Memory Accounting Without Partitions

Adam Wick
awick@cs.utah.edu

Matthew Flatt
mflatt@cs.utah.edu

University of Utah, School of Computing
50 South Central Campus Drive, Room 3190
Salt Lake City, Utah 84112-9205

ABSTRACT

Operating systems account for memory consumption and
allow for termination at the level of individual processes.
As a result, if one process consumes too much memory, it
can be terminated without damaging the rest of the system.
This same capability can be useful within a single applica-
tion that encompasses subtasks. An individual task may
go wrong either because the task’s code is untrusted or be-
cause the task’s input is untrusted. Conventional accounting
mechanisms, however, needlessly complicate communication
among tasks by partitioning their object spaces. In this
paper, we show how to provide applications with per-task
memory accounting without per-task object partitions.

Categories and Subject Descriptors

D.3.3 [Programming Languages|: Language Constructs
and Features—Dynamic Storage Management;

D.3.4 [Programming Languages]: Processors—Run-time
environments

General Terms
Languages, Reliability

Keywords

Garbage collection, memory accounting, concurrent program-
ming, software reliability

1. INTRODUCTION

As applications grow increasingly complex, they are in-
creasingly organized into smaller subprograms. For exam-
ple, web browsers invoke external programs to display im-
ages and movies, and spreadsheets frequently execute user-
defined scripts. The more subtasks that an application in-
vokes the more things can go wrong, and the more it be-
comes useful to control the subtasks. In this paper, we con-
centrate on the problem of constraining memory use.

Applications currently restrict memory use by partition-
ing data and then limiting the memory use of the partitions.
Traditional operating systems partition memory into com-
pletely separate heaps for each process, disallowing refer-
ences between them. This strict partitioning makes inter-
process communication difficult, requiring the marshaling
and demarshaling of data through pipes, sockets, channels
or similar structures. In some cases, marshaling important
data proves infeasible, leading to the use of complicated pro-
tocol programming.

More recent work provides hard resource boundaries within
a single virtual machine. Systems in this class, such as the
KaffeOS virtual machine [2], JSR-121 [13] or .NET applica-
tion domains [11], still partition data, but without the sep-
arate address space. Generally, the programmer explicitly
creates a shared partition and may freely allocate and refer-
ence objects in it. However, these systems do place restric-
tions on inter-partition references. For example, KaffeOS
disallows references from its shared heap to private heap
space. This less strict form of partitioning only partially al-
leviates the burden on the programmer. While the program
may now pass shared values via simple references, the pro-
grammer must explicitly manage the shared region. In the
case where one process wants to transfer data completely to
another process, the transfer may require two deep copies:
one to transfer the data into shared space, and the other
to transfer it out. In short, the programmer must manually
manage accounting in much the same way a C programmer
manages memory with malloc() and free().

Our system of partition-free memory accounting provides
the accounting ability of partitions without unnecessary work
by programmers. Further, as a consumer-based system, pro-
grammers simply allocate and pass objects around as they
please, and the current holder of the object is charged, rather
than the allocator. Thus, data migration and sharing require
no additional work on the part of the programmer: no mar-
shaling, no complex communications, and no explicit man-
agement of partitions. By leveraging an existing garbage
collector and the process hierarchy [10], our system is flex-
ible enough to handle most memory accounting demands,
and is fast enough to be used in production quality software.
Finally, our system exports simple but reliable guarantees,

Permission to make digital or hard copies of all or part of this work for Which are easy for the programmer to reason about.

personal or classroom use is granted without fee provided that copies are Although Price et al. [12] address memory accounting in
not made or distributed for profit or commercial advantage and that copies 3 way similar to our system, they do not build on a pro-
bear this notice and the full citation on the first page. To copy otherwise, to

. i) X X ..~ cess hierarchy, which is a cornerstone of our work. We be-
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
ISMM'04 October 24-25, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-945-4/4/001055.00.

lieve that a consumer-based accounting mechanism must be
tied to a process hierarchy to provide useful guarantees to

the programmer. Our practical applications—as well as our
comparison to other accounting mechanisms—both depend
crucially on parent—child relationships among processes.

We begin our discussion in section 2 with example ap-
plications where partition-free, consumer-based memory ac-
counting saves valuable programmer time and energy. We
follow the examples with a brief overview of our core sys-
tem, MzScheme, in section 3, and we present the details of
our accounting system in section 4. Section 5 describes how
we use this system in the examples in section 2. Section 6
outlines how our system works over large, general classes of
applications. We discuss the implementation of the system
in section 7, including an analysis of the cost of accounting.
Finally, we discuss related work in section 8 and conclude in
section 9.

2. MOTIVATING APPLICATIONS

Conventional partitioning or producer-based accounting
techniques can be used to solve most accounting problems.
However, these techniques often make programming diffi-
cult for no reason. We present three applications in this
section where using consumer-based, partition-free memory
accounting greatly simplifies our implementation task.

2.1 DrScheme

The DrScheme programming environment consists of one
or more windows, each split into a top and bottom half.
The top half provides standard program editing tools to the
user, while the bottom half presents an interactive Scheme
interpreter. Normally, users edit a program in the top half
and then test in the bottom half.

As a development environment, DrScheme frequently ex-
ecutes incorrect user code, which must not make DrScheme
crash. Language safety protects DrScheme from many classes
of errors, but a user program can also consume all available
memory. Thus, DrScheme must account for memory used
by the user program, and DrScheme must terminate the
program if it uses too much.

As we have noted, the usual way to account for memory
use and enforce memory limits is to run the interpreter in a
completely separate heap space. However, this separation
requires significant programmer effort. DrScheme would
have to communicate with its child processes through pseu-
dovalues rather than actual values and function calls, much
like a UNIX kernel communicates with processes through file
descriptors rather than actual file handles. This approach
becomes particularly difficult when writing DrScheme tools
that interact with both the program in the editor and the
state of the interpreter loop, such as debuggers and profilers.

DrScheme could partition values without resorting to sep-
arate heaps, but partitioning only solves some problems.
The programmer can either keep the entire system within
one partition, or split the system into many partitions. Nei-
ther approach works well in practice:

e Allocating all objects into a single, shared partition
makes communication simple, as references may be
passed freely. However, DrScheme frequently invokes
two or more interpreter loops. Since every object re-
sides in the same partition, the accounting system could
give no information about which interpreter DrScheme
should kill if too many objects are allocated.

e Separating DrScheme into several partitions leaves no
natural place for shared libraries. Shared libraries
would either need to be duplicated for every partition,
or must be told into which partition to allocate at any
given time. The first — duplication — has obvious prob-
lems. The second amounts to manual memory man-
agement, requiring unnecessary time and effort on the
part of the programmer.

A producer-based accounting scheme suffer from similar
problems. In order to write simple APIs, the program in
test often invokes parts of DrScheme to perform complex
operations. Some of these operations allocate data, and
then return this data to the child process. In this case,
a producer-based system would either not honor the data
hand-off or would require the parent process to communi-
cate to the accounting system that it is allocating the data
on behalf of another process. In the latter case, security
becomes an additional problem.

Instead of developing complex protocols to deal with sep-
arate address spaces or partitions, our system allows a direct
style of programming, where a small addition to DrScheme
provides safety from overallocating programs.

2.2 Assignment Hand-In Server

Students in CS2010 at the University of Utah submit
homework via a handin server. The server then tests the
student’s program against a series of teacher-defined tests.

This server clearly requires memory constraints. First,
an incorrect program that allocates too much memory on a
test input may kill the entire handin server. Second, and
unlike DrScheme itself, a malicious student might attempt
to bring down the server by intentionally writing a program
that allocates too much memory.

Running the student program interpreter in the same pro-
cess as the server saves a great deal of programming work,
and saves the course instructor time by not requiring test
case input and results to be marshaled. Further, we avoid
problems duplicating and reloading libraries. Duplication,
for example, creates a problem for test cases that use library
data types, since the types in a student program would not
match test cases generated by the testing process. Reloading
becomes a further problem for advanced student projects,
which typically require large support libraries. Reloading
these libraries for every test may stress the CPU beyond
acceptable levels, particularly around assignment due dates.

Partitioned accounting schemes solve some of these prob-
lems, but not all of them. As in DrScheme, shared libraries
are problematic, requiring either a great loss of informa-
tion or a form of manual memory management. Again, as
in DrScheme, producer-based accounting schemes fail when
shared libraries allocate memory on behalf of a student pro-
gram.

Instead of carefully managing such details, our server uses
partition-free, consumer-based accounting and works with
no special protocols. The server requires neither copying
code nor protocol code, and shared libraries are loaded once
for the entire system.

2.3 SirMall

SirMail began as a modest mail client, and was gradually
extended with a few additional features, including HTML
rendering and attachment processing. These two extensions,
however, introduce a memory security problem.

The HTML engine renders HT'ML email in the normal
way. In doing so, however, it may download images from un-
known, untrusted servers. By creating a small email which
requires the display of an arbitrarily large graphic, an at-
tacker (or spammer) could easily bring the whole system to
a grinding halt. Attachment processing also presents a prob-
lem, as a huge attachment may arbitrarily pause the whole
mail client for the duration of processing.

Partitioned accounting systems solve both these problems
but create new ones. In order to function, the HTML ren-
dering engine must draw to the main SirMail window. Sim-
ilarly, SirMail must pass the data to be processed to the
attachment processor, and then receive the result. Parti-
tioning schemes cause problems for both interactions. Since
shared memory regions may not contain pointers to private
memory regions, in order for the HTML engine to draw to
the screen either SirMail must place the entire GUI (and all
callbacks and other references) into a shared region or the
engine must communicate to SirMail using some drawing
protocol. In the case of the attachment processor, SirMail
would have to copy the entire attachment into and then out
of the subprocess’s heap for accounting to make sense.

Using partition-free accounting solves both these prob-
lems. SirMail simply passes a direct reference to the GUI
to the rendering engine, which can then interact with it in
the usual ways. Similarly, SirMail may simply call the at-
tachment processor with a reference to the data, and have a
reference to the result returned to it, requiring no copying.

3. PROCESSES IN MZSCHEME

Our base system, MzScheme [9], exports no single con-
struct that exactly matches a conventional process. Rather,
various orthogonal constructs implement different aspects
of processes to give the programmer a finer grain of control
over programs. While MzScheme supplies many different
such constructs, only three are relevant to the current work:

e Threads implement the execution aspect of a process.
The MzScheme thread function consumes a thunk and
runs the thunk in a new thread, as follows:

(letrec ([loop (lambda (v)
(display v)
(loop v))])
(thread (lambda () (loop 1)))
(loop 2))

In this example, the body of the letrec creates a thread
that prints the number 1 endlessly while the rest of the
body prints the number 2 endlessly.

e Parameters implement process-specific settings, such
as the current working directory. MzScheme repre-
sents parameters with functions for getting and setting
the parameter value. These values are thread-local; a
newly created thread will inherit its initial value from
the current value in the creating thread. Afterwards,
modifying the value in the new thread has no effect on
the parent thread’s value.

The following example sets the current directory to
"/tmp" while running do-work, then restores the cur-
rent directory:!

Production code would use the parameterize form so that
the directory is restored if do-work raises an exception.

(let ([orig-dir (current-directory)])
(current-directory " /tmp")
(do-work)

(current-directory orig-dir))

e Custodians implement the resource-management as-
pect of a process. Whenever a thread object is cre-
ated, port object opened, GUI object displayed, or
network-listener object started, the object is assigned
to the current custodian, which is determined by the
current-custodian parameter. The main operation on a
custodian is custodian-shutdown-all, which terminates
all of the custodian’s threads, closes all of its ports,
and so on. In addition, every new custodian created
with make-custodian is created as a child of the cur-
rent custodian. Shutting down a custodian also shuts
down all of its child custodians.

The following example runs child-work-thunk in its
own thread, then terminates the thread after one sec-
ond (also shutting down any other resources used by
the child thread):

(let ([child-custodian (make-custodian))
[parent-custodian (current-custodian)])
(current-custodian child-custodian)
(thread child-work-thunk)
(current-custodian parent-custodian)
(sleep 1)
(custodian-shutdown-all child-custodian))

A thread’s current custodian is not the same as the
custodian that manages the thread. The latter is de-
termined permanently when the thread is created.

Threads and custodians form the basis of our accounting
system. A thread necessarily references its continuation and
parameter values, which provides an intuitive framework for
determining what objects a particular thread uses. Custo-
dians naturally serve as resource-management objects, and
provide a safe way to terminate a set of threads and all
their open ports, sockets, GUI objects, etc. Therefore, our
API provides memory restricting functions that work at the
granularity of a custodian.

Custodians further provide an ideal granularity due to
their hierarchical nature. Custodian-shutdown-all not only
terminates threads and closes ports, it also shuts down any
custodians created as a child of the given custodian. This
hierarchy provides an immediate solution for an obvious se-
curity flaw, wherein a malicious custodian creates a subcus-
todian in order to have the subcustodian killed off instead
of it. The attack simply fails, since the parent of the child
custodian remains responsible for the child’s memory. Fur-
thermore, custodians are garbage collected (and thus mem-
ory accounted) entities, so a malicious child process cannot
starve the system for memory simply by repeatedly allocat-
ing new custodians.

4. CONSUMER-BASED ACCOUNTING

Without sharing, accounting is a simple extension of garbage
collection. Sharing complicates matters, since the system
must provide guarantees as to which process or processes
the shared objects will be accounted. In other words, if cus-
todian A and custodian B both share a reference to x, the

(o)<

77777 . \.

Figure 1: Custodians and threads. Threads implement concurrent execution, and hold and use objects.
Custodians manage threads, along with other resources like I/O ports

accounting system must provide some guarantee as to how
the charge for = will be assigned.

Certain policy decisions would provide useful guarantees,
but drastically reduce performance. One such policy is to
charge the use of z to both A and B, and another might split
the charge equally between A and B. While these policies
provide reliable, intuitive guarantees, they both suffer from
a performance problem: a worst-case execution time of CxR,
where C' is the number of custodians and R is the number of
reachable objects. Our experience suggests that this extra
factor of C scales poorly in real systems, and provides a new
opportunity for denial of service attacks (i.e., by creating
many custodians).

Our approach makes one simple guarantee to the pro-
grammer that nevertheless provides useful information. We
guarantee the charge of x to A, and not B, if A descends
(hierarchically) from B. Due to the hierarchical nature of
custodians, these charges bubble up to the parents, regard-
less, so assigning the charge to the child provides more useful
accounting information. In other words, since B is respon-
sible for the behavior of A, B eventually becomes charged
for A’s usage. In the case of unrelated sharing custodians,
the charge is assigned arbitrarily. For reasons that we dis-
cuss at length in the following section, we have not found
the arbitrary assignment a problem. In fact, we find that
this simple approach applies well to a large class of potential
applications.

Finally, the policy must describe what it means for a cus-
todian to reference an object. We consider an object reach-
able by a custodian if it is reachable from any thread that
custodian manages, with a few exceptions. First, since weak
references do not cause an object to be retained past garbage
collection, a custodian holding an object only through a
weak reference is not charged for it. Second, many threads
hold references to other threads and custodians. However,
these references are opaque, so the original thread cannot
then reference anything in that thread or custodian. There-
fore, if an object x is reachable by custodian C only through
a reference to some other thread or custodian, then C' is not
charged for x.

Given the above guarantees and policies, we export the
accounting APT as follows:

o (custodian-limit-memory cust! limit-k cust2) installs
a limit of limit-k bytes on the memory charged to the
custodian cust!. If ever custl uses more than limit-k
bytes, then cust2 is shut down.

Typically, cust! and cust2 are the same custodian,
and the parent custodian uses the child custodian in
question for both arguments. Distinguishing the ac-
counting center from the cost center, however, can be
useful when cust! is the parent of cust2 or vice-versa.

Although custodian-limit-memory is useful in simple set-
tings, it does not compose well. For example, if a parent
process has 100 MB to work with and its child processes
typically use 1 MB but sometimes 20 MB, should the parent
limit itself to the worst case by running at most 5 children?
And how does the parent know that it has 100 MB to work
with in the case of parent-siblings with varying memory con-
sumption?

In order to address the needs of a parent more directly
and in a more easily composed form, we introduce a second
interface:

o (custodian-require-memory cust! need-k cust2) installs
a request for need-k bytes to be available for custodian
custl. If custl is ever unable to allocate need-k bytes
(if it suddenly needed this amount), then cust2 is shut
down.

Using custodian-require-memory, a parent process can de-
clare a safety cushion for its own operation but otherwise
allow each child process to consume as much memory as
is available. A parent can also combine custodian-require-
memory and custodian-limit-memory to declare its own cush-
ion and also prevent children from using more than 20 MB
without limiting the total number of children to 5.

All of the above procedures register constraints with the
accounting system separately. Thus, a child processes can-
not raise a limit on itself by simply reinvoking custodian-
limit-memory as both limits remain in effect. Furthermore,
note that killing a custodian simply closes all its ports, stops
all its threads, and so on, but does not explicitly deallocate
memory. Because of this, memory shared between a cus-
todian being shutdown a surviving custodian will not be
deallocated by the shutdown process.

In addition to the two memory-monitoring procedures,
MzScheme provides a function that reports a given custo-
dian’s current charges:

e (current-memory-use cust) returns the number of al-
located bytes currently charged to custodian cust.

These procedures, in combination, provide simple mecha-
nisms for constraining the memory use of subprocesses. In

most cases, extending an existing application to use memory
constraints requires only a few additional lines of code. For
example, consider the following program:

(define (simple-test-server is-ok?)
(run-server 4343
(lambda (in-port out-port)
(let ([student-program (read in-port)])
(write (is-ok? student-program)
out-port)))
1000))

This code implements a simple handin server, using the li-
brary function run-server. A student connects to port 4343
and sends a program. After the server completes the con-
nection, run-server spawns the given function in a separate
thread and custodian, and reads in the program. It then
sends back, through the output port, the results of testing
the program. Using the custodian, the run-server function
imposes a timeout of 1000 seconds on this computation.

Of course, neither timeouts nor language safety protects
the server itself from a memory attack. If the is-0k? func-
tion runs the student’s code, and if the code allocates too
much memory, the whole system will halt. Worse, if the
client simply sends a huge program, reading in the program
in the first place will crash the system.

To solve the problem we modify the program to use mem-
ory constraints, as follows:

(define (simple-test-server is-ok?)
(run-server 4343
(lambda (in-port out-port)
(custodian-limit-memory (current-custodian)
(* 32 1024 1024) (current-custodian))
(let ([student-program (read in-port)])
(write (is-ok? student-program)
out-port)))
1000))

In short, the addition of one function call prevents a bad
or huge program from crashing the server.

5. ACCOUNTING IN THE EXAMPLES

Using our new accounting mechanisms, we easily solved
the accounting problems described in section 2. In this sec-
tion, we report briefly on our experience.

5.1 DrScheme

In order to support a stop (break) button, DrScheme runs
every interpreter window in a separate custodian. These
custodians descend from a single, parent custodian for the
system. Since our accounting mechanism charges shared
memory to the child, rather than the parent, none of our
existing interfaces required updating. DrScheme simply al-
locates complex objects and transfers them directly to the
child. Additionally, the DrScheme process has direct access
to the closures, environment, and other interpreter state of
a user program.

Our initial pass to add accounting to DrScheme required
only four lines of code. Specifically, the four lines locally
bind the new custodian, set the memory limit, and pro-
ceeded as normal.

However, a problem quickly became evident. The system,
as originally constructed, contained reference links from the

child custodian to the parent (through ports, GUI objects
and so forth passed down through the API), but also links
from the parent down to each of the children. The account-
ing pass, then, picked one of the children to account to first,
and that child was charged for most of the objects allocated
in the entire system. Since the child can reach up to the
parent’s object space and then back down to all its siblings’
object spaces, it can reach (and thus is charged for) all of
these objects.

Initially, we attempted to break all the links from the child
to the parent. However, doing so creates many of the same
problems as the old operating system process solution. For
example, instead of handing out I/O ports directly, a file
handle system must be used.

Rather than rewriting a huge chunk of DrScheme, we in-
vestigated breaking the links from the parent to the child.
This modification turned out to be quite simple, involving
only a few hours of programmer time to find the links from
parent to child, plus another half hour to remove these links.
In all, the task required the changing of five references: two
were changed to weak links, one was pushed down into the
child space and the final two were extraneous and simply
removed.

5.2 Hand-In Server

To make the hand-in server shut down overconsuming test
custodians, a single line was needed. We also added a fea-
ture to report to students when the test was terminated.
Even this extra feature proved fairly simple, with the entire
change comprising around 25 lines.

5.3 SirMall

Modifying the existing code to limit the memory use of
the HTML rendering engine required about 45 minutes of
time from a programmer unfamiliar with the SirMail code
base, and about 20 lines of code. Most of this additional
code detects and reports when the accounting system shuts
down the rendering custodian.

The MIME processing modifications turned out to be eas-
ier, requiring approximately 10 minutes of time and an ad-
ditional 5 lines of code. These five lines implement a pattern
for libraries and callbacks that is described in section 6.2.1.

6. ACCOUNTING PARADIGMS

In this section, we describe several common paradigms for
multiprocess programs, and show how our system easily han-
dles most of them. Despite our apparently weak guarantee
for shared-object accounting, in many cases our accounting
system improves on existing mechanisms.

6.1 Concurrent Paradigms

We first discuss accounting paradigms involving multiple,
communicating processes. Figure 2 gives a pictorial repre-
sentation of the three possible communication paradigms.

6.1.1 Noncommunicating Processes

In some cases, a program must offload some work and
does not care about the results. In such examples, the parent
spawns the child with some initial data set, and then largely
ignores the child unless it raises an error. Examples include
print spoolers, nonquerying database transactions (inserts,
updates, etc.), and logging utilities. This protocol roughly
matches traditional operating system processes.

ANANYA

Noncommunicating

Vertical

Horizontal

Figure 2: The three interprocess communication patterns. The filled circle represents the parent process,
with the hollow circles representing child processes. The arrows represent directions of communication.

Conventional process accounting suffices in such tasks,
due to the small amount of one-way communication between
the two processes, but our system works equally well. Since
the data in the subprocess never escapes that subprocess,
any data that the subprocess uses is charged to it.

6.1.2 Vertically Communicating Processes

Another common paradigm involves two-way communica-
tion between a parent process and a child process, but not
between child processes. Examples include web browsers,
programming language IDEs, file processors, database queries
and so on. In these cases, the parent process may create an
arbitrary number of children, but these children communi-
cate only with the parent and not each other.

Such purely vertical communication paths represent a large
subset of concurrent, communicating programs involving un-
trusted processes. Generally, the parent program runs the
untrusted process and communicates with it directly. Com-
munication between other subprocesses and the untrusted
process usually pass through the parent program. Mean-
while, the parent and each child must cooperate closely, and
this cooperation is most easily implemented by sharing clo-
sures and objects.

Our algorithm for accounting memory clearly covers this
case. As our accounting mechanism always accounts shared
objects to the child, information on the memory usage of
the child remains exact. Thus, by leveraging the custodian
hierarchy, we create a framework providing exactly what the
programmer wants and needs. In general, we find our system
allows applications in this class to restrict the memory use
of their subprocesses with little to no impact on the way
they allocate and share data.

6.1.3 Horizontally Communicating Processes

Sometimes, a parent spawns multiple children that com-
municate directly. Examples include AI blackboard systems
and parallel sorting algorithms. In such cases, the children
work collaboratively to solve some problem.

When two sibling processes share data, our algorithm
guarantees only that one will be charged, but does not guar-
antee which. Therefore, on one garbage collection, assign-
ment of the charge may go to one process and on some
other during the next. This uncertainty in charging reflects
that, typically, individual charges make little sense and that
killing one process will not allow others to continue. In that
case, children can be grouped under a grouping custodian,
which lies between the parent custodian and the child custo-
dians in the hierarchy. The parent then sets limits on the set
of children, and shuts them down as a group if they violate
any memory constraints.

Another possibility is that the children may be working

on disjoint sets of data, so charges make sense for each pro-
cess and, presumably, individual children can proceed even
if others die. In these cases, a limit on the children as a
group makes little sense. However, the parent may set a
memory requirement, to guarantee that a certain amount
of memory is held in reserve for itself. When a violation
of this requirement occurs, the program simply kills off the
subprocesses in some static or heuristic order.

6.2 Single-Process Paradigms

The three previous sections concentrate on concurrent
subprocesses, where consumer-based accounting makes sense.
In some cases, this assumption does not apply. The first case
that we consider involves untrusted libraries or callbacks in-
stalled by untrusted code. The second case involves situ-
ations (concurrent or not), where the application requires
producer-based accounting.

6.2.1 Libraries and Callbacks

Some applications link (statically or dynamically) to un-
trusted libraries. Further, some concurrent applications in-
stall callbacks from child processes into the parent process.
In these cases, the desired granularity for accounting more
closely resembles a function call than a thread or process.
These cases require wrappers to the API described previ-
ously.

In most cases, an additional function call or the introduc-
tion of a macro suffices. These convert the original function
call into a series of steps. First, the new code creates a new
custodian and sets the appropriate limit upon it. Then the
code invokes the original call in a new subthread and waits
for the computed value. In short, a function call is converted
into a short-lived subprocess with appropriate constraints.

A disadvantage of this approach involves the creation of
the temporary custodian and thread, which involves an ob-
vious performance penalty. However, it seems unlikely that
converted calls will appear in tight loops. (Calls in tight
loops typically execute quickly, and thus are unlikely to have
behavior requiring memory constraints.)

Even if speed is not an issue, functions requiring thread
identity will not work using this method. For example, se-
curity mechanisms might grant privileges only to one partic-
ular thread, but not subthreads of that thread. By running
the function in a new thread, we lose any important infor-
mation stored implicitly in the original thread. While cases
such as this seem rare, we are working on a solution for this
problem.

6.2.2 Producer-Based Accounting

The only situation in which our system does not clearly
subsume existing technologies is when producer-based ac-

counting is required. In other words, process A provides
data to process B, and charges for the data should always
go to A, regardless of the relationship between the two.

We have not encountered in practice an example where
producer-based accounting makes sense, and we conjecture
that they are rare. Even so, this problem might often re-
duce to a rate-limiting problem rather than a memory usage
problem. In other words, B does not so much wish to con-
strain the memory use of A as much as it wants to constrain
the amount of data that it receives at one time. Suitable
rate-limiting protocols should suffice for this case. Further,
using a weak reference allows a program to hold data with-
out being charged for it. Since weak references do not cause
the data contained in them to be retained by the collector,
the accounting system does not charge their holders with
their data.

Another possible scenario involves the use of untrusted
libraries for creating and maintaining data structures. We
can imagine using an off-the-shelf library to hold complex
program data, rather than writing the data structures from
scratch. In using such a library, we can imagine wanting to
ensure that its structures do not grow unreasonably. Again,
this situation seems unlikely. Programs typically do not
trust important data to untrusted data structure libraries.
Further, it is unclear how the program would continue to
run after a constraint violation Kkills its own data structures.

7. IMPLEMENTATION

Implementing consumer-based accounting requires only
straightforward modifications to a typical garbage collector.
Our approach requires the same mark functions, root sets
and traversal procedures that exist in the collector. The pri-
mary change is in the organization and ordering of roots. A
second involves the method of marking roots, and the final
involves a slight change in the mark procedure.

First and foremost, accounting requires a particular orga-
nization of roots. Before accounting, the roots must be or-
dered so that root A appears before root B if the custodian
responsible for A descends from the custodian responsible
for B. Second, we mark and fully propagate each individual
root before moving on to the next one. Figure 3 outlines
these steps.

By placing this partial order on the roots and forcing full
propagation before moving on to the next root, we provide
the full guarantee described previously. If object x is reach-
able by roots from custodians A and B, where B is a de-
scendent of A, then the mark propagation will select B’s
root first due to the partial order. When the root or roots
associated with A come around, = has already been marked
and no further accounting information is gathered for it.

Minor modifications to the mark procedure alleviate one
further potential problem. These stop mark propagation
when threads, custodians and weak boxes are reached, in
order to match the behavior outlined in section 4.

Doing this process alongside the collector allows one pass
to perform both accounting and collection, and works in
many cases. Our first implementation of memory accounting
used this methodology. However, in cases where the set of
collectable objects include threads, creating appropriate or-
derings becomes difficult. Since the accounting mechanisms
requires the marking of threads and the collector does not
know which threads are live, determining how to proceed
becomes tricky.

Custodian A

Figure 4: A potential heap layout, mid-collection.
The grayed objects have been marked by the collec-
tor.

In such cases, a second pass implementing memory ac-
counting suggests itself. This second pass occurs after garbage
collection but before control returns to the mutator. Our im-
plementation of such a system suggests that the additional
effort required above that of the all-in-one solution remained
minimal. Again, using much of the existing collector scaf-
folding saves considerable amounts of work and time. This
two-pass style may increase slowdowns noticeably in some
cases, but we have not noticed any significant difference be-
tween the two implementations in practice.

7.1 Incremental Collection

Our implementation of memory accounting builds on an
existing precise, stop-the-world garbage collector for MzScheme.
We believe that the basic algorithm described above trans-
fers easily to other languages and other virtual machines
running stop-the-world collectors. Obviously, languages with-
out a custodian mechanism must transfer their granularity
to some other entity, but the core of the algorithm should
remain the same.

To see the problem in combining incremental and account-
ing collectors, consider the example in Figure 4. In this case,
we have two custodians (A and B) and four objects (w, z,
y and z), and two of the objects — w and = — have been
marked by the collector. If the collector now turns control
over to the mutator, the mutator may then modify the heap
so that the link from y to z is destroyed and a new link from
x to z is created. At this point, an unmodified incremental
collector will account z to B, which violates the guarantee
in section 4.

In incremental collectors, the collector uses either read
barriers or write barriers to prevent the mutator from putting
references from unscanned (white) objects to scanned (gray
or black) objects [1, 15]. Using a write-barrier technique,
the collector must either gray the referring object (schedul-
ing it for repropagation once the collector resumes) or gray
the referred-to object (forcing it into scanned space).

In both cases, any references by the newly-grayed object
will be placed in the collector’s mark queue. In order to
support accounting, we require two modifications. First,
the trap routine must place these objects at the head of the
mark queue, causing them to be marked immediately once
the collector resumes. Second, the trap routine must anno-
tate these objects with the custodian to which the referring
object was accounted. By combining these, the collector

Step #1: Sort the roots according to the partial order

(Jobjex)

([object)

([object)

T
’
|
|
|
|
|
|
|

.~ Custodian A CustodianB).

Step #3: Propagate the root completely

N
(XX object)

(| ojeat

T
’
|
|
|
|
|
|
|

.~ Custodian A CustodianB).

Step #2: Mark the first root

(objex)
X(ohes)

([object)

7z

.~ Custodian A CustodianB).

T
’
|
|
|
|
|
|
|

Step #4: Mark the next root

N\
(X ovject) (XX object)

7z

./ Custodian A CustodianB).

T
’
|
|
|
|
|
|
|

Figure 3: The four steps of the accounting procedure.

accounts these objects to the appropriate custodian imme-
diately after it resumes execution.

Since these objects are put at the head of the queue, there
is no chance of a parent reaching these objects before its
child, thus insuring the guarantee described in section 4.
Since the modification simply modifies the order of objects
added to the queue in the trap function, a modified version of
an incremental algorithm will halt if the unmodified version
halts.

7.2 Benchmarks

Our example applications are not particularly amenable
to benchmarking, but quick tests show either no slowdown
outside of measurement noise or slowdown of under 10%.
In this section, we use a set of microbenchmarks instead.
While microbenchmarks do not generalize particularly well,
we feel that they are appropriate in this case. Since we are
testing for slowdown, rather than speedup, the inordinate
stress these benchmarks place on the memory system supply
us with worst case behavior. Most actual programs should
experience penalties no worse than those reported.

We implemented our accounting system atop a garbage
collector for MzScheme. By default, MzScheme uses a con-
servative collector, due to historical needs. We plan on mi-
grating the system to using precise collection by default in
the coming year or two, and our accounting system is built
upon the newer precise collection infrastructure. In order
to more completely convey the penalties involved from ac-
counting, we include three sets of benchmarks.

The first set of benchmarks, in figure 5, outline the base
penalty for using precise collection instead of the Boehm

conservative collector [6]. We compare the original MzScheme

C source with the Boehm collector to a system using C

source modified to enable precise collection which is also
linked to the Boehm collector. The penalty for the extra
work (largely involving keeping track of data values on the
stack) is nontrivial but acceptable for most common tasks.

We then compare the modified source with the Boehm col-
lector to the base, nonaccounting precise collector. Results
are given in figure 7. These results show precise collection
to be strictly faster than the conservative collector (linked
against the same modified source). Thus we claim that the
cost of accounting, reported below, is not small simply be-
cause the collector is abnormally slow.

Finaly, we added memory accounting to the base pre-
cise collector to determine the penalty for accounting. We
provide two accounting collectors for comparative purposes.
The first generates accounting information only on major
collections, while the second gathers accounting information
on every collection. We provide only the second in our dis-
tribution system, but the first is an intuitive optimization
we include for completeness. The results are given in figure
7.

A brief description of each benchmark follows:

e carley: Earley’s context-free parsing algorithm. Given
a simple ambiguous grammar, it generates all the parse
trees for a short input.

e gcbench: A synthetic benchmark originally written in
Java by John Ellis, Pete Kovac and Hans Boehm.

e graphs: Performs an enumeration of directed graphs,
making heavy use of higher-order procedures.

e Jattice: Enumeration of lattices of monotone maps be-
tween lattices.

[Name [Boehm [Mod. Boehm [Slowdown |
earley 189 (<1%) 258 (1.94%) 36.51%
gebench | 13560 (<1%) | 20350 (<1%) | 50.07%
graphs 240007 (<1%) | 280330 (<1%) | 16.8%
lattice 79368 (<1%) | 123970 (<1%) | 56.2%
nboyer | 66627 (<1%) | 111535 (<1%) | 67.4%
nucleic | 2585 (<1%) | 3095 (<1%) | 54.55%
perm 1685 (1.54%) | 3197 (<1%) 89.73%
sumperm | 2021 (<1%) 3082 (<1%) 52.5%
mergesort | 29211 (<1%) | 52431 (<1%) | 79.49%
sboyer 66434 (<1%) | 111451 (<1%) | 67.76%

Figure 5: Comparison of the standard Boehm con-
servative collector with the Boehm collector linked
to our precise-collection modified C source code.
The modifications required to get standard C to
work with a precise collector which may move ob-
jects around slows down the total efficiency of the
system noticeably. All times given in milliseconds,
with standard deviations as a percentage of the total
given in parenthesis.

[Name [Mod. Boehm | Precise | Speedup |
carley 358 (1L04%) | 202 (2.48%) | 2L.71%
gcbench 20350 (<1%) 18405 (1.24%) | 9.56%
graphs | 280330 (<1%) | 230559 (<1%) | 17.75%
lattice 123970 (<1%) | 118392 (<1%) | 4.5%
nboyer 111535 (<1%) | 94175 (<1%) | 15.56%
nucleic 3995 (<1%) 3936 (<1%) 1.48%
perm 3197 (<1%) | 2788 (1.33%) | 12.79%
sumperm | 3082 (<1%) 2530 (<1%) 17.91%
mergesort | 52431 (<1%) | 42521 (<1%) 18.9%
sboyer 111451 (<1%) | 95338 (<1%) | 14.46%

Figure 6: Comparison of the standard Boehm con-
servative collector linked to the precise-collection
modified C source with the base precise collector.
Precise collection outperforms the Boehm collec-
tor in all cases. All times given in milliseconds,
with standard deviations as a percentage of the total

given in parenthesis.

e nboyer: Bob Boyer’s theorem proving benchmark, with
a scaling parameter suggested by Boyer, some bug fixes
noted by Henry Baker and others, and rewritten to
use a more reasonable representation for the database
(with constant-time lookups) instead of property lists
(which gave linear-time lookups for the most widely
distributed form of the boyer benchmark in Scheme).

e nucleic: Marc Feeley et al’s Pseudoknot benchmark.

e perm: An algorithm for generating lists of permuta-
tions, involving very large amounts of allocation.

e sumperm: Computes the sum of a set of permutations
over all permutations.

e mergesort: Destructively sorts a set of permutations.

e sboyer: The nboyer benchmark with a small modifica-
tion to use shared conses.

All benchmark data was gathered over 50 trials of each
benchmark program for each collector, with the means and

standard deviations given. The test system is a Pentium IV
running FreeBSD 4.6 and PLT Scheme 205.5.

We find that accounting — even accounting on every col-
lection — costs little compared to the runtime of each pro-
gram. Additional overheads in these benchmarks show no
more than a 13% slowdown, which matches our day-to-day
experience. Most programs show between 4 and 8%, with a
few programs experiencing little to no slowdown at all.

In order to simplify this presentation, we have included
standard GC performance benchmarks. Unfortunately, these
are not concurrent. However, we find that accounting per-
formance on concurrent programs with multiple custodians
behaves in the same way as single process programs. Since
the accounting system only marks each object in the heap
once, regardless of the number of active custodians, this be-
havior is not surprising.

The difference between accounting only on major collec-
tions and accounting on every collection seems minor in
most cases. However, accounting on only major collections
presents important disadvantages. Gathering information
much less frequently creates long delays in the detection of
memory constraint violations. In some cases, a sufficient
enough delay occurs to cause unfortunate side effects, such
as thrashing when the underlying virtual memory system is
forced to go to disk for more memory. We feel that more
prompt detection of these constraints far outweighs the mi-
nor performance degradation.

On the other hand, we have had no problems gathering
accounting information on every collection. Typically, mi-
nor collections happen frequently enough that any delay in
detecting memory violations is trivial. The only cases where
collections do not occur frequently are when threads do not
allocate much memory at all.

8. RELATED WORK

We previously reported preliminary results for our ac-
counting system [14]. Since the preliminary report, we have
fully implemented the accounting system, reconsidered some
subtle design points, and performed a thorough evaluation
of our system.

Other recent research focuses on providing hard resource
boundaries between applications in order to prevent denial
of service attacks. The KaffeOS [2] for Java provides the
ability to precisely account for memory consumption by ap-
plications. MVM (7], Alta [3], and J-SEAL2 [5] all provide
similar solutions, as do JSR~121 [13] and .NET application
domains [11], but in all cases these boundaries constrain
interprocess communication. In highly cooperative applica-
tions, or in situations requiring some amount of dynamic
flexibility in sharing patterns, these systems may present
significant barriers to simple development.

Generally, the existing work on resource controls — in-
cluding JREs [8] and research on accounting principals in
operating systems address only resource application, which
does not adequately provide the full range of tools we believe
modern programmers require.

Our notion of custodians arose in parallel with work on re-
source containers [4] for general-purpose operating systems.
The accounting system in some ways adds memory back as
a resource. However, the resource container system again
accounts for memory based on the producer, rather than
the consumer, of the data. Similarly, the resource container
system requires explicit management of the containers, thus

[Name [Base collector | Major-collection | Slowdown [Every collection | Slowdown]
carley 202 (2.48%) | 193 (2.59%) 1.46% | 215 (2.33%) 6.44%
gebench | 18405 (1.24%) | 17988 (<1%) | -2.27% | 19626 (<1%) | 6.63%
graphs | 230559 (<1%) | 232068 (<1%) | 0.65% 259050 (<1%) | 12.36%
lattice 118392 (<1%) | 118483 (<1%) | 0.08% 121901 (<1%) | 2.96%
nboyer | 94175 (<1%) | 95906 (<1%) 1.84% 98956 (<1%) | 5.08%
nucleic | 3936 (<1%) | 3979 (<1%) 1.09% 4418 (<1%) 12.25%
perm 2788 (1.33%) | 2689 (<1%) -3.55% 2010 (<1%) 1.38%
sumperm | 2530 (<1%) | 2465 (<1%) -2.57% 2596 (<1%) 2.61%
mergesort | 42521 (<1%) | 40522 (<1%) 47% 42017 (<1%) | 0.93%
sboyer 95338 (<1%) | 97336 (<1%) 2.1% 99497 (<1%) | 4.36%

Figure 7: Comparison of the accounting collectors compared to the base collector. Standard deviations as a

percentage of the total time are given in parenthesis. Times given in milliseconds.

requiring explicit management of heap partitions and thus
memory management. These do provide some measure of
precision, but restrict the free flow of data unacceptably.

Price et al. [12] present the only other consumer-based,
partition-free accounting system, which was developed in
parallel with our system. They present no results for prac-
tical applications. Moreover, their policy for shared objects
is to rotate the mark order for roots, which would not pro-
vide a sufficient guarantee for any of our motivating applica-
tions. Price et al. also present a concept of “unaccountable
references.” These references effectively block the marking
phase of the accounting mechanism. The rationale for these
objects is to block a malicious process A from passing an
inordinately large object to process B in an attempt to get
it killed. It is unclear, however, what advantages unaccount-
able references have over normal weak references.

9. CONCLUSION

Current accounting mechanism require programmers to
partition their heaps, which creates communications prob-
lems, protocol problems, and manual memory management
problems. We have shown that this additional work is un-
necessary in a garbage collected environment. Our partition-
free, producer-based accounting system provides the con-
straints programmers need without interfering with the way
they design or write their programs.

We have described three example applications. Imple-
menting memory constraints for each of these, given only
existing technologies, would have required careful protocol
design, complicated marshaling code, or explicit memory
management. Using our accounting system, each required
very little effort and only minimal changes.

More generally, our analysis suggests that our account-
ing system works for many accounting paradigms. In many
cases, our system should work better, since it enables more
direct communication among tasks.

Finally, our system exists and is available with PLT Scheme
205.5 and higher. It is fast enough to be used in production
quality systems, typically causing only a 4 to 8% slowdown,

Acknowledgments

The authors would like to gratefully acknowledge Wilson
Hsieh for discussions leading to this work.

10. REFERENCES

[1] A. W. Appel, J. R. Ellis, and K. Li. Real-time
concurrent collection on stock multiprocessors. In
Proceedings of the ACM SIGPLAN 1988 Conference
on Programming Language Design and
Implementation, pages 11-20. ACM Press, 1988.

[2] G. Back, W. C. Hsieh, and J. Lepreau. Processes in
KaffeOS: Isolation, resource management, and sharing
in Java. In Proceedings of the 4th Symposium on
Operating Systems Design and Implementation, San
Diego, CA, Oct. 2000. USENIX.

[3] G. Back, P. Tullmann, L. Stoller, W. C. Hsieh, and
J. Lepreau. Java operating systems: Design and
implementation. In Proceedings of the USENIX 2000
Technical Conference, pages 197-210, San Diego, CA,
June 2000.

[4] G. Banga, P. Druschel, and J. C. Mogul. Resource
containers: A new facility for resource management in
server systems. In Proc. ACM Symposium on
Operating System Design and Implementation, Feb.
1999.

[5] W. Binder, J. G. Hulaas, and A. Villazén. Portable
resource control in java: The J-SEAL2 approach. In
Proc. ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 139-155, 2001.

[6] H.-J. Boehm. Space efficient conservative garbage
collection. In SIGPLAN Conference on Programming
Language Design and Implementation, pages 197-206,
1993.

[7] G. Czajkowski and L. Daynes. Multitasking without
compromise: a virtual machine evolution. In Proc.
ACM Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 125-138,
2001.

[8] G. Czajkowski and T. von Eicken. JRes: A resource
accounting interface for Java. In Proc. ACM
Conference on Object-Oriented Programming,
Systems, Languages, and Applications, pages 21-35,
1998.

[9] M. Flatt. PLT MzScheme: Language manual.
Technical Report TR97-280, Rice University, 1997.
http://download.plt-scheme.org/doc/.

[10] M. Flatt, R. B. Findler, S. Krishnamurthi, and
M. Felleisen. Programming languages as operating
systems (or revenge of the son of the lisp machine). In
International Conference on Functional Programming,

[13]

[14]

[15]

pages 138-147, 1999.

E. Meijer and J. Gough. Technical overview of the
common language runtime.

D. W. Price, A. Rudys, and D. S. Wallach. Garbage
collector memory accounting in language-based
systems. In IEEE Symposium on Security and
Privacy, Oakland, California, May 2003.

Soper, P., specification lead. JSR 121: Application
isolation API specification, 2003.
http://www.jcp.org/.

A. Wick, M. Flatt, and W. Hsieh. Reachability-based
memory accounting. In 2002 Scheme Workshop,
Pittsburgh, Pennsylvania, October 2002.

T. Yuasa. Realtime garbage collection on
general-purpose machines. Journal Of Systems And
Software, 11:181-198, 1990.

