
ProfessorJ : A Gradual Introduction to Java through Language
Levels

Kathryn E. Gray Matthew Flatt
University of Utah

Abstract

In the second-semester programming course at the University of
Utah, we have observed that our students suffer unnecessarily from
a mismatch between the course content and the programming envi-
ronment. The course is typical, in that it exposes students to Java
a little at a time. The programming environments are also typical,
in that they report compilation and run-time errors in the jargon of
professional programmers who use the full Java language. As a
result, students rely heavily on teaching assistants to interpret er-
ror messages, and valuable classroom time is wasted on syntactic
diversions.

ProfessorJ is our new programming environment that remedies this
problem. Like other pedagogical environments, such as BlueJ and
DrJava, ProfessorJ presents the student with a simplified interface
to the Java compiler and virtual machine. Unlike existing environ-
ments, ProfessorJ tailors the Java language and error messages to
the students’ needs. Since their needs evolve through the course,
ProfessorJ offers several language levels, from Beginner Java to
Full Java.

Categories and Subject Descriptors

K.3 [Computer and Information Science Education]: Computer
science education

General Terms

Design, Human Factors, Languages

1 Introduction: Languages and Pedagogical
Environments

A student in a first- or second-semester programming course faces
two tasks: learning general programming principles (data struc-
tures, functions, objects, modularity, testing, etc.), and learning the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’03, October 26-30, 2003, Anaheim, California, USA.
Copyright 2003 ACM 1-58113-751-6/03/0010 ...$5.00

notation of a particular programming language in which to express
those principles. Instructors typically prefer to emphasize princi-
ples, since a student with a firm grasp of principles can ultimately
adapt them to any programming language. Nevertheless, especially
in the first few courses, learning a particular language is an impor-
tant step for the student. The language’s strict syntactic and se-
mantic rules, faithfully implemented by the compiler and run-time
system, reinforce the idea of computation as a well-defined process,
and that computers really “do only what you tell them to do.”

One problem for the student is that compilers and run-time systems
don’t faithfully implement the syntactic and semantic rules that are
presented in class. Most programming environments implement a
“large” language, such as Java, and no reasonable course begins by
explaining all of the Java language. Instead, the instructor typically
defines a subset of Java that students use for the first few days or
weeks. This subset is gradually expanded throughout the semester,
so that by the end of the course the language has been presented
as a whole. In the meantime, however, students face a troublesome
mismatch between the language presented in class and the language
provided by the programming environment.

This mismatch is most troublesome with respect to error messages.
For example, early in a Java-based programming course, a student
might write something like the following:

int convert(int in, int by) {
...}
...
convert(4);

Most Java environments respond with an error message indicating
that the methodconvert cannot be found (sometimes including the
type of the given argument in the message). Students who have not
yet learned about overloading are baffled by the compiler’s claim
that “convert” cannot be found. As another example, consider the
error that results from a simple typo:

pulic class List { ...}

The error message “’class’ or ’interface’ expected” confuses stu-
dents, because they see thatclass is in fact provided, and they do
not see the misspelling of “public.” Attempting to correct the prob-
lem by trial and error, a student will often simply delete “pulic”, and
then encounter further confusion later when the class is inaccessible
in another package.

Students are needlessly confused by inappropriate error messages
with all of the Java programming environments that we have tried

in our course. The solution is to create a programming environment
that is adapted to pedagogical needs. Although a few such environ-
ments exist for Java—notably BlueJ [10, 11] and DrJava [1]—these
environments have not addressed the problem of taming the Java
language to provide a subset for teaching. A programming environ-
ment that faithfully implements a series of pedagogical language
subsets can reduce confusion for students, save instructor time in
explaining not-yet-relevant language details, and generally encour-
age students to think in terms of well-defined behavior instead of
black-box tinkering.

ProfessorJ, our new programming environment for Java, provides
such a series of languages. It builds on the success of DrScheme [4],
which implements a series of Scheme-like languages, and which
we use in our first-semester course at Utah. We developed Pro-
fessorJ for use in our second-semester course, which covers data
structures, basic algorithms, and Java. ProfessorJ’s language levels
are designed specifically to avoid much of the confusion that we
have observed in past offerings of the course. We will use Profes-
sorJ to begin teaching these concepts at the end of our first course
for the 2003/2004 academic year.

In section 2, we describe the predecessor course to our Java course,
and how it relates to ProfessorJ’s design. In section 3, we describe
ProfessorJ’s language levels, and we explain how the student be-
havior we observed led to our choices. In section 4, we describe
ProfessorJ’s implementation. Section 6 describes related work.

2 Introductory Course Sequence

Most students entering our second-semester course have been in-
troduced to programming in the first-semester course usingHow to
Design Programs[3]. This curriculum covers program design in
a largely functional style using a subset of Scheme. The specific
language used in the first course is less important for our purposes
than the course’s data-centric approach to design and its emphasis
on pedagogical environment support.

A “data-centric” approach means that we teach students to first un-
derstand the data representation for a problem, and then to allow
the shape of the data to drive the rest of the design. A canonical ex-
ample from early in the semester is the “list of numbers” datatype,
which might be used to represent a list of prices in a toy store:

A list-of-numbersis either
• empty

• (cons number list-of-numbers)

The list-of-numbersdata definition drives the implementation of
an inventory-value function that consumes an instance of the
datatype. In particular, the function’s implementation should match
the shape of the data: two cases, handling a compound data value
in the second case, and with a self-reference in the second element
of the second case:

(define (inventory-value l)
(cond
((empty? l) ...)
((cons? l) ... (first l)

... (inventory-value (rest l)))))

This data-oriented approach in the first-semester course transitions
naturally to an “object-oriented” approach. A data definition with
two cases corresponds to an abstract base class with two subclasses.
The twocond lines ininventory-value turn into separate method

implementations in the subclasses, with a method invocation in the
second one.

abstract class Inventory { abstract int Value(); }

class Empty extends Inventory {
Empty() { }
int Value() { return 0; }
}

class Addition extends Inventory {
int val; Inventory rest;
Addition(int v, Inventory r) { val = v; rest = r; }
int Value() { return val + rest.Value(); }
}

Our goal is to manage this transition as seamlessly as possible,
keeping the focus on program design, rather than the arbitrary de-
tails of a particular compiler or programming environment.

To that end, ProfessorJ uses the same graphical user interface as
DrScheme, as shown in Figure 1. The GUI presents a single win-
dow with two nested windows, called thedefinitions window and
the interactions window. The definitions window (the upper one)
contains a program that students can execute, save to disk, and ac-
cess in the interactions window. The interactions window (the lower
one) provides a “read-eval-print loop” (REPL), which students use
to experiment with their programs and with the language constructs.
Both windows implement the same programming language, use the
same error messages, and report result values using the same syn-
tax.

The ProfessorJ environment differs from DrScheme in one key way.
In DrScheme, students can write the same code in either window,
essentially because Scheme is an expression-oriented language. In
ProfessorJ, the definitions window must contain only declarations,
such as a class declaration, and the interactions window evaluates
only statements and expressions (except for thethis expression,
which has no meaning outside of a class declaration). ProfessorJ
allows multiple public class declarations in the definitions window.
As in DrScheme (and DrJava [1]), students using ProfessorJ can
access the classes written in the definitions window within the in-
teractions window after pressing the Execute button. Each of the
levels can interoperate with the others, which allows students to
reuse implementations in earlier levels, and allows instructors to
provide full support libraries implemented in full Java.

3 Language Levels

To accommodate the material presented in our second course, we
have designed ProfessorJ with three language subsets: Beginner,
Intermediate, and Advanced. Students will use Beginner Java for
a few days as an introduction to Java. Students will then move to
Intermediate Java as the course introduces new concepts, starting
with the fundamentals of object-oriented programming (as a refine-
ment of the first semester’s data-oriented design) and object poly-
morphism. Eventually, the data structures and algorithms portion
of the course requires that students move to Advanced, which in-
troduces loops and arrays. Finally, the course ends with full Java
(though with error messages that our students can understand) to
present concepts such as exception handling.1

1The exact content of these language levels will likely evolve as
experience in the classroom suggests changes.

Figure 1. DrScheme with ProfessorJ

Construct Restrictions
imports Some imports not allowed
classes Implicitly public

Cannot be final
Cannot have static members

fields Implicitly private
Implicitly final
Must be set in constructor

constructors Implicitly public
Cannot be overloaded
May contain only assignments

methods Implicitly public
Cannot be overloaded
Cannot return void

Exclusions:
package, interfaces, class and instance initialization blocks,
inner classes and interfaces, all modifiers, arrays

Figure 2. Beginner Java Declaration Constructs

3.1 Beginner

The Beginner level is our students’ first exposure to Java syntax. As
such, we selected the declaration constructs (see Figure 2) to pro-
vide enough structure to write programs and experience the general
flavor of Java syntax. While not its primary purpose for now, we
hope that Beginner will also be suitable for first-semester courses
using Java.

The minimalist nature of Beginner allows students to familiarize
themselves with core Java constructs while writing only familiar
functional, recursive methods. The statements and expressions (see

Construct Restrictions
Statements
if Must have else
return Must have expression
assignment Cannot be +=,-=, etc.

Must be in constructor
Excluded statements:
block of statements, variable declaration, throw, while, do,
for, try, switch, break, continue, label, synchronized, ++ and –
Expressions
Literals
this
Binary operations + may not be used as string append
Unary operations ++, -- not allowed
Variable reference
Field access
method call
class allocation
Excluded expressions:
cast, qualified name access, array access,
array allocation, array instantiation, ? conditional,
instanceof, assignment

Figure 3. Beginner Java Statements and Expressions

Construct Restrictions
imports Some imports not allowed
classes Implicitly public

Cannot be final
Cannot have static members

interfaces Implicitly public
Cannot have static members

fields Implicitly private
Cannot be final

constructors Implicitly public
Cannot be overloaded

methods Implicitly public
Cannot be overloaded

Exclusions:
package, class and instance initialization blocks, inner classes
and interfaces, field and method modifiers, arrays

Figure 4. Intermediate Java Declaration Constructs

Figure 3) are all semantically familiar to students.

Static members are excluded so that a distinction between instance
members and class members is not required at this stage of the
course. Due to the REPL, static members are not necessary to run
programs. Member modifiers are also excluded to simplify the lan-
guage.

We expect students to use classes in implementing the same data
structures that they have already implemented in Scheme. These
Scheme structures are groupings of data that should map easily to
objects with immutable fields, where the field values are given as
constructor arguments. To facilitate this mapping, we require that
fields, if present, be set in the constructor, and we do not allow fur-
ther mutation to a field. Constructors do not havesuper calls be-
cause the data structures will not require inheritance of non-abstract
classes. The Intermediate level will introduce the notion of calling
the superclass constructor.

As evident in Figure 2, methods may not be overloaded or declared
void. Overloading is a new concept to our students, and so it is not
permitted in the languages until it is taught in the course. Methods
may not returnvoid, since we do not allow mutation in Beginner,
and there would be no point in having a method which could return
void. This reasoning extends to require that eachreturn statement
returns an expression.

For the remaining statements and expressions, Beginner imposes
restrictions to avoid some of the more confusing errors that we have
observed our students make. One such error occurs with overloaded
+ on strings. Since overloading has not been explained to students,
this operation is potentially confusing, and no functionality is lost
by removing it.

The if statement requires anelse branch as many students for-
get to include the keywordelse. In such cases, when the stu-
dent’s method executes, both thethen and expectedelse behav-
ior occurs. Often, only the effects of theelse are visible. This
error tends to cause the student to question the condition expres-
sion, since compilation indicates that the syntax is correct. In later
language levels, this requirement may cause students to write dead
code, but protection from odd behavior is worth a small amount of
excess code.

Construct Restrictions
Statements
if Must have else
return
block of Statements
assignment Cannot be +=,-=, etc.
method call
variable declaration
Excluded statements:
throw, while, do, for, try, switch, break, continue, label,
synchronized, ++ and --
Expressions
Literals
this
Binary operations + may not be used as string append
Unary operations ++, -- not allowed
Variable reference
Field access
method call
class allocation
cast
Excluded expressions:
qualified name access, array access, array allocation,
array instantiation, ? conditional, instanceof, assignment

Figure 5. Intermediate Java Statements and Expressions

3.2 Intermediate

The Intermediate level presents a subset suitable for teaching stu-
dents object-oriented design, complete with object polymorphism
and dynamic dispatch. Additionally, this level provides fully ex-
tendible classes, interfaces, overrideable methods, and class instan-
tiation (see Figure 4). With the exception of interfaces, these el-
ements are necessary to present the desired concepts. We include
interfaces to demonstrate a different axis of inheritance, and to en-
sure that students are exposed to this key Java construct.

Interfaces are potentially confusing, however, in our experience.
We have seen cases where a student adds a method to a class that
is not in the implemented interface. The student passes the object
into a method with the interface type, and attempts to access their
new method, since it certainly exists for the particular class. The
typical error message confuses students as it merely indicates that
the method is not found. This confusion is minimized in ProfessorJ
by providing an error message that clearly states the known type
of the object as the interface, and states that the interface does not
contain the method.

As shown in Figure 4, classes and methods must be public while
fields must be private. This restriction accomplishes two purposes.
The first is to ensure that students program with the style of hiding
fields and exposing appropriate methods. The second is to prevent
confusing errors and potential mistakes by allowing students to cre-
ate members with accessibilities that they do not fully understand.

If students can choose the accessibility of their method or field, then
they might encounter behavior that is difficult to track down. Ini-
tially, students do not understand the distinction between protected
and public, and might attempt to use a protected method from an
unrelated class because the method was accessible before from a
subclass. We have observed that this confusion leads to misunder-
standings regarding why the method is not found. Such distinctions
will be introduced later in the course, after students understand in-

heritance and method dispatch.

Like Beginner, Intermediate excludes static members. With the
REPL, the only reason to have static members is to encode class-
specific data and functionality. We have observed that students do
not initially understand the distinction between class-specific and
instance-specific needs, and they routinely declare fields or meth-
ods incorrectly. When this mistake occurs with fields, the wrong
data is accessed, and this causes errors that can be difficult to de-
bug. When methods are accidentally declared static, the student
learns to pass information into the method (such as an object) to
regain functionality, at the cost of readability and object-oriented
style. We therefore choose to present static members later in the
course, after more fundamental OO concepts.

3.2.1 Intermediate Restrictions

The remaining statement and expression restrictions (see Figure 5)
help avoid mistakes that are common at this point in the course.
Experience with other languages assisted in these decisions.

The particular requirement that theif statement contain anelse
statement continues from Beginner. While students in Intermediate
are more familiar with Java syntax, our experience suggests that
students are likely to continue to exclude the else keyword.

Assignment may not be used as an expression, which prevents the
following code:

if (x = false) ...

The implications of this statement are obvious, and are accept-
able within Java because experienced programmers would not test
a boolean using==. However, beginning students often write
(x==true) or (x==false). One reason is that these expressions
visually reinforce the desired value of x. Students should be encour-
aged to test their booleans using other expressions, but the language
should not allow them to make this particular mistake.

The restrictions discussed so far control the behavior of constructs
included in Intermediate. Many other Java constructs have been left
out of the language, because we gradually expose students to new
concepts in the course. Removing arrays, exceptions and overload-
ing allows students to concentrate solely on object-oriented design
at first.

Imports are restricted so that students cannot access classes that
could encourage non-object-oriented programming (such as those
classes implementing reflection), or that could cause errors they
do not understand. Without restrictions, students could import and
use classes that appear to perform operations they desire (such as
graphical display, I/O, or reflective operations). But, exceptions and
errors from these classes are not designed to accommodate their
knowledge level. Further, import restrictions can prevent students
from using libraries that have been disallowed for particular assign-
ments. This restriction is useful when students are implementing
data structures and algorithms for which Java libraries exist. How-
ever, we do not wish to forbid all imports, as they allow students to
access support code or instructor-provided graphical programs.

3.2.2 Intermediate Omissions

Students are not allowed to use methods or classes that present re-
flection. This restriction ensures that students do not rely on re-
flexive properties to determine their types or attempt to perform

Construct Restrictions
package
imports Some imports not allowed
classes Cannot be final
interfaces
arrays
fields Cannot be final
constructors
methods
class initializers
Exclusions:
class initialization blocks, inner classes and interfaces

Figure 6. Advanced Java Declaration Constructs

operations in non object-oriented ways.

Theinstanceof expression is withheld for similar reasons. With
access toinstanceof, students write functional-style methods, in-
stead of using method dispatch.

3.3 Advanced

The Advanced level primarily introduces two new constructs: loops
and arrays. The other added constructs (see Figure 6) prepare stu-
dents to move to full Java. Many of the restrictions from Intermedi-
ate are removed to allow more flexible implementations, including
most of the restrictions on statements and expressions (see Figure
7). Other restrictions remain to protect students from errors they
are still likely to make.

As mentioned above, Intermediate does not allow static members
or member modifiers as students are unsure how to use them. Af-
ter working with Intermediate, students will understand the general
nature of object-oriented programs. With this knowledge, students
should be able to reason about the accessibility needs of a given
member.

For advanced, we also removed the restriction against overloaded
methods, so that students will be able to write and design more
complicated software. However, overloaded methods are still error
prone, as students attempt to call the method with slightly incor-
rect arguments. We attempt to solve this problem through report-
ing different error messages for different types of method-lookup
failure. In other environments, when a programmer supplies the
wrong number of arguments to an overloaded method, the error
message reports that the method is not found. DrJava, for exam-
ple, reports “No ’foo’ method in ’Example”’ for any method lookup
error involving “foo”, which is confusing to students who can see
the method definition. ProfessorJ provides one of three messages.
If foo was not called with any correct number of arguments, the
message is “No definition of Foo with 1 argument(s) is found.” A
similar message indicates that the types of the arguments are incor-
rect. This should provide enough support for students to understand
their errors with overloaded methods.

Advanced also introduces packages. Advanced students will write
larger programs that can benefit from package-level grouping. This
will also prepare them for designing Java software.

Exceptions, inner classes, and goto-like breaks and continues are
the primary constructs withheld in Advanced. These elements are
too complicated to be presented to students at this stage, and they
are unnecessary for the programs that students write.

Construct Restrictions
Statements
if
return
block of Statements
assignment
method call
variable declaration
while
for
do
break inside a loop
continue inside a loop
Unary operations ++ & --
Excluded statements:
throw, try, switch, label, synchronized
Expressions
Literals
this
Binary operations
Unary operations
Variable reference
Field access
Array access
method call
class allocation
array allocation
array initialization Cannot be anonymous
cast
instanceof
? conditional
Excluded expressions: qualified name access, assignment

Figure 7. Advanced Java Statements and Expressions

Our experience suggests that unless class time is spent on the proper
use of exceptions, students tend to over-use them. This time fits best
into our schedule after the algorithmic material on loops and arrays
for which Advanced is designed.

4 Implementation of ProfessorJ

To implement language levels, we had several options: modify an
existing Java compiler, extend an existing Java environment, or
extend DrScheme. We rejected the first option, as a full graphi-
cal environment offers many benefits to students. While the sec-
ond option would allow users to import libraries that exist only in
bytecode, and potentially would have allowed the reuse of existing
Java compiler components, there were more advantages to extend-
ing DrScheme. Although building a Java environment on top of a
Scheme environment may seem like a surprising choice, DrScheme
is designed to accommodate non-Scheme languages as well as vari-
ants of Scheme.

Since our students are familiar with DrScheme, they do not have to
learn how to navigate a new environment. Students will be able to
use existing tools and features in DrScheme that interoperate with
the ProfessorJ extension. Additionally, as the Java extension can in-
teroperate with Scheme, Java programs can use Scheme programs,
allowing students and teachers to use existing Scheme programs in
their Java assignments.

The DrScheme tools and features that benefit ProfessorJ include
advanced syntax highlighting, thorough error-highlighting, and the
ability to arbitrarily break execution. To our knowledge, these fea-
tures are not uniformly present in existing Java environments, and
they are not easily implemented.

While many environments provide syntax highlighting for Java,
they primarily highlight keywords and types. ProfessorJ, building
on DrScheme’s check-syntax tool, highlights program variables,
and can draw arrows from the binding instance of a variable to all
of its uses. We plan to extend this capability to connect uses of a
class or interface type to its declaration. These arrows will allow
students to track their variables and assists in their understanding
of the behavior of their program.

Highlighting the source of an error simplifies the task of debug-
ging, drawing students quickly to the most likely source of their
problems. Most Java environments that we have used provide this
functionality for compile-time errors. However, performing such
service for runtime errors also benefits students, and we found that
many existing environments do not support such highlighting out-
side of a debugging environment. Also, we wanted to support this
highlighting in the interactions window as well as the definitions
window, which other major pedagogical environments do not sup-
port.

DrScheme allows users to arbitrarily break evaluation at any time.
All of the other Java programming environments that we have used
only stop evaluation at set break-points in a debugging mode. Pro-
grams in all of the ProfessorJ languages can be arbitrarily stopped,
due to the features of the underlying system. Reliable stopping has
at least two benefits: if an infinite loop is encountered while some
code has not been saved, the loop can be terminated without closing
the environment and losing the work; when an infinite loop is en-
countered, it can be stopped right away to determine the code being
run, without waiting for the JVM to run out of memory or for the
loop to occur again in a debugging mode.

ProfessorJ is also able to make use of new tools developed for
DrScheme. For example, a new interactive test development en-
vironment is nearing completion. With this, students will be able to
write their test cases, and have the answers checked automatically.
Each of the ProfessorJ languages work correctly with this tool.

DrScheme’s lack of a conventional debugger is one potential dis-
advantage for ProfessorJ. However, the full features of a profes-
sional strength debugger (as is available with other environments)
are not needed when debugging introductory programs, and profes-
sional features increase the difficulties students have in using the
debugger. Often, despite the presence of a debugger, we have seen
students use other means to find their errors rather than attempt to
use and understand a debugger that is more complicated then they
require.

ProfessorJ acts as a “plug-in” for DrScheme. Java source is com-
piled into MzScheme [5] syntax. We compile from source so that
the language can be properly restricted, with appropriate error mes-
sages. The drawback — that we cannot use precompiled Java byte-
code — can be remedied in the future if necessary.

Java classes are compiled into MzScheme classes, which are sim-
ilar to Java’s. MzScheme classes extend only one parent, imple-
ment interfaces, have public and private fields, and have inheritable
public and private methods. Other Java features (statics, protected
members, and packages) are implemented through a combination
of Scheme functions, modules, and hidden names. We implement
overloading by creating names for methods that are based on the
original name combined with the types (generating names that are
illegal for Java programmers to write).

5 Experience

ProfessorJ is a work in progress. A preliminary version, with Be-
ginner and Intermediate levels only, is available with DrScheme
version 205 (downloadable from www.drscheme.org).

While ProfessorJ has yet to be used in our course, we tested it in a
one-week workshop for high school and college teachers. Half of
the workshop participants had attended a similar workshop cover-
ing 5 weeks of the curriculum of our first semester course, and the
other half teach introductory programming in college.

Due to the participants prior knowledge of Java,2 this experience
does not demonstrate how effective ProfessorJ is in teaching OO
design and algorithms to a typical class of second semester stu-
dents. However, the experience demonstrated that the first two lan-
guage levels, with slight modifications from those presented here,3

sufficiently supported the concepts taught (OO design and OO data
structures).

Participants, especially those previously uncomfortable with Java,
found the error messages informative, and they noted that the lan-
guage restrictions helped prevent them from making logical blun-
ders that are legal programs in full Java. Some participants ex-
pressed displeasure with the early levels exclusion of arrays and

2Approximately 15% of the participants did not know any Java,
approximately 30% had seen some Java but felt in-equiped to teach
it, and 55% knew and felt prepared to teach it.

3To conform to the curriculum presented, fields default to pub-
lic instead of private, and in Beginner all member data must be
accessed using the keyword this.

loops.

The next major focus of our work will be to use ProfessorJ in the
classroom.

6 Related Work

Among the many existing Java development environments, practi-
cally all are used in courses that teach introductory Java. The cre-
ators of some environments, such as JCreator [2], jGrasp [9], and
TextPad [7], offer workshops and advice on how to use their en-
vironment in a classroom, but the environments were not designed
for students. Only two environments other than ProfessorJ were
designed for teaching: BlueJ and DrJava.

BlueJ [11], a commonly used Java pedagogic environment, fo-
cuses on teaching introductory students object-oriented program-
ming while shielding students from some language complexities.
To focus on OO programming, BlueJ graphically presents a col-
lection of classes, with arrows denoting the inheritance and use re-
lationships between them. Students can create classes by adding
boxes in the environment, and they can build inheritance hierar-
chies by inserting arrows. Creating a class in this manner generates
a bare bones class in the source code, with the class name and in-
heritance specified, as well as an example method and field. The
method demonstrates the syntax for a method declaration (return
type, name, and modifiers) and a return statement.

Once a class has been implemented and compiled, students can in-
teractively create new instances, dispatch public methods and in-
spect fields. This functionality facilitates interactive testing (with-
out writing specific test code or requiring an understanding of static
methods), as well as visually presenting the inheritance of methods
and fields. Newer versions of BlueJ also contain a statement and
expression evaluator, where students can test code. BlueJ provides
access to a graphical debugger, which sets breakpoints and allows
users to step through execution (ala gdb).

Used only as an editor and interactive environment, BlueJ partially
succeeds in shielding students from static members. Students do
not have to write statics for their programs to work. However, be-
cause BlueJ does not have language levels enforcing this protection,
students may still use static members (often incorrectly). Addition-
ally, if students use the debugger, they are exposed to the concept of
statics (and threads) before the material is presented in their course.
A further problem with BlueJ, as has been discussed above, is that
the error messages provided to students do not target their knowl-
edge level. This problem has been mentioned in a user study [6] as
one of the largest problems with BlueJ.

The graphical view provided by BlueJ is beneficial to students as
they learn to design and reason about object-oriented programming.
We are considering similar functionality for ProfessorJ.

DrJava [1] provides students with an environment where they can
interactively experiment with Java, without needing to understand
how to use an external compiler. As with DrScheme and ProfessorJ,
DrJava has a definitions window and interactions window. Pro-
grams written in the definitions window are accessible to students
in the interactions window. DrJava is also connected to a testing
facility to assist students in debugging their code.

With respect to error messages in the definitions window, DrJava
provides similar error messages as other Java environments. These

messages are accurate and helpful for an experienced programmer.
For a student, these messages do not use terminology the student
understands, and the messages create the problems we have dis-
cussed previously. Furthermore, the error mechanism used (at this
time) for the interactions window is not the same as for the defini-
tions window, using even more difficult to understand messages.

The Expresso [8] project provides student-oriented error messages
with their compiler, although Expresso is not a complete environ-
ment. The messages attempt to fully explain the error in terms stu-
dents know. However, as this work does not introduce language
levels, it is still possible for students to encounter errors about con-
structs they do not understand, and to write incorrect and difficult
to debug programs.

7 Conclusions

ProfessorJ’s provides the Java language to our students as they see
it presented in the classroom, instead of Java as professional pro-
grammers must see it. Using ProfessorJ, we expect to spend more
of our students’ time on understanding concepts, and we expect to
spend less time deciphering error messages and odd program be-
havior.

We will field-test ProfessorJ’s Beginner and Intermediate levels this
semester in the introductory programming course at Utah to help
students transition into the second programming course. The Ad-
vanced and Full levels are nearing completion, and we expect to use
these levels of ProfessorJ in future offerings of the second course.

8 References

[1] E. Allen, R. Cartwright, and B. Stoler. DrJava: A lightweight
pedagogic environment for Java. InSIGCSE Technical
Symposium on Computer Science Education, Sept. 2001.
www.drjava.org.

[2] W. D. de Witte.JCreator. www.jcreator.com.

[3] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi.
How to Design Programs. The MIT Press, Cambridge, Mas-
sachusetts, 2001.http://www.htdp.org/.

[4] R. B. Findler, C. Flanagan, M. Flatt, S. Krishnamurthi, and
M. Felleisen. DrScheme: A pedagogic programming envi-
ronment for Scheme. InProc. International Symposium on
Programming Languages: Implementations, Logics, and Pro-
grams, pages 369–388, Sept. 1997.

[5] M. Flatt. PLT MzScheme: Language manual. Technical Re-
port TR97-280, Rice University, 1997.

[6] D. Hagan and S. Markham. Teaching Java with the BlueJ
environment. InAscilite, 2000.

[7] Helios Software Solutions.TextPad. www.textpad.com.

[8] M. Hristova, A. Misra, M. Rutter, and R. Mercuri. Identify-
ing and correcting Java programming errors for introductory
computer science students. InSIGCSE Technical Symposium
on Computer Science Education, Feb. 2003.

[9] J. H. C. II. jGrasp. www.eng.auburn.edu/grasp/.

[10] M. Kolling, B. Quig, A. Patterson, and J. Rosenberg. The
BlueJ system and its pedagogy. InWorkshop on Pedagogies
and Tools for Assimilating Object Oriented Concepts, Oct.
2001.

[11] M. Kolling and J. Rosenberg.BlueJ. www.bluej.org.

