a variable, m8 to a macro, and x16 to another variable.



The reference x{alet , dintro} has the binding x4, because x{alet} is
the mapping for x in the binding table that has the largest subset of
{alet, dintro}.

The distinction between the binding table and the compile-time
environment is important for a purely “syntactic” view of bind-
ing, where a term can be expanded, manipulated, transferred to a
new context, and then expanded again. Some approaches to macros,
such as syntactic closures (Bawden and Rees 1988) and explicit re-
naming (Clinger 1991), tangle the binding and environment facets
of expansion so that terms cannot be manipulated with the same
flexibility.

The binding table can grow forever, but when a particular scope
becomes unreachable (i.e., when no reachable syntax object in-
cludes a reference to the scope), then any mapping that includes
the scope becomes unreachable. This weak mapping can be ap-
proximated by attaching the mapping to the scope, instead of using
an actual global table. Any scope in a scope set can house the bind-
ing, since the binding can only be referenced using all of the scopes
in the set. Attaching to the most recently allocated scope is a good
heuristic, because the most recent scope is likely to be maximally
distinguishing and have the shortest lifetime.

3.3 Recursive Macros and Use-Site Scopes
So far, our characterization of macro-invocation scopes works only
for non-recursive macro definitions. To handle recursive macro
definitions, in addition to a fresh scope to distinguish forms that
are introduced by a macro, a fresh scope is needed to distinguish
forms that are present at the macro use site.

Consider the following letrec-syntax expression, whose
meaning depends on whether a use-site identifier captures a macro-
introduced identifier:

(letrec-syntax ([identity (syntax-rules ()
[(_ misc-id)

(lambda (x)
(let ([misc-id 'other])

x))])])
(identity x))

Assuming that the letrec-syntax form creates a scope als, the
scope must be added to both the right-hand side and body of the
letrec-syntax form to create a recursive binding:

(letrec-syntax ([identity (syntax-rules ()
[(_ misc-id)

(lambda (x{als})
(let ([misc-id 'other])

x{als}))])])
(identity x{als}))

If we create a scope only for introduced forms in a macro expan-
sion, then expanding (identity x{als}) creates the scope set
bintro and produces

(lambda (x{als , bintro})
(let ([x{als} 'other])

x{als , bintro}))

where bintro is added to each of the two introduced xs. The
lambda introduces a new scope clam, and let introduces dlet,
producing

(lambda (x{als , bintro , clam})
(let ([x{als , clam , dlet} 'other])

x{als , bintro , clam , dlet}))

At this point, the binding of the innermost x is ambiguous: {als,
bintro, clam, dlet} is a superset of both {als, bintro, clam} and {als,
clam, dlet}, neither of which is a subset of the other. Instead, we
want x to refer to the lambda binding.

Adding a scope for the macro-use site corrects this problem. If
we call the use-site scope euse, then we start with

(identity x{als , euse})

which expands to

(lambda (x{als , bintro})
(let ([x{als , euse} 'other])

x{als , bintro}))

which ends up as

(lambda (x{als , bintro , clam})
(let ([x{als , clam , dlet , euse} 'other])

x{als , bintro , clam , dlet}))

There’s no ambiguity, and the final x refers to the lambda binding
as intended. In short, each macro expansion needs a use-site scope
as the symmetric counterpart to the macro-introduction scope.

3.4 Use-Site Scopes and Macro-Generated Definitions
In a binding form such as let or letrec, bindings are clearly dis-
tinguished from uses by their positions within the syntactic form.
In addition to these forms, Racket (like Scheme) supports definition
contexts that mingle binding forms and expressions. For example,
the body of a module contains a mixture of definitions and expres-
sions, all in a single recursive scope. Definitions can include macro
definitions, expressions can include uses of those same macros, and
macro uses can even expand to further definitions.

With set-of-scopes macro expansion, macro definitions and uses
within a single context interact badly with use-site scopes. For ex-
ample, consider a define-identity macro that is intended to
expand to a definition of a given identifier as the identity function:

(define-syntax-rule (define-identity id)
(define id (lambda (x) x)))

(define-identity f)
(f 5)

If the expansion of (define-identity f) adds a scope to the
use-site f, the resulting definition does not bind the f in (f 5).

The underlying issue is that a definition context must treat use-
site and introduced identifiers asymmetrically as binding identi-
fiers. In

(define-syntax-rule (define-five misc-id)
(begin

(define misc-id 5)
x))

(define-five x)

the introduced x should refer to an x that is defined in the enclosing
scope, which turns out to be the same x that appears at the use site
of define-five. But in

(define-syntax-rule (define-other-five misc-id)
(begin

(define x 5)
misc-id))

(define-other-five x)

the x from the use site should not refer to the macro-introduced
binding x.

To support macros that expand to definitions of given identifiers,
a definition context must keep track of scopes created for macro
uses, and it must remove those scopes from identifiers that end up
in binding positions. In the define-identity and define-
five examples, the use-site scope is removed from the binding
identifiers x and f, so they are treated the same as if their defini-
tions appeared directly in the source.



This special treatment of use-site scopes adds complexity to the
macro expander, but it is of the kind of complexity that mutually re-
cursive binding contexts create routinely (e.g., along the same lines
as ensuring that variables are defined before they are referenced).
Definition contexts in Racket have proven convenient and expres-
sive enough to be worth the extra measure of complexity.

3.5 Ambiguous References
The combination of use-site scopes to solve local-binding problems
(as in section 3.3) versus reverting use-site scopes to accommodate
macro-generated definitions (as in section 3.4) creates the possibil-
ity of generating an identifier whose binding is ambiguous.

The following example defines m through a def-m macro, and
it uses m in the same definition context:
(define-syntax-rule (def-m m given-x)

(begin
(define x 1)
(define-syntax-rule (m)

(begin
(define given-x 2)
x))))

(def-m m x)
(m)

The expansion, after splicing begins, ends with an ambiguous
reference:
(define-syntax-rule (def-m{adef } ....) ....)
(define x{adef , bintro1} 1)
(define-syntax-rule (m{adef })

(begin
(define x{adef , buse1} 2)
x{adef , bintro1}))

(define x{adef , cintro2} 2)
x{adef , bintro1 , cintro2}

The scope adef corresponds to the definition context, bintro1 and
buse1 correspond to the expansion of def-m, cintro2 corresponds to
the expansion of m. The final reference to x is ambiguous, because
it was introduced through both macro layers.

Unlike the ambiguity that is resolved by use-site scopes, this
ambiguity arguably reflects an inherent ambiguity in the macro.
Absent the (define x 1) definition generated by def-m, the
final x reference should refer to the definition generated from
(define given-x 2); similarly, absent the definition gener-
ated from (define given-x 2), the final x should refer to the
one generated from (define x 1). Neither of those definitions
is more specific than the other, since they are generated by differ-
ent macro invocations, so our new expander rejects the reference as
ambiguous.

Our previous model of macro expansion to cover definition
contexts (Flatt et al. 2012) would treat the final x always as a
reference to the definition generated from (define x 1) and
never to the definition generated from (define given-x 2).
So far, we have not encountered a practical example that exposes
the difference between the expanders’ treatment of pattern-based
macros in definition contexts.

4. Procedural Macros and Modules
Although our set-of-scopes expander resolves bindings differ-
ently than in previous models, it still works by attaching infor-
mation to identifiers, and so it can provide a smooth path from
pattern-matching macros to procedural macros in the same way
as syntax-case (Dybvig et al. 1993). Specifically, (syntax
form) quotes the S-expression form while preserving its scope-
set information, so that form can be used to construct the result of
a macro.

More precisely, a primitive (quote-syntax form) quotes
form with its scope sets in Racket. The derived (syntax
form) detects uses of pattern variables and replaces them with
their matches while quoting any non-pattern content in form
with quote-syntax. A (syntax form) can be abbreviated
#'form, and when form includes no pattern variables, #'form
is equivalent to (quote-syntax form). The quaisquoting
variant #`form (which uses a backquote instead of a regular
quote) allows escapes within form as #,expr, which inserts
the result of evaluating expr in place of the escape.

The result of a quote-syntax or syntax form is a syntax
object. When a syntax object’s S-expression component is just a
symbol, then the syntax object is an identifier.

4.1 Identifier Comparisons with Scope Sets
Various compile-time functions work on syntax objects and iden-
tifiers. Two of the most commonly used functions are free-
identifier=? and bound-identifier=?, each of which
takes two identifiers. The free-identifier=? function is
used to recognize a reference to a known binding, such as recogniz-
ing a use of else in a conditional. The bound-identifier=?
function is used to check whether two identifiers would conflict as
bindings in the same context, such as when a macro that expands to
a binding form checks that identifiers in the macro use are suitably
distinct.

These two functions are straightforward to implement with
scope sets. A free-identifier=? comparison on identifiers
checks whether the two identifiers have the same binding by con-
sulting the global binding table. A bound-identifier=? com-
parison checks that two identifiers have exactly the same scope sets,
independent of the binding table.

4.2 Local Bindings and Syntax Quoting
The set-of-scopes approach to binding works the same as previous
models for macros that are purely pattern-based, but the set-of-
scopes approach makes finer distinctions among identifiers than
would be expected by existing procedural Racket macros that use
#' or quote-syntax. To be consistent with the way that Racket
macros have been written, quote-syntax must discard some
scopes.

For example, in the macro

(lambda (stx)
(let ([id #'x])

#`(let ([x 1])
#,id)))

the x that takes the place of #,id should refer to the binding x
in the generated let form. The x identifier that is bound to id,
however, is not in the scope that is created for the compile-time
let:

(lambda (stx{alam})
(let ([id{alam , blet} #'x{alam}])

#`(let ([x{alam , blet} 1])
#,id{alam , blet})))

If quote-syntax (implicit in #`) preserves all scopes on an
identifier, then with set-of-scopes binding, the x that replaces #,id
will not refer to the x in the generated let’s binding position.

It’s tempting to think that the compile-time let should in-
troduce a phase-specific scope that applies only for compile-time
references, in which case it won’t affect x as a run-time refer-
ence. That adjustment doesn’t solve the problem in general, since
a macro can generate compile-time bindings and references just as
well as run-time bindings and references.

A solution is for the expansion of quote-syntax to discard
certain scopes on its content. The discarded scopes are those from



binding forms that enclosed the quote-syntax form up to a
phase crossing or module top-level, as well as any use-site scopes
recorded for macro invocations within those binding forms. In the
case of a quote-syntax form within a macro binding’s right-
hand side, those scopes cover all of the scopes introduced on the
right-hand side of the macro binding.

The resulting macro system is different than the old Racket
macro system. Experiments suggest that the vast majority of macro
implementations work either way, but it’s easy to construct an
example that behaves differently:

(free-identifier=? (let ([x 1]) #'x)
#'x)

In Racket’s old macro system, the result is #f. The set-of-scopes
system with a scope-pruning quote-syntax produces #t, in-
stead, because the let-generated scope is stripped away from
#'x.

If quote-syntax did not prune scopes, then not only would
the result above be #f, but bound-identifier=? would pro-
duce #f for both (let ([x 1]) #'x) and (let ([y 1])
#'x). Those results reflect the switch to attaching identifier-
independent scopes to identifiers, instead of attaching identifier-
specific renamings.

Arguably, the issue here is the way that pieces of syntax from
different local scopes are placed into the same result syntax object,
with the expectation that all the pieces are treated the same way. In
other words, Racket programmers have gotten used to an unusual
variant of quote-syntax, and most macros could be written just
as well with a non-pruning variant.

Supplying a second, non-pruning variant of quote-syntax
poses no problems. Our set-of-scopes implementation for Racket
implements the non-pruning variant when a #:local keyword is
added to a quote-syntax form. For example,

(free-identifier=? (let ([x 1])
(quote-syntax x #:local))

(quote-syntax x #:local))

produces #f instead of #t, because the scope introduced by let
is preserved in the body’s syntax object. The non-pruning variant
of quote-syntax is useful for embedding references in a pro-
gram’s full expansion that are meant to be inspected by tools other
than the Racket compiler; Typed Racket’s implementation uses the
#:local variant of quote-syntax to embed type declarations
(including declarations for local bindings) in a program’s expan-
sion for use by its type checker.

4.3 Ensuring Distinct Bindings
A Racket macro’s implementation can arrange for an identifier
introduced by a macro expansion to have an empty scope set.1 More
generally, a macro can arrange for identifiers that are introduced
in different contexts to have the same symbol and scope set. If
those identifiers appear as bindings via lambda, let, or let-
syntax, then the new scope created for the binding form will
ensure that the different identifiers produce different bindings. That
is, the binding scope is always created after any expansion that
introduced the bound identifier, so all bindings are kept distinct by
those different binding scopes.

For example, assuming that make-scopeless creates an
identifier that has no scopes in an expansion, then the let-x forms
in

(define-syntax (let-x stx)
(syntax-case stx ()

[(_ rhs body)

1 Avoiding a macro-introduction scope involves using a syntax-local-
introduce function.

#`(let ([#,(make-scopeless 'x) rhs])
body)]))

(let-x 5
(let-x 6

0))

create intermediate x identifiers that each have an empty scope set,
but the full expansion becomes

(let ([x{alet} 5])
(let ([x{blet} 6])

0))

where alet and blet are created by each let (as a primitive binding
form), and they distinguish the different x bindings.

In a definition context (see section 3.4), macro expansion can
introduce an identifier to a binding position after the scope for
the definition context is created (and after that scope is applied
to the definition context’s original content). That ordering risks
a collision among bindings in different definition contexts, where
identifiers introduced into different definition contexts all have the
same symbol and set of scopes.

For example, using a block form that creates a definition
context and that we treat here as a primitive form, the uses of def-
x in

(define-syntax (def-x stx)
(syntax-case stx ()

[(_ rhs)
#`(define #,(make-scopeless 'x) rhs)]))

(block
(define y 1)
(def-x 5))

(block
(define y 2)
(def-x 6))

risk expanding as

(block
(define y{adef } 1)
(define x{} 5))

(block
(define y{bdef } 2)
(define x{} 6))

with conflicting bindings of x for the empty scope set.
To avoid the possibility of such collisions, in a definition context

that supports both definitions and macro expansion, the context is
represented by a pair of scopes: an outside-edge scope that is added
to the original content of the definition context, and an inside-
edge scope that is added to everything that appears in the defi-
nition context through macro expansion. The outside-edge scope
distinguishes original identifiers from macro-introduced identifiers,
while the inside-edge scope ensures that every binding created for
the definition context is distinct from all other bindings.

Thus, the preceding example expands as

(block
(define y{aout , ain} 1)
(define x{ain} 5))

(block
(define y{bout , bin} 2)
(define x{bin} 6))

where the inside-edge scopes ain and bin distinguish the two x
bindings. Meanwhile, if the definitions of y instead used the name
x, they would remain distinguished from the macro-introduced xs
by the outside-edge scopes aout and bout.



4.4 First-Class Definition Contexts
Racket exposes the expander’s support for definition contexts (see
section 3.4) so that new macros can support definition contexts
while potentially changing the meaning of a macro or variable
definition. For example, the class macro allows local macro
definitions in the class body while it rewrites specified function
definitions to methods and other variable definitions to fields. The
unit form similarly rewrites variable definitions to a mixture of
private and exported definitions with a component.

Implementing a definition context starts with a call to syntax-
local-make-definition-context, which creates a first-
class (at compile time) value that represents the definition context.
A macro can force expansion of forms in the definition context, it
can add variable bindings to the definition context, and it can add
compile-time bindings and values that are referenced by further
macro expansion within the definition context. To a first approx-
imation, a first-class definition context corresponds to an inside-
edge scope that is added to any form expanded within the definition
context and that houses the definition context’s bindings. A defini-
tion context also has a compile-time environment frame (extending
the context of the macro use) to house the mapping of bindings to
variables and compile-time values.

Like other definition contexts (see section 3.4), the compile-
time environment must track use-site scopes that are generated
for macro expansions within a first-class definition context. If the
macro moves any identifier into a binding position in the over-
all expansion, then the macro normally must remove accumulated
use-site scopes (for the current definition context only) by apply-
ing syntax-local-identifier-as-binding to the iden-
tifier. For example, the unit form implements a definition context
that is similar to the body of a lambda, but variables are inter-
nally transformed to support mutually recursive references across
unit boundaries.

(unit (import)
(export)

(define x 1)
x)

In this example, (define x 1) is expanded to (define-
values (x) 1) with a use-site scope on x, but the intent
is for this definition of x to capture the reference at the end
of the unit form. If the unit macro simply moved the bind-
ing x into a letrec right-hand side, the x would not capture
the final x as moved into the letrec body; the use-site scope
on the definition’s x would prevent it from capturing the use.
The solution is for the unit macro to apply syntax-local-
identifier-as-binding to the definition’s x before using
it as a letrec binding. Macros that use a definition context
and bound-identifier=? must similarly apply syntax-
local-identifier-as-binding to identifiers before com-
paring them with bound-identifier=?.

Even if a macro does not create a first-class definition context,
some care is needed if a macro forces the expansion of subforms
and moves pieces of the result into binding positions. Such a macro
probably should not use syntax-local-identifier-as-
binding, but it should first ensure that the macro use is in an
expression context before forcing any subform expansions. Other-
wise, the subform expansions could interact in unexpected ways
with the use-site scopes of an enclosing definition context.

Use-site scopes associated with a first-class definition context
are not stored directly in the compile-time environment frame for
the definition context. Instead, they are stored in the closest frame
that is not for a first-class definition context, so that the scopes
are still tracked when the definition context is discarded (when the
macro returns, typically). The scope for the definition context itself

is similarly recorded in the closest such frame, so that quote-
syntax can remove it, just like other binding scopes.

4.5 Modules and Phases
The module form creates a new scope for its body. More precisely,
a module form creates an outside-edge scope and an inside-edge
scope, like any other context that allows both definitions and macro
expansion.

A (module* name #f ....) submodule form, where #f
indicates that the enclosing module’s bindings should be visible,
creates an additional scope in the obvious way. For other mod-
ule* and module submodule forms, the macro expander pre-
vents access to the enclosing module’s bindings by removing the
two scopes of the enclosing module.

A module distinguishes bindings that have the same name but
different phases. For example, lambda might have one meaning
for run-time code within a module, but a different meaning for
compile-time code within the same module. Furthermore, instan-
tiating a module at a particular phase implies a phase shift in its
syntax literals. Consider the module

(define x 1)
(define-for-syntax x 2)

(define id #'x)
(define-for-syntax id #'x)

(provide id (for-syntax id))

and suppose that the module is imported both normally and for
compile time, the latter with a s: prefix. In a compile-time context
within the importing module, both id and s:id will be bound to
an identifier x that had the same scopes originally, but they should
refer to different x bindings (in different module instances with
different values).

Among the possibilities for distinguishing phases, having per-
phase sets of scopes on an identifier makes the phase-shifting
operation most natural. A local binding or macro expansion can
add scopes at all phases, while module adds a distinct inside-
edge scope to every phase (and the same outside-edge scope to all
phases). Since every binding within a module is forced to have that
module’s phase-specific inside-edge scopes, bindings at different
scopes will be appropriately distinguished.

Having a distinct “root” scope for each phase makes most local
bindings phase-specific. That is, in

(define-for-syntax x 10)
(let ([x 1])

(let-syntax ([y x])
....))

the x on the right-hand side of let-syntax sees the top-level
phase-1 x binding, not the phase-0 local binding. This is a change
from Racket’s old approach to binding and phases, but the only
programs that are affected are ones that would trigger an out-of-
context error in the old system. Meanwhile, macros can construct
identifiers that have no module scope, so out-of-context errors are
still possible.

5. Implementation and Experience
Scope sets have an intuitive appeal as a model of binding, but a true
test of the model is whether it can accommodate a Racket-scale
use of macros—for constructing everything from simple syntactic
abstractions to entirely new languages. Indeed, the set-of-scopes
model was motivated in part by a fraying of Racket’s old macro



expander at the frontiers of its implementation, e.g., for submod-
ules (Flatt 2013).2

We released the new macro expander as part of Racket version
6.3 (released November 2015), while Racket developers started
using the expander about four months earlier. Compared to the
previous release, build times, memory use, and bytecode footprint
were essentially unchanged compared to the old expander. Getting
performance on par with the previous system required about two
weeks of performance tuning, which we consider promising in
comparison to a system that has been tuned over the past 15 years.

5.1 Initial Compatibility Results
At the time that Racket developers switched to the new expander,
packages in Racket’s main distribution had been adjusted to build
without error (including all documentation), and most tests in the
corresponding test suite passed; 43 out of 7501 modules failed.
Correcting those failures before version 6.3 required small changes
to accommodate the new macro expander.

Achieving the initial level of success required small changes
to 15 out of about 200 packages in the distribution, plus several
substantial macro rewrites in the core package:

• Changed macros in the core package include the unit, class,
and define-generics macros, all of which manipulate
scope in unusual ways.

• The Typed Racket implementation, which is generally sensitive
to the details of macro expansion, required a handful of adjust-
ments to deal with changed expansions of macros and the new
scope-pruning behavior of quote-syntax.

• Most other package changes involve languages implementa-
tions that generate modules or submodules and rely on a non-
composable treatment of module scopes by the old expander
(which creates trouble for submodules in other contexts).

In about half of all cases, the adjustments for set-of-scopes expan-
sion are compatible with the existing expander. In the other half, the
macro adjustments were incompatible with the previous expander
and the two separate implementations seem substantially easier to
produce than one unified implementation.

Besides porting the main Racket distribution to a set-of-scopes
expander, we tried building and testing all packages registered at
http://pkgs.racket-lang.org/. There were 46 failures
out of about 400 packages, as opposed to to 21 failures for the
same set of packages with the previous Racket release. All of those
packages were repaired before the version 6.3 release.

5.2 Debugging Support
Although the macro debugger (Culpepper and Felleisen 2010) has
proven to be a crucial tool for macro implementors, binding res-
olution in Racket’s old macro expander is completely opaque to
macro implementers. When something goes wrong, the expander
or macro debugger can report little more than “unbound identifier”
or “out of context”, because the process of replaying renamings
and the encodings used for the renamings are difficult to unpack
and relate to the programmer.

A set-of-scopes expander is more frequently in a position to re-
port “unbound identifier, but here are the identifier’s scopes, and
here are some bindings that are connected to those scopes.” In the

2 For an example of a bug report about submodules, see problem report
14521 at http://bugs.racket-lang.org/query/?debug=
&database=default&cmd=view+audit-trail&cmd=
view&pr=14521. The example program fails with the old expander, due
to problems meshing mark-oriented module scope with renaming-oriented
local scope, but the example works with the set-of-scopes expander.

case of ambiguous bindings, the expander can report the referenc-
ing identifier’s scopes and the scopes of the competing bindings.
These details are reported in a way similar to stack traces: subject
to optimization and representation choices, and underspecified as a
result, but invaluable for debugging purposes.

5.3 Scope Sets for JavaScript
Although the set-of-scopes model of binding was developed with
Racket as a target, it is also intended as a more understandable
model of macros to facilitate the creation of macro systems for
other languages. In fact, the Racket implementation was not the
first implementation of the model to become available. Based on
an early draft of this report, Tim Disney revised the Sweet.js macro
implementation for JavaScript (Disney et al. 2014; Disney et al.
2015)3 to use scope sets even before the initial Racket prototype
was complete. Disney reports that the implementation of hygiene
for the macro expander is now “mostly understandable” and faster.

6. Model
We present a formal model of set-of-scope expansion following the
style of Flatt et al. (2012). As a first step, we present a model where
only run-time expressions are expanded, and implementations of
macros are simply parsed. As a second step, we generalize the
model to include phase-specific scope sets and macro expansion
at all phases. The third step adds support for local expansion, and
the fourth step adds first-class definition contexts. The model does
not cover modules or top-level namespaces.

6.1 Single-Phase Expansion
Our macro-expansion model targets a language that includes with
variables, function calls, functions, atomic constants, lists, and syn-
tax objects:

��������������������������������������

�����������������

���������������������������������������������������

�������������������������������������������������

��������������������

��������������������������

�������������

�������������������������x��egg�����lambda

Since the model is concerned with macro expansion and program-
matic manipulation of program terms, we carefully distinguish
among

• names, which are abstract tokens;
• variables, which correspond to function arguments and ref-

erences in an AST and are formed by wrapping a name as
���������;

• symbols, which are values with respect to the evaluator and are
formed by prefixing a name with a quote; and

• identifiers, which are also values, are formed by combining a
symbol with a set of scopes, and are a subset of syntax objects.

For a further explanation of the distinctions among these different
uses of names, see Flatt et al. (2012, section 3.2.1).

The model’s evaluator is standard and relies on a � function to
implement primitives:

3 See pull request 461 at https://github.com/mozilla/sweet.
js/pull/461.
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Interesting primitives include the ones that manipulate syntax ob-
jects,

���������stx-e���mk-stx�������

where stx-e extracts the content of a syntax object, and mk-stx
creates a new syntax object with a given content and the scopes of
a given existing syntax object:
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Macro expansion takes a program that is represented as as a
syntax object and produces a fully expanded syntax object. To
evaluate the program, the syntax object must be parsed into an
AST. The parser uses a ������� metafunction that takes an identifier
and a binding store, �. The names lambda, quote, and syntax,
represent the core syntactic forms, along with the implicit forms of
function calls and variable reference:
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The ������� metafunction extracts an identifier’s name and its bind-
ing context. For now, we ignore phases and define a binding context
as simply a set of scopes. A binding store maps a name to a map-
ping from scope sets to bindings, where bindings are represented
by fresh names.
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The �������metafunction uses these pieces along with a ��������������
helper function to select a binding. If no binding is available in the
store, the identifier’s symbol’s name is returned, which effectively
allows access to the four primitive syntactic forms; the macro ex-
pander will reject any other unbound reference.
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Finally, we’re ready to define the ������ metafunction. In ad-
dition to a syntax object (for a program to expand) and a bind-
ing store, the expander needs an environment, �, that maps bind-
ings to compile-time meanings. The possible meanings of a bind-
ing are the three primitive syntactic forms recognized by �����, the
let-syntax primitive form, a reference to a function argument,
or a compile-time value—where a compile-time function repre-
sents a macro transformer.
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The process of macro expansion creates new bindings, so the
������ metafunction produces a tuple containing an updated bind-
ing store along with the expanded program. For example, the sim-
plest case is for the quote form, which leaves the body of the
form and the store as-is:
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Since we are not yet dealing with expansion of compile-time terms,
no scope pruning is needed for syntax, and it can be essentially
the same as quote.
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Expansion of a lambda form creates a fresh name and fresh scope
for the argument binding. Adding the new scope to the formal
argument (we define the ��� metafunction later) creates the binding
identifier. The new binding is added to the store, �, and it is also
recorded in the compile-time environment, �, as a variable binding.
The body of the function is expanded with those extensions after
receiving the new scope, and the pieces are reassembled into a
lambda form.
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When the generated binding is referenced (i.e., when resolving
an identifier produces a binding that is mapped as a variable),
then the reference is replaced with the recorded binding, so that
the reference is bound-identifier=? to the binding in the
expansion result.

���������������� ��� 〈��������〉
������������������������������������������



A local macro binding via let-syntax is similar to an argument
binding, but the compile-time environment records a macro trans-
former instead of a variable. The transformer is produced by using
����� and then ���� on the compile-time expression for the trans-
former. After the body is expanded, the macro binding is no longer
needed, so the body expansion is the result.
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Finally, when the expander encounters an identifier that resolves to
a binding mapped to a macro transformer, the transformer is applied
to the macro use. Fresh scopes are generated to represent the use
site, ����, and introduced syntax, ����, where the introduced-syntax
scope is applied using ��� to both the macro argument and result,
where ��� corresponds to an exclusive-or operation to leave the
scope intact on syntax introduced by the macro (see below).
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The only remaining case of ������ is to recur for function-call
forms, threading through the binding store using an accumulator-
style ������� helper:
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For completeness, here are the ��� and ��� metafunctions for prop-
agating scopes to all parts of a syntax object, where ����⊕���� adds
��� to ��� if is not already in ��� or removes it otherwise:
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To take a program from source to value, use ������, then �����,
then ����.

6.2 Multi-Phase Expansion
To support phase-specific scope sets, we change the definition of
��� so that it is a mapping from phases to scope sets:
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With this change, many metafunctions must be indexed by the cur-
rent phase of expansion. For example, the result of ������� depends
on the current phase:
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Phase-specific expansion allows let-syntax to expand the
compile-time expression for a macro implementation, instead of
just parsing the expression. Note that the uses of ������ and �����

on the transformer expression are indexed by ����:
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In addition to carrying a phase index, the revised ������ takes a
set of scopes created for bindings. Those scopes are the ones to be
pruned from quoted syntax by the revised syntax expansion:

���������������������������������������������������

��� 〈��������������������������������������〉
�������������������������������������syntax��

������������������������������

The ����� metafunction recurs through a syntax object to remove
all of the given scopes at the indicated phase:

�������������������→����

����������������������������� �������������������� ��������∖�������

���������������������������������������

������������������������������������ ��������∖�������
����������������������������������������������������

6.3 Local Expansion
Environment inspection via syntax-local-value and local
expansion via local-expand are accommodated in the model
essentially as in Flatt et al. (2012), but since local expansion can
create bindings, the ���� metafunction must consume and produce
a binding store. The ���� metafunction also must be index by the
phase used for syntax operations.

Local expansion needs the current macro expansion’s introduc-
tion scope, if any. In addition, local expansions that move identifiers
into binding positions need syntax-local-identifier-
as-binding, which requires information about scopes in the
current expansion context. Local expansion, meanwhile, can create
new such scopes. To support those interactions, ���� and ������

must both consume and produce scope sets for the current use-site
scopes, and binding scopes must also be available for local expan-
sion of syntax forms. To facilitate threading through all of that
information, we define ��� as an optional current scope and � as an
extended store:



���������������

������〈�����������〉

The second part of a � tuple is a set of scopes to be pruned at
syntax forms. The third part is a subset of those scopes that are
the current expansion context’s use-site scopes, which are pruned
by syntax-local-identifier-as-binding. The differ-
ent parts of a � tuple vary in different ways: the � part is consis-
tently threaded through evaluation and expansion, while the scope-
set parts are stack-like for expansion and threaded through evalua-
tion. In the case of a macro-application step, the scope-set parts of
the tuple are threaded through expansion, too, more like evaluation.

In the model, the lvalue, lexpand, and lbinder primi-
tives represent syntax-local-value, local-expand, and
syntax-local-identifier-as-binding, respectively:

����������������������→�〈������〉
�����������lvalue��������������������� ��� 〈������������������������������〉
����������������������������������������〈������������〉�������〈����_��_〉
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��������������������������������〈���������������������〉��
���� ���������������������∈���������������������
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The implementation of lexpand uses a new ���������������
transformer to make an identifier a stopping point for expansion
while remembering the former ��������� mapping of the identifier.
The ������ helper function strips away a ���� constructor:

�������������������→����������

����������������������� ��� ���������

����������������� ��� ���������

The expander must recognize ���� transformers to halt expansion
at that point:

��������������������→�〈������〉
�������������������������������������������� ��� 〈�������������������������������〉
����������������〈���_��_〉�����������������������������_�

The revised macro-application rule for ������ shows how the use-
site scopes component of � is updated and how the current appli-
cation’s macro-introduction scope is passed to ����:

�����������������������〈�������������〉� ��� 〈�������������〉
������������������������������������������������������������
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��������������������������������������������〈����������〉��
���������������������������������������〈�������������〉

In contrast, the revised lambda rule shows how the pruning scope
set is extended for expanding the body of the function, the use-site
scope set is reset to empty, and all extensions are discarded in the
expansion’s resulting store tuple.

��������������������������������������������������〈�������������〉�
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6.4 First-Class Definition Contexts
Supporting first-class definition contexts requires no further changes
to the ������ metafunction, but the ���� metafunction must be
extended to implement the new-defs and def-bind primi-
tives, which model the syntax-local-make-definition-
context and syntax-local-bind-syntaxes functions.

The new-defs primitive allocates a new scope to represent
the definition context, and it also allocates a mutable reference to
a compile-time environment that initially references the current
environment. The two pieces are combined with a ���� value
constructor:

�����������new-defs������������〈�������������〉� ��� 〈�����������������������〉
�����������������������������〈�����������〉����������������������〈��������〉��

〈�������� ��������������∪�����������〉�����

The def-bind primitive works in two modes. In the first mode, it
is given only a definition context and an identifier, and it creates a
new binding for the identifier that includes the definition context’s
scope. The new binding is mapped to variable in an updated envi-
ronment for definition context:

�����������def-bind������������������������������ ��� 〈���〈����������������〉〉
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When def-bind is given an additional syntax object, it expands
and evaluates the additional syntax object as a compile-time ex-
pression, and it adds a macro binding to the definition context’s
environment:
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Note that def-bind in this mode defines a potentially recursive
macro, since the definition context’s scope is added to compile-time
expression before expanding and parsing it.



Finally, a definition context is used to expand an expression by
providing the definition context as an extra argument to lexpand.
The implementation of the new case for lexpand is similar to
the old one, but the definition context’s scope is applied to the
given syntax object before expanding it, and the definition context’s
environment is used for expansion.

�����������lexpand������������������������������������������ ��� 〈�����������〉
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7. Defining Hygiene
Most previous work on hygiene has focused on expansion algo-
rithms, but some work addresses the question of what hygiene
means independent of a particular algorithm. In his dissertation,
Herman (2008) addresses the question through a type system that
constrains and exposes the binding structure of macro expansions,
so that α-renaming can be applied to unexpanded programs. More
recently, Adams (2015) defines hygienic macro-expansion steps as
obeying invariants that are expressed in terms of renaming via nom-
inal logic (Pitts 2003), and the concept of equivariance plays an
important role in characterizing hygienic macro transformers.

Since our notion of binding is based on scope sets instead of re-
naming, previous work on defining hygiene via renaming does not
map directly into our setting. A related obstacle is that our model
transforms a syntax object to a syntax object, instead of directly
producing an AST; that difference is necessary to support local and
partial expansion, which in turn is needed for definition contexts.
A more technical obstacle is that we have specified expansion in
terms of a meta-function (i.e., a big-step semantics) instead of as a
rewriting system (i.e., a small-step semantics).

Adams’s approach to defining hygiene nevertheless seems ap-
plicable to our notion of binding. We leave a full exploration for
future work, but we can offer an informed guess about how that
exploration will turn out.

Although our model of expansion does not incorporate renam-
ing as a core concept, if we make assumptions similar to Adams
(including omitting the quote form), then a renaming property
seems useful and within reach. For a given set of scopes and a
point during expansion (exclusive of macro invocations), the sym-
bol can be swapped in every identifier that has a superset of the
given set of scopes; such a swap matches the programmer’s intu-
ition that any variable can be consistently renamed within a binding
region, which corresponds to a set of scopes. Hygienic expansion
then means that the ����� of the continued expansion after swap-
ping is α-equivalent to what it would be without swapping. An
individual transformer could be classified as hygienic based on all
introduced identifiers having a fresh scope, so that they cannot bind
any non-introduced identifiers; the fresh scope ensures an analog to
Adams’s equivariance with respect to binders.

Note that swapping x with y for the scope set {adef , bintro1}
would not produce an equivalent program for the expansion in
section 3.5, because it would convert an ambiguous reference
x{adef , bintro1, cintro2} to an unambiguous y{adef , bintro1, cintro2}. This
failure should not suggest that the pattern-matching macros in that
example are non-hygienic in themselves, but that the (implicit)

definition-context macro is potentially non-hygienic. That is, a
macro in a definition context can introduce an identifier that is
captured at the macro-use site, since the definition and use sites can
be the same. That potential for non-hygienic expansion appears to
be one of the trade-offs of providing a context that allows a mixture
of mutually recursive macro and variable definitions.

If macro bindings are constrained to letrec-syntax, and
if macro implementations are constrained use syntax-case,
free-identifier=?, and syntax->datum (not bound-
identifier=? or datum->syntax), then we expect that all
expansion steps will be provably hygienic and all macro transform-
ers will be provably hygienic by the definitions sketched above.

8. Other Related Work
While our work shares certain goals with techniques for represent-
ing resolved bindings, such as de Bruijn indices, higher-order ab-
stract syntax (Pfenning and Elliott 1988), and nominal sets (Pitts
2013), those techniques seem to be missing a dimension that is
needed to incrementally resolve bindings as introduced and manip-
ulated by macros. Adams (2015) demonstrates how pairs of con-
ventional identifiers provide enough of an extra dimension for hy-
gienic macro expansion, but supporting datum->syntax would
require the further extension of reifying operations on identifiers
(in the sense of marks and renamings). Scope sets provides the ad-
ditional needed dimension in a simpler way.

Scope graphs (Neron et al. 2015) abstract over program syn-
tax to represent binding relationships—including support for con-
structs, such as modules and class bodies, that create static scopes
different than nested lexical scopes. Binding resolution with macro
expansion seems more dynamic, in that a program and its binding
structure evolve during expansion; up-front scope graphs are not
clearly applicable. Scope sets, meanwhile, do not explicitly repre-
sent import relationships, relying on macros that implement mod-
ular constructs to create scopes and bindings that reflect the im-
port structure. Further work on scope graphs and scope sets seems
needed to reveal the connections.

Stansifer and Wand (2014) build on the direction of Her-
man (2008) with Romeo, which supports program manipulations
that respect scope by requiring that every transformer’s type ex-
poses its effect on binding. The resulting language is more general
than Herman’s macros, but transformers are more constrained than
hygienic macros in Scheme and Racket.

9. Conclusion
Hygienic macro expansion is a successful, decades-old technology
in Racket and the broader Scheme community. Hygienic macros
have also found a place in some other languages, but the difficulties
of specifying hygiene, understanding macro scope, and implement-
ing a macro expander have surely been an obstacle to the broader
adoption and use of hygienic macros. Those obstacles, in turn, sug-
gest that our models of macro expansion have not yet hit the mark.
Scope sets are an attempt to move the search for a model of macro
expansion to a substantially different space, and initial results with
Racket and JavaScript show that this new space is promising.
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