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Abstract
In an extensible programming language, programmers write code
that must run at different times—in particular, at compile time
versus run time. The module system of the Racket programming
language enables a programmer to reason about programs in the
face of such extensibility, because the distinction between run-
time and compile-time phases is built into the language model.
Submodules extend Racket’s module system to make the phase-
separation facet of the language extensible. That is, submodules
give programmers the capability to define new phases, such as “test
time” or “documentation time,” with the same reasoning and code-
management benefits as the built-in distinction between run time
and compile time.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

Keywords Macros, modules, language tower

1. Introduction
Racket’s module system is similar to the module systems of other
languages. Modules are static, they reside in a global namespace
with hierarchical names, and they statically declare their dependen-
cies on other modules. These properties of the module system sim-
plify compilation and linking tasks; for example, the raco make
tool can traverse and compile the dependencies of a program as
needed, and raco exe can combine all needed modules into a
single executable.

A distinguishing feature of Racket’s module system is the way
that it interacts with macro-based “languages.” Each module ex-
plicitly declares its language, so that different modules in the same
program can have different syntaxes or different semantics for a
given syntactic form. Such languages are implemented by macros
via arbitrary Racket code that runs at compile time, and the module-
and-macro system ensures that run-time and compile-time evalua-
tion are kept separate (Flatt 2002). The separation of run time from
compile time enables compilation, analysis, and reasoning about
programs in general, as well as limiting evaluation at each phase to
only the code that is needed for that phase.
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The original design for modules in Racket allows module dec-
larations only at the top level. Our new extension to Racket’s mod-
ule system enables modules to contain nested module declarations,
which are called submodules. In most module systems that sup-
port nesting, lexically nested modules merely define a local names-
pace, and they are instantiated along with their enclosing modules.
Racket submodules, in contrast, have a lifetime that can be indepen-
dent of the enclosing module. The code of a submodule need not
even be loaded when the enclosing module is used, or vice versa—
unless the submodule imports from the enclosing module, or vice
versa, in which case the usual phase-sensitive module loading and
instantiation rules apply.

Submodules solve a number of practical problems for Racket
programmers. They provide a natural way to express a “main”
routine that is used only when the module is run as a program
and ignored when the module is used as a library. Submodules
provide a place for testing internal functions without making the
functions public and without causing the tests to run on all uses of
the module. Submodules enable abstraction over sets of modules,
which is not possible when modules and only modules exist at
the top level. Submodules also provide a communication channel
for static semantic information about a module, such as whether
the module is implemented in Typed Racket (Tobin-Hochstadt and
Felleisen 2008) and the types of its exports.

More generally, submodules give a programmer the ability to
define new phases along the same lines as the built-in run-time
and compile-time phases. We can think of tests, for example, as
“test-time” code, as opposed to run-time code. Unlike the distinc-
tion between the compile and run phases, the test phase subsumes
the run phase, but not vice versa. As another example, when docu-
mentation is written as part of the library that it documents, then the
code to produce the documentation is document-time code, which
is independent of run-time code. In much the same way that run-
time code and compile-time code can coexist within a module and
benefit from a shared lexical scope (so that the macro’s expansion
can conveniently refer to bindings in the same module), document-
time code can coexist with run-time code and benefit from a shared
scope (so that the documentation can conveniently refer to bind-
ings in the module, where the references are rendered as links to
the bindings’ documentation).

In this paper, we describe Racket’s module system, its handling
of different phases, and its support for submodules. We show how
submodules are used for tasks such as testing and documentation.
Finally, we provide a formal model that specifies the interaction
of macro expansion, module declarations, compilation, and evalu-
ation.

2. Modules and Phases
Before introducing submodules, we begin with a recap of Racket’s
design for modules and phases (Flatt 2002). In particular, we moti-



vate Racket’s module system in terms of compilation, but we mean
“compilation” in a broad sense—as a proxy for any task that re-
quires understanding what a program means without actually run-
ning the program. In a macro-extensible language, any such com-
pilation involves running code for macro expansion. At the same
time, when running code can have a side effect, running the code
only at the right time is particularly important.

In a traditional Lisp or Scheme setting, a program is constructed
by loading code into a read-eval-print loop (REPL). For
example, if a program is implemented across four files, then it is
linked together by having files load other files:1
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In this example, note that the "top-10.scm" file uses fold
without explicitly loading "list.scm". The program works,
anyway, because the files are effectively flattened into a lin-
ear sequence as they are loaded, and "list.scm" gets loaded
via "grocery.scm", which is in turn loaded before "top-
10.scm".

Relying on load-order side effects for program structuring is
clearly a bad idea. Reversing the initial loads of "top-10.scm"
and "grocery.scm" will break the program, even though a
programmer may be tempted to think of the files as modules that
can be imported in either order. Indeed, the lack of an explicit
dependency for "top-10.scm" on "list.scm" is likely to be
a mistake that will be discovered unfortunately late. As the number
of implementors and “module” files grows, the problem becomes
acute.

A step in the right direction is to introduce a concept of “pack-
ages” and constrain access to a variable to those in packages that
are explicitly imported with, say, a use declaration:2

��������

���� ��������������

���� �������������

���� ���� ����

���� ���������� ����

�����������

���� �����������

������� ����� ��

���� ���� �����

����������

���� �����������

������� ����������� ��

���� ���� �����

��������

������� ���� �����

This hypothetical use declaration plays two roles: it makes the
target package’s bindings available in the current package, and it
ensures that the target package is loaded before the current package.
In other words, it helps avoid the mistakes possible with load by

1 We use a ".scm" suffix in the figure because many pre-R6RS Scheme
implementations often worked as illustrated.
2 We use a ".lsp" suffix in the figure because the Common Lisp package
system works roughly as illustrated.

enforcing a connection between the lexical structure of the program
and it dynamic evaluation; the use form leverages lexical scope.

Unfortunately, in a macro-extensible language, simply declar-
ing dependencies on bindings does not cover the full dependency
story. Suppose that a "kitchen.lsp" package depends on a
"grocery.lsp" package to supply both a function shop and a
macro groceries (to simplify the construction of grocery lists),
while "grocery.lsp" depends on "gui.lsp" to implement
a graphical list manager:
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On the one hand, if use means only that "grocery.lsp" must
be loaded before "kitchen.lsp" is run, then the implementa-
tion of the groceries macro will not be available at compile
time for "kitchen.lsp", which is when its macros must be ex-
panded. On the other hand, if use means that a package is loaded
at both run and compile times, then compiling "kitchen.lsp"
means that "gui.lsp" will be loaded to start a graphical inter-
face even at compile time, but the graphical interface should start
only at run time.

The traditional solution to this problem is to annotate use dec-
larations with an eval-when declaration to say when the cor-
responding package should be loaded. Such annotations, however,
are a return to load-style scripting of dependencies, which are dif-
ficult to get right when many packages are involved. Furthermore,
compile-time code must be split into separate packages from run-
time code, so that the packages can be loaded at different times.

Racket modules with require look essentially the same as
our hypothetical packages with use:
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The meaning of require, however, is to run the compile-time
portions of the imported modules at compile time, and to run
the run-time portion of the imported modules at run time. Thus,
the compile-time implementation of groceries is available
to expand the body of "kitchen.rkt", while shop, list-
editor-gui, and init-gui-application! are deferred
until run time.

The require form triggers the right code at the right time
by leveraging lexical scope to determine which parts of a module
are for compile time and which parts are for run time. To a first ap-
proximation, macro definitions in a module are part of the module’s
compile time, while function definitions and top-level expressions
are part of the module’s run time. The following variant of our ex-
ample illustrates this difference, where solid outlines highlight run-
time code, and the dashed outline highlights compile-time code:
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In "kitchen.rkt", the run-time regions include references to
groceries and fold, and therefore they are imported with a
plain require. Whether fold is a macro, function, or variable,
all that matters is that fold is referenced from a run-time posi-
tion. In contrast, "grocery.rkt" uses fold in a compile-time
position, so it must use require with for-syntax to import
fold from "list.rkt". If "grocery.rkt" used require
without for-syntax to import "list.rkt", then fold in
"grocery.rkt" would be unbound for compile-time code, and
its use as shown would trigger a syntax error.

The difference between require with for-syntax and
eval-when with use is subtle but crucial: with eval-when, a
programmer attempts to say when code should run to make identi-
fiers available; with require, a programmer says in which phase
an identifier should be bound, leaving the questions of loading and
running up to the language. That is, with require, programmers
reason about scope, instead of reasoning about side-effecting loads.

If the groceries macro in "grocery.rkt" expands to
a run-time use of fold instead of using fold at compile time,
then "grocery.rkt" should import "list.rkt" normally,
instead of for-syntax. Put another way, a syntax-quoting #’ in
a macro embeds a run-time region within compile-time code, and
a #’-quoted reference to fold in a macro is the same as a direct
reference in a run-time position:

�����������

�������� ���������

�����������

�������������� ��������� ���� ������ �����

������� ���� ���� ���� �����

������� ��������������� �����

��������

������� ���� �����

Some libraries, such as a list-processing library like "list.rkt",
may even be useful at both compile time and run time. In that case,
the module can be required both normally and for-syntax:
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When a module is used in multiple phases, then it is instantiated
separately in each phase. Furthermore, to ensure that all-at-once
compilation is consistent with separate compilation of modules, a

module that is used at compile time is instantiated separately for
each module to be compiled. Separate instantiations avoid cross-
phase interference and help tame state enough to make it useful for
communication among macros (Culpepper et al. 2007; Flatt 2002).

Using lexical scope to determine and manage evaluation phases
fits naturally with hygienic macros (Kohlbecker et al. 1986), which
also obey lexical scope. For example, if the groceries macro
expands to a use of a private function that is defined within
"grocery.rkt", then hygiene ensures that the expanded ref-
erence is bound by the definition in "grocery.rkt" and not a
definition in the client module where the groceries macro is
used. Furthermore, the fact that groceries was bound for use in
a certain position implies "grocery.rkt" was imported for that
position’s phase, which in turn implies that the private definition
from "grocery.rkt" will be ready by the time that the position
is evaluated.

Preserving lexical scope across module boundaries ultimately
leads to the need for an import form that is like require with
for-syntax but that works in the other direction. For example,
imagine that the core implementation of the groceries macro is
both sophisticated and general enough that it should be put in its
own module, "gen-list-code.rkt" that is required with
for-syntax for use by the groceries macro:
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As gen-code constructs an expression for the expansion of gro-
ceries, it uses a syntax-quoted fold. The gen-code imple-
mentation exists at the run-time phase relative to its enclosing mod-
ule, while the reference to fold is generated for sometime further
in the future—when the result of gen-code is run as part of a gen-
erated program. Using require with for-template enables a
reference to a binding that exists in that future (as opposed to for-
syntax, which enables a reference to a binding that exists in the
past, relative to run time), and so "gen-list-code.rkt" re-
quires the "list.rkt" module with for-template.

Following the dependencies from "grocery.rkt" through
"list.rkt", the for-syntax and for-template phase
shifts effectively cancel each other. A for-syntax import im-
plies a phase shift of +1 (toward the past), and a for-template
import implies a phase shift of -1 (toward the future), so that
the combination gives +1 + -1 = 0.3 Consequently, a phase-0
(i.e., run time) use of "grocery.rkt" triggers a phase-0 use of
"list.rkt", which means that a use of groceries and its ex-
pansion to fold are consistent. Reasoning about such phase shifts
as a dynamic process is difficult, but reasoning locally about a refer-
ence to a future fold within "gen-list-code.rkt" is easy.

Using a macro inside of a compile-time context, such as the
right-hand side of a define-syntax form, means that the macro
runs at compile time relative to compile time—that is, at phase
2. In require, for-syntax and for-template specifica-
tions can be nested to import bindings into arbitrary phase levels.
Furthermore, begin-for-syntax allows compile-time defini-

3 Our phase numbers are negated compared to phase numbers in the staged-
computation literature. The negation reflects our emphasis on macros in-
stead of run-time code generation.



tions to be written within a module whose macros need the def-
initions. For example, if gen-code is needed only by macros
within "grocery.rkt", it might be better implemented within
the "grocery.rkt" module instead of in a separate module:
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This variant of "grocery.rkt" effectively inlines the earlier
"gen-list-code.rkt" module, shifting the inlined code with
begin-for-syntax instead of require with for-syntax.

In the same way that a module can import bindings at multiple
phases, it can also export bindings at multiple phases. The most
prominent example of multi-phase exports is the racket module,
which is implicitly imported in the above module pictures. The
racket module re-exports all of the bindings of a more primitive
racket/base module, and it re-exports the bindings at both
phase 0 and phase 1. That’s why a module that imports racket
can include a definition of the form

(begin-for-syntax (define gen-code ...))

The racket module exports define at phase 1, so the define
above is bound for the phase where it is used. If the module’s initial
import is racket/base, instead of racket, then the macro
definition above is a syntax error unless define is explicitly
imported for-syntax.

Naturally, begin-for-syntax forms can be nested to im-
plement a function that is needed for a macro that is used on the
right-hand side of a macro implementation, and so on, provided that
begin-for-syntax itself is imported into each phase where
it is used. Despite many possibilities for phases and nesting, the
lexical and phase-sensitive constraints on each variable ensure that
evaluation times are properly kept in sync.

3. Testing Time And Documentation Time
We can deploy the principles of lexical scope and phase separation
to distinguish phases other than just run time and compile time.
For example, suppose that we implement a function that uses the
Racket current-seconds function to implement a current-
hours function, and suppose that the implementation uses a pri-
vate seconds->hours function:
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The internal seconds->hours function should be tested:
(require rackunit)
(check-equal 0 (seconds->hours 0))
(check-equal 1 (seconds->hours 3600))
(check-equal 42 (seconds->hours 151200))

Where should we put these tests? If we put them in a separate mod-
ule, then seconds->hours must be exported, but we wanted
to keep that function private. If we add the tests to the end of
"hours.rkt", then the private function seconds->hours is
available, but the tests will run every time that the "hours.rkt"

module is used, and the dependency on rackunit means that ev-
ery program that uses "hours.rkt" must carry along the testing
framework.

The Racket module+ form offers a solution that lets a pro-
grammer include tests with the code, which makes the most sense
in terms of scoping, but puts the code in a separate submodule that
effectively implements a testing phase (in the dashed box):
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When "hours.rkt" is imported into another module with re-
quire, then the test submodule is ignored; the code for the
test module is not even loaded in that case, assuming that the file
has been compiled ahead of time. If the "hours.rkt" module is
run with the raco test command-line tool or run in DrRacket,
then the test module is also run.4

The testing example uses a submodule relatively explicitly. As
an example of a new phase that looks more like compile time,
consider the problem of documenting library exports at the site of
their implementations. Common Lisp supports documentation in
the form of docstrings, which are string literals that start the body
of a function:

(define (current-seconds)
"reports the time in seconds since the Epoch"

....)
(define (current-days)

"reports the time in days since the Epoch"
....)

Docstrings are often accessed at run time, but they are required to
be literal strings so that they can be recognized syntactically. With
the restriction to literal docstrings, a tool can build a documentation
index without running a program. Constraining docstrings to literal
strings, however, prevents abstraction:

(define (docs-for-current what)
(format "reports the time in ∼a since the Epoch"

what))

(define (current-seconds)
(docs-for-current "seconds")

....)

(define (current-days)
(docs-for-current "days")
....)

The docs-for-current abstraction doesn’t work if docstrings
are restricted to literal strings. In Racket, we can address the prob-
lem by developing a macro-based extension of the language: a
begin-for-doc form for documentation-time code along with
a keyword syntax (in a macro replacement of define) to identify
a part of a function definition as documentation:

4 Sometimes you do want to run tests when a particular library is used. For
example, this paper depends on the implementation of the model that is
presented in section 5, and the paper explicitly imports the implementa-
tion’s test submodule so that the model is tested whenever the paper is
rendered (Klein et al. 2012).



(begin-for-doc
(define (docs-for-current what)

(format "reports the time in ∼a since the Epoch"
what)))

(define (current-seconds)
#:doc (docs-for-current "seconds")

....)

With this approach, documentation need not be constrained to plain
text. Figure 1 provides a more complete example that uses Scrib-
ble (Flatt et al. 2009) syntax for writing documentation, and where
the begin-for-doc, for-doc, and define forms are imple-
mented in "doc-define.rkt". The require...for-doc im-
port binds Scribble typesetting forms such as code for use in writ-
ing documentation, where code in turn uses the same scope infor-
mation as used at run-time to hyperlink the documentation’s men-
tion of current-seconds to the documentation of current-
seconds. Similarly, the contract expressions after #:contract
are mainly run-time code, but they are also incorporated into the
documentation, where -> is hyperlinked to documentation on the
contract-construction form and exact-integer? is hyperlinked
to documentation of the number-testing predicate.

The example in figure 1 does not use submodules explic-
itly, but the for-doc imports, begin-for-doc forms, and
documentation-time #:doc expressions are all macro-expanded
into a srcdoc submodule (as we sketch later in section 4). The
submodule is then available for use by documentation tools. The
module that provides current-hours, etc., does not itself de-
pend on the Scribble libraries or use the code for current-docs
when the module is loaded.

4. Submodules
Our pictorial representation of modules so far omits the #lang
line that starts an actual Racket module. For example, the module
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represents the file "clock.rkt" whose content is
#lang racket
"tick"

The initial #lang racket line, in turn, is a shorthand for using
the parenthesized module form:

(module clock racket
"tick")

The racket here indicates a module to supply the initial bindings
for the clock module body. The clock module does not use any
of those bindings (except for the implicit literal-expression form),
but it could use any racket function or syntactic form—and
only those syntactic forms, until it uses require to import more.
Running the clock module prints the result of the expression in
its body, so it prints "tick".

To a first approximation, a submodule is simply a nested mod-
ule form.

(module clock racket
"tick"
(module tock racket

"tock"))

Running the clock module still prints just "tick". Simi-
larly, evaluating (require "clock.rkt") in the Racket
REPL prints "tick". In those cases, the tock submodule is
declared, but it is not instantiated and run. Evaluating (require
(submod "clock.rkt" tock)) in the Racket REPL prints
"tock" and does not print "tick". Submodule nesting implies a

#lang at-exp racket/base
(require "doc-define.rkt"

racket/contract/base
(for-doc racket/base

scribble/manual))

(define (seconds->hours secs)
#:contract (-> exact-integer? exact-integer?)
#:doc @{Takes @code{secs}, a number of seconds

since the Epoch, and converts it to a
number of days since the Epoch.

For example, compose with with the
@code{current-seconds} function to get
@code{current-hours}.}

(quotient secs (* 60 60)))

(begin-for-doc
(define (current-docs what)

@list{Returns @what since the epoch.}))

(define (current-seconds)
#:contract (-> exact-integer?)
#:doc @{@current-docs["seconds"]}
(inexact->exact

(floor (/ (current-inexact-milliseconds) 1000))))

(define (current-hours)
#:contract (-> exact-integer?)
#:doc @{@current-docs["hours"]}
(seconds->hours (current-seconds)))

Figure 1: Example program with documentation time

kind of nesting of module names, but it does not imply any run-time
relationship between a submodule and its enclosing module.

A module can explicitly run one of its submodules using re-
quire, the same as it would trigger any other module. A mod-
ule can reference one of its submodules using the relative form
(submod "." ....):

(module clock racket
(module tock racket

"tock")
(require (submod "." tock))
"tick")

Running this module prints both "tock" and "tick", since the
module explicitly requires its submodule and therefore creates
an instantiation relationship.5

A submodule declared with module cannot import from its
enclosing module. The module* form is the same as module for
declaring submodules, but it allows the submodule to import from
its enclosing module and not vice versa. (Module dependencies in
Racket must be acyclic.) Thus, with the clock variant

(module clock racket
"tick"
(module* tock racket

(require (submod ".."))
"tock"))

evaluating (require (submod "clock.rkt" tock)) in
the Racket REPL prints "tick" followed by "tock".

For the same reason that module nesting does not imply a
connection in instantiation times, module nesting alone does not
imply a lexical-binding connection. For example,

(module clock racket

5 The require form is a dependency declaration, not a side-effecting
statement, and its placement relative to the "tick" expression does not
matter. Putting "tick" before the tock submodule declaration will still
print "tock" first, since a required module is instantiated before the
importing module.



(define sound "tick")
(module* tick racket

sound))

is a syntax error, because the tock module starts with only the
bindings of racket, just like any module that declares racket
as its language. Furthermore,

(module clock racket
(define sound "tick")
(module* tick racket

(require (submod ".."))
sound))

is also a syntax error, because clock does not export its sound
binding. A submodule can specify #f as its initial language to
indicate that the enclosing module body provides the submodule’s
bindings:

(module clock racket
(define sound "tick")
(module* tick #f

sound))

In this case, (racket (submod "clock.rkt" tock))
prints "tick", which is the value of sound.

The module+ form, which we used in section 3, is a macro that
expands to module* with #f as its language. The module+ form
also collects multiple declarations with the same module name
and concatenates the bodies in a single submodule declaration,
so (module+ test ....) can be used multiple times in a
module to build up one test submodule.

Submodules can be nested under begin-for-syntax. For a
submodule declared with module or with module* and a non-
#f initial import, the nesting has no effect on the submodule,
since the submodule starts with a fresh lexical context. Nesting
module* with a #f initial import under begin-for-syntax
has the effect of shifting the enclosing module’s bindings down by
one phase in the body of the submodule. That is, a submodule’s
body by definition starts at phase 0 relative to the submodule, so
if the submodule is lexically at phase ph relative to an enclosing
module, then the enclosing module is at phase -ph relative to the
submodule.

Relative phase shifts are useful in the case of documentation
submodules, where all of the bindings inside of a module are rel-
evant for the submodule, but the submodule should not have a di-
rect execution dependence on the enclosing module. For example,
building documentation should not require running the documented
library. Figure 2 sketches the expansion of the module with docu-
mentation in figure 1. In the expansion, contracts for each function
declaration are moved to a provide...contract-out form, the
function definitions contain only the function implementations, and
all documentation is moved into a srcdoc submodule. The sub-
module is declared under begin-for-syntax, so that the en-
closing module is at template time—i.e., an unspecified time in the
future—relative to the implementation of its documentation; the
code form can then reflect on binding information inherited from
the enclosing module to properly hyperlink references to identifiers
that are used in the function contracts and documentation prose.

5. Model
Our model of submodules in Racket shows how modules are com-
piled and instantiated, including support for submodules, macros,
and macros that expand to submodule declarations. The model is
implemented in PLT Redex (Felleisen et al. 2010), and while we
cover only the most relevant details here, the full model is available
in executable and typeset forms at

http://www.cs.utah.edu/plt/submod3/

#lang at-exp racket/base
(require "doc-define.rkt"

racket/contract/base)

(provide
(contract/out

[seconds->hours (-> exact-integer? exact-integer?)]
[current-seconds (-> exact-integer?)]
[current-hours (-> exact-integer?)]))

(define (seconds->hours secs) (quotient secs (* 60 60)))
(define current-seconds ....)
(define current-hours ....)

(begin-for-syntax
(module srcdoc #f

(require scribble/base
scribble/manual)

(define (current-docs what)
@list{Returns @what since the epoch.})

(define doc
(list

(format-function-doc
@code{seconds->hour}
(list @code{src})
@code{(-> exact-integer? exact-integer?)}
@{Takes @code{secs}, a number of seconds

since the Epoch, ....})
(format-function-doc

@code{current-seconds}
@code{()}
@code{(-> exact-integer?)}
@{@current-docs["seconds"]})

(format-function-doc
@code{current-hours}
@code{()}
@code{(-> exact-integer?)}
@{@current-docs["hours"]})))))

Figure 2: Sketch of macro expansion for figure 1
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Figure 3: Compiled-module representation

5.1 Running Modules
The representation of a compiled module, ���, is shown in fig-
ure 3. A ��� contains the module’s name, a set of modules that
the module depends on, and a sequence of definitions for the mod-
ule’s body. Each dependency and definition is associated with a
particular phase, ��. A normal require of a module creates a
dependency with phase 0, while a require with for-syntax
creates a dependency with phase 1, and a require with for-
template creates a dependency with phase -1.

Each definition is either for a run-time value or a macro, as in-
dicated by ����, and its associated phase. A value definition is eval-
uated at its associated phase and can be referenced in its associated
phase. A macro definition at phase �� can be referenced from a
phase �� context, although the macro itself runs at phase ����.

http://www.cs.utah.edu/plt/submod3/
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Figure 4: The ��� metafunction

A module is instantiated and run with the ��� metafunction, as
shown in figure 4. A store � is updated with module instantiations
and returned by ���. The ��� metafunction evaluates a module body,
but only after folding ��� across all dependencies of the module. For
each dependency, if a module was imported for-syntax, then
its definitions will be shifted higher by one phase, and if a module
was imported for-template, then its definitions will be shifted
lower by one phase.

A ��� does not record the original module’s submodules, if
any. Instead, the module repository � contains all compiled module
definitions, including those that were submodules. For simplicity,
the model assumes that all modules and submodules in a program
have globally distinct names. Any module–submodule or not–that
is not a dependency of the initially run module will itself not run.

5.2 Compiling Modules
The � module repository used by ��� must be generated from a
sequence of module declarations, except for the predefined module
base. A module declaration starts as an S-expression, �����, which
is either a name6 or a parenthesized sequence of S-expressions,
as shown in figure 5. The compiler must take an S-expression
representation of a module, such as

(module m base (define x (quote ok)))

and turn it into an executable form, ���.
The entry point for compilation is �������, which takes an S-

expression for a single module along with a repository of previ-
ously compiled modules and returns an updated repository:

6 We use the term name instead of symbol for syntactic names. We use
symbol for the run-time reflection of such names, which always appear in
our model with the ����� constructor. See Flatt et al. (2012, section 3.2.1)
for further discussion.
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Figure 5: Syntax objects and bindings
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Compilation of a module begins by visiting the module for the
new module’s initial import. The ����� metafunction is just like ���,
but instead of running only phase 0 value definitions, it runs all
definitions for the given module in phase 1 or higher, as well as all
macro definitions at phase 0. The ����� metafunction is called with
an empty store, which reflects that every module compilation starts
with fresh state.

Meanwhile, the ������ metafunction extracts a set of bindings
from the initial import, as shown in figure 5; the model omits
provide, and instead assumes that all definitions of a module are
exported. The collected bindings are then applied to the body of
the module to be compiled via ����, which converts the module’s
body from S-expressions to syntax objects, ���. In general, syntax
objects enable lexically scoped macros (Dybvig et al. 1993; Flatt
et al. 2012), but we simplify here by considering only model-level
scope.

Finally, each syntax object for a module’s body is paired with
the phase at which it appears, producing a ���� element of the
form ������. Initially, all body forms are at phase 0, but begin-
for-syntax may later move forms to a higher phase. This phase
shifting is implemented in the ����� metafunction, which completes
compilation of the module.
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In addition to the ���� sequence, ����� receives the name of the
module being compiled (which is eventually used to create a ���

and add it to �), a sequence of dependencies to extended by re-
quire forms among the ����s, a sequence of compiled ����s to
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Figure 6: Module syntax recognized by �����

be extended by define and define-syntax forms among the
����s, the set of previously compiled modules � to be extended by
submodule declarations among the ����s, and the current store �.

The simplest case of ����� is when no more ����s are left,
in which case the accumulated dependencies and definitions are
combined into a ��� and added to the result �:

��������� ������ ����� ������ �� � ��

���������� ���������������������������

Otherwise, ����� dispatches on the shape of the first ����, match-
ing one of the ���� cases of figure 6. The grammar of ���� shows
begin-for-syntax as its first case. More precisely, from the
perspective of �����, a ���� to match that case must have a syn-
tax object containing an identifier whose binding is begin-for-
syntax from the pre-defined base module. That is, the forms
listed in the grammar for ���� are available only when base is im-
ported or via macro expansion from a module that imports base.
The last ���� production is a macro invocation, where macro ex-
pansion can produce any of the other forms (or another macro in-
vocation).

The ����� rule for begin-for-syntax is thus
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The syntax objects within begin-for-syntax get shifted up
by one phase and added back to the list of bodies for the module.

We omit the rules for define, define-syntax, and macro
invocation. For the purpose of explaining submodules, an interest-
ing aspect of the omitted rules is that definitions are evaluated only
when they have a phase greater than 0, so that they can be used
in macro implementations, while definitions at phase 0 are merely
compiled.

The require case of ����� uses a ��������� metafunction (not
shown) to turn nested for-syntax and for-template speci-
fications into a phase shift:
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Having extracted a module name ������� and relative phase ���,
the require rule of ����� is essentially the same as �������: the
imported module is visited, its bindings are added to the rest of the
module, and the module is recorded as a dependency.
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Figure 7: Submodule cases of �����

5.2.1 Compiling Submodules
The remaining cases of ����� handle submodules, as shown in
figure 7. The module rule and first module* rule are similar: the
submodule is compiled using �������, and the difference is only
whether the submodule is compiled before or after the rest of the
body of the current module. A module form is compiled before
the rest of the body, so that it can be used by a later require in
the current module. A module* form is compiled after the rest of
the current module’s body, so that the submodule can require
the current module.

The last rule in figure 7 handles (module* ����� () ����

...), which represents a submodule that inherits all bindings of its
enclosing module. (We use �� instead of �� in the model to avoid
the need for boolean literals in S-expressions and syntax objects.)
Inheriting all bindings of the enclosing module is different from
importing the enclosing module, because it makes any imports
of the enclosing module visible in the submodule, as opposed to
only the definitions of the enclosing module. Therefore, instead
of compiling the submodule via a context-stripping �������, the
submodule’s compilation uses ����� directly. At the same time, the
bindings inherited by the submodule must be shifted by a negative
amount that corresponds to the submodule’s phase nesting within
its enclosing module. Although the submodule inherits bindings of
the enclosing module, it does not inherit the store; the submodule’s
compilation via ����� starts with a fresh store that is initialized by
visiting the enclosing module at the appropriate phase offset.

As noted for the first ����� rule, the result of ����� is ultimately
a set of compiled modules to act as the result of �������. Folding
������� over a set of S-expressions that represent a program accu-
mulates a set of compiled modules, which then can be passed to ���

with a main-module name to run the program. The full model on
the web site includes several example programs as tests.

6. Implementation and Discussion
We added submodules to Racket in version 5.3 (August 2012),
which is 10 years after originally adding modules to Racket (then
PLT Scheme). To support nested scopes, the initial implementation
of modules was soon paired with a package macro that imitates
the nestable module form of Chez Scheme (Waddell and Dybvig
1999), but such nested scopes never found much use in the Racket
code base. Submodules, in contrast, have found immediate and



widespread use, solving many different problems that we did not
originally recognize as related: how to have code that is run when
the module is “main” (in a more principled way than a Python-style
dynamic test), how to include test code with a library’s implemen-
tation, how to manage documentation in a library’s implementa-
tion, how to provide extra exports from a module that are avail-
able only when specifically requested (by importing the submodule
in addition to its enclosing module), how to package a read-time
parser for a new language alongside its compile-time and run-time
implementation (where read time is represented by a submodule),
and how to declare dynamic file dependencies for use by a pack-
aging tool (where the packaging tool can run a submodule to get
information about the needed files). Naturally, we take the fact that
submodules are conceptually simple but solve many problems as
evidence that the submodule design is on the right track.

The key idea in our design is to allow a nested namespace to
have its own dynamic extent relative to its enclosing environment.
In a sense, submodules are a “meta” form of closures: in the
same way that (define (f x) (lambda (y) x)) returns
a function that has access to the argument x beyond the dynamic
extent of a call to f, submodules provide a way for a nested module
to refer to the bindings of an enclosing module without necessarily
implying a connection on the module extents (depending on how
the bindings are referenced). More generally, lexical scope converts
a potentially complex temporal question—how to ensure that a
binding is available when it is needed—into a spatial problem that
is easier for humans to reason about; that benefit applies just as
much to modules, phases, and submodules as to function closures.

Racket’s submodule design would look simpler if module and
the two module* variants (with and without an initial import)
could be collapsed into a single syntactic form. It may be pos-
sible to collapse module and module* and have the compiler
infer (based on later requires) whether a submodule must be
compiled before or after the rest of the enclosing module’s body.
The difference between #f or a module name in the initial-import
position of module* might also be managed by cleaner syntax.
We leave these problems for future work, and as a practical mat-
ter, choosing module or module* is easy enough for a Racket
programmer.

The Racket implementation of modules includes a primi-
tive for-label form in addition to for-syntax and for-
template. A for-label import corresponds to binding at
phase -∞: arbitrarily far in the future. The code form for doc-
umentation looks for bindings at this label phase for generating
hyperlinks, and in the expansion sketch of figure 2, the generated
module’s body has been shifted by -∞ (but that fact is invisible in
the sketch). The label phase is a kind of optimization hint to the
module system, where a for-label dependency implies that no
execution of the module at any finite phase will require the execu-
tion of the dependency. The label phase seems useful, but we are
not yet sure whether it is fundamentally necessary.

As suggested by the model, top-level module forms are the
unit of compilation in Racket. When a program is run from source
in Racket, then a module and all of its submodules must be com-
piled together. In the case of a library module that contains its own
documentation, this compilation process involves much more code
than is needed to just run the library, negating an intended benefit
of submodules. Racket modules are normally compiled to bytecode
in advance, and the bytecode for a module starts with a directory
of all submodules separate from the main module code, so that the
module or any individual submodule can be loaded independently.
Thus, a key benefit of submodules in practice relies on bytecode
compilation.

7. Related Work
By enabling programming at different layers, submodules play a
role similar to Java annotations and C# attributes. JavaDoc, in par-
ticular, is a use of Java annotations in the same way that Racket uses
submodules for in-source documentation. Java annotations allow
the decoration of code with data, and they are preserved through run
time, so that annotations can be inspected in source, compiled code
or reflectively. Still, Java annotations are limited to data, so that
any abstraction or programmatic interpretation of the data depends
on yet another external tool and language, or else the code part
(such as test to run for a @Test annotation) is difficult to separate
from the main program. C# attributes can have associated meth-
ods, but attribute code is still mingled with run-time code. Sub-
modules, in contrast, generalize annotations to make them “live,”
so that the language of annotations can include expressions, func-
tion, and even syntactic extension, without necessarily tangling the
submodule code with the base code. At the same time, submod-
ules allow these live annotations to connect with the lexical scope
of the associated code, which is useful in cases such as testing and
documentation.

Although the model of submodules in this paper uses a sim-
plistic notion of scope for syntax objects, in practice and in spirit
submodules build on a long line of work on hygienic macros (Dy-
bvig et al. 1993; Flatt et al. 2012; Kohlbecker et al. 1986). The
R6RS standard for Scheme (Sperber 2007) also includes modules
with phases, as directly influenced by our previous work, but R6RS
does not include submodules or begin-for-syntax, and it
does not allow macro expansion to introduce new imports within
a module. R6RS also does not require implementations to enforce
a phase distinction. Some implementations support implicit phas-
ing (Ghuloum and Dybvig 2007), where for-syntax and for-
template annotation on imports are inferred automatically based
on the use of imported identifiers. In Racket, we stick with ex-
plicit phasing because it supports different bindings for the same
name in different phases (which is useful, for example, when docu-
menting the define form of some language in a document that is
implemented with Racket’s normal define) and because explicit
phasing allows macro expansion to depend in a reasonable way on
side effects (as a last resort, but a useful one). We also suspect
that checking programmer expectations against actual references
is more useful in our context than implicit phasing’s inference.

In TemplateHaskell (Jones and Sheard 2002), macro implemen-
tations are restricted to pure functions, which perhaps lessens the
need to track phases; there is no question, for example, of ini-
tializing a GUI subsystem as part of a macro expansion, and in
the absence of side-effects as side channels, the code that is ac-
cessed at compile time can be more easily limited to that needed
by the macro’s implementation. Since functions used by macros
can be implemented themselves with macros, TemplateHaskell ef-
fectively supports arbitrary phase levels, the phases are implicit,
and bindings are the same across all phases. TemplateHaskell does
not support phases other than the implicit phases of run and com-
pile times, and in-source documentation with Haddock (Marlow
2002) is analogous to JavaDoc. The Converge programming lan-
guage (Tratt 2005) infers phases for macro expansion in a similar
way to TemplateHaskell.

The SugarJ (Erdweg et al. 2011) design for library-based lan-
guage extensibility relies on a separation between parsing code and
transformation code, while allowing the two parts to coexist in a
library. In SugarJ, the languages of parsing and transformation are
separate and distinct from the base language. Nevertheless, there
is room for a scope connection that is currently absent in SugarJ,
which would connect the output of the parser to specific transfor-



mations or binding references in transformations to particular base-
language bindings.

Lightweight Module Staging (Rompf 2012; Rompf and Oder-
sky 2010), or LMS, is an approach to code generation where the
type system is used to separate code at different levels. While the
details of LMS are different from Racket’s macros—particularly
the way that run-time values can be implicitly coerced to repre-
sentations of values—LMS is effective for fundamentally the same
reason as modules and phases: both rely on scope and binding to
separate phases, and both allow phases to lexically overlap without
destroying a programmer’s ability to reason about the code.

More generally, multi-stage programming languages such as
MetaML (Taha and Sheard 2000) include a notion of phases that is
similar to the notion in Racket. Racket’s tracking of phases differs
in that a syntax object can accumulate bindings in many phases, and
the determination of the relevant binding can be made late, when
the identifier is used in an expression position. Staged languages
more typically identify the phase of each expression and identifier
statically. MetaML and other statically typed multi-stage languages
not only ensure that an identifier is used at a suitable phase, but they
ensure that the identifier is used in a suitable type context.

Nested modules in languages such as ML (OCaml, SML/NJ)
and Chez Scheme (Waddell and Dybvig 1999) are namespace-
management tools, where nested modules are always instantiated
with the enclosing module. Racket submodules, in contrast, are
separately loadable and separately instantiable in the same way that
top-level modules are separately loadable and instantiable.

Java classes are related to submodules in that the declaration of
two classes within a single compilation unit does not imply that
both classes must be used together at run time. Instead, classes
are loaded and initialized on demand in a Java implementation,
which allows a Java implementation to avoid loading code that is
unused, and it ensures dynamically that any code that is needed is
loaded before it is used. With a macro-extensible Java in the style
of Maya (Baker and Hsieh 2002), code that is used only at compile
time will naturally not be loaded at run time. This approach has the
same benefits and drawbacks as implicit scoping in Scheme (e.g.,
the difficulty of reasoning about initialization side effects).

In this paper, we have used in-source documentation as one
motivation for submodules. We reported on in-source documenta-
tion for Racket in previous work (Flatt et al. 2009), but that report
glosses over certain problems. Documentation was extracted via
include-extracted by re-expanding the source module and
pulling designated syntax objects out of the expansion. Besides be-
ing ugly and reporting syntax errors late, the implementation had
quadratic complexity for extracting N sets of documentation from a
single module. Our revised implementation of in-source documen-
tation uses a submodule to avoid these problems.

8. Conclusion
Lexical scope is a powerful organizing principle. In the context of
Racket, we believe that lexically scoped macros are the key to our
ability to define a rich ecosystem of language variants and tools,
from teaching dialects of Racket, to statically typed dialects of
Racket, to documentation languages. Phasing is a natural extension
of lexical scope that adds a new dimension to each identifier, al-
lowing the identifier to have different meanings in different phases
while relying on the surrounding context of an identifier to also
determine the phase in which the identifier is used. Submodules
continue that extension; they add new expressive power to Racket
in line with the principles of lexical scope, they solve a variety of
practical problems for Racket programmers, and they increase the
ability of macros to implement new language constructs.
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